
Quickly Trace HardFaultHardler 

2024.4.8 1 Rev 2.0.1 

AN0028 

Application Note 

Quickly Trace HardFaultHardler 

 

Introduction 
This application note describes how to use CmBacktrace library to quickly trace the HardFault and 
fix it. 

 

Note: The codes in this application note are based on Artyer’s V2.x.x BSP (board support package). 
Therefore, attention should be paid to the differences between the versions of BSP when in use 

 

Applicable parts: 

MCU AT32 Family 

 



Quickly Trace HardFaultHardler 

2024.4.8 2 Rev 2.0.1 

Contents 

 Overview ................................................................................................................. 5 

 Causes of HardFault generation .......................................................................... 6 

 How to analyze HardFault ..................................................................................... 7 

 CmBacktrace library ................................................................................................. 7 

 How to use MDK-based CmBacktrace ..................................................................... 7 

 Example cases ....................................................................................................... 12 

 Revision history ................................................................................................... 13 



Quickly Trace HardFaultHardler 

2024.4.8 3 Rev 2.0.1 

List of tables 

Table 1. Document revision history .................................................................................................... 13 



Quickly Trace HardFaultHardler 

2024.4.8 4 Rev 2.0.1 

List of figures 

Figure 1. HardFault_Handler function ................................................................................................. 5 

Figure 2. cm_backtrace folder ............................................................................................................. 7 

Figure 3. Add cm_backtrace to the keil project ................................................................................... 8 

Figure 4. Configure C99 Mode and header file in Keil ........................................................................ 8 

Figure 5. Configure cmb_cfg.h file ....................................................................................................... 9 

Figure 6. at32f4xx_it.c compiling error ................................................................................................ 9 

Figure 7. Delete the HardFault_Handler function ............................................................................... 9 

Figure 8. Write the division by 0 fault function .................................................................................. 10 

Figure 9. Call the divided-by-zero error function in main .................................................................. 10 

Figure 10. Error information output ................................................................................................... 10 

Figure 11. Locate addr2line.exe ........................................................................................................ 11 

Figure 12. Copy addr2line.exe .......................................................................................................... 11 

Figure 13. Call CMD to run addr2line.exe ......................................................................................... 11 

Figure 14. Check the error code area ............................................................................................... 12 



Quickly Trace HardFaultHardler 

2024.4.8 5 Rev 2.0.1 

 Overview 

Sometimes program execution failure may occur during the use of ARM Cortex-M-based MCU 

(such as AT32 MCU). When we attempt to look into the cause of this problem in Debug mode 

through compiler, we might find that the program jumps to the HardFault_Handler function, and 

thus generates a HardFault. 

Figure 1. HardFault_Handler function 

 

This application note demonstrates how to quickly track and find the root cause of HardFault 

through the CmBacktrace-based library.  



Quickly Trace HardFaultHardler 

2024.4.8 6 Rev 2.0.1 

 Causes of HardFault generation 

Here are the possible factors generating HardFault.  

 Data array is handled out of the boundary 

 Memory overflow causes access outside the boundary 

 Stack overflow causes program crash 

 Interrupt handle error 

Data array out of boundary 

The program uses static array but value overflow occurs during dynamic parameter transfer. It is 

also possible that the allocated interntal memory is very low to cause program failure. 

 

Memory overflow 

Check the RAM area to confirm whether the RAM data count executed after compiling is out of the 

boundary. It is not recommended to make extreme value configuration to avoid error during 

dynamic parameter transfer of data array. 

 

Stack overflow 

This problem often occurs when using operating system code. As in operating system, the 

variables of tasks are allocated and placed in a stack space where the tasks applie for. 

For example, the xTaskCreate function is called in FreeRTOS to create a task. This function uses 

the parameter usStackDepth to assign task stack. If the assigned stack size is too small or not big 

enough, this may cause program to enter HardFault. 

 

Interrupt handling error 

Although users enable some interrupts such as USART, TIMER, RTC, the conditions for interrupt 

generation are met during program execution but some of the interrupt service routine functions 

cannot be identified, this may lead to error. 



Quickly Trace HardFaultHardler 

2024.4.8 7 Rev 2.0.1 

 How to analyze HardFault 

When it comes to HardFault probem, the first step in most cases is to check the value in the LR 

register to determine whether the current stack you are using is MSP or PSP, find the 

corresponding stack pointer, and then check the content of the stack in the memory. When an 

error is detected, the core would place R0~R3, R12 Returnaddress, PSR and LR registers in the 

stack in sequence. The Return address refers to the next instruction to be executed by PC before 

the occurrence of the error. 

However, this is a tedious process requiring the engineer to be familiar with ARM core. 

The subsequent section will introduce an open force CmBacktrace library to make quick analysis 

of an error. 

 CmBacktrace library 

CmBacktrace (Cortex Microcontroller Backtrace) is an open source library that is capable of 

automatically tracking and locating error codes for ARM Cortex-M-based MCUs, and analyzing the 

causes of errors.  

Main features: 

 Error type that can be identified 

1) Assert 

2) Fault (Hard Fault, Memory Management Fault, Bus Fault, Usage Fault, Debug Fault) 

 Failure cause automatic diagnosis: when a failure occurs, the cause of the failure can be 

automatically analyzed, and the code location of the failure can be located, without needing 

to analyze the complicated fault registers; 

 Applicable to Cortex-M0/M3/M4/M7 MCU 

 Support IAR, KEIL, GCC compiler 

 Support FreeRTOS, UCOSII, RT-Thread, etc 

 How to use MDK-based CmBacktrace 

Follow the procedures below: 

Step 1: Add cm_backtrace file to the MDK 

Figure 2. cm_backtrace folder 

 

Copy the cm_backtrace folder and add it to the keil project directory. 



Quickly Trace HardFaultHardler 

2024.4.8 8 Rev 2.0.1 

Figure 3. Add cm_backtrace to the keil project directory 

 

Step 2: Add the header file, and tick C99 Mode  

Figure 4. Configure C99 Mode and header file in Keil 

 

 



Quickly Trace HardFaultHardler 

2024.4.8 9 Rev 2.0.1 

Step 3: Compile and debug 

First, follow the prompts below to modify the cmb_cfg.h file. 

Figure 5. Configure cmb_cfg.h file  

 

At this point, a compiling error occurs. This is because that the HardFault_Handler is not only 

defined in the cmb_fault.c but also in the at32f4xx_it.c. In other words, this function is repeatedlyl 

defined. 

Figure 6. at32f4xx_it.c compiling error 

 

Delete the HardFault_Handler function defined in the at32f4xx_it.c. 

Figure 7. Delete the HardFault_Handler function 

 

 

  

OS or No OS 

Cortex-M4 

Language 



Quickly Trace HardFaultHardler 

2024.4.8 10 Rev 2.0.1 

Step 4: Test and view 

After successful compilation, go and test it.  

Figure 8. Write the division by 0 fault function 

 

Then call the cm_backtrace_init(); in the main function to initialize the cm_backtrace, and call the 

test function: 

Figure 9. Call the divided-by-zero error function in main 

 

Download and run the program, the following information will be received on PC. 

Figure 10. Error information is displayed 

 

 

 



Quickly Trace HardFaultHardler 

2024.4.8 11 Rev 2.0.1 

We can see that the cause of error (divided by zero) and a command line are displayed. To run 

this command, you need to use the addr2line.exe tool, which is located in tool folder. 

Figure 11. Locate addr2line.exe  

 

There are two versions available for this tool, 32 bit and 64 bit. Select the desired version 

according to your needs and copy it to the .axf folder under keil project directory: 

In this example, it is copied into the 

AN0028_SourceCode_V2.0.0\utilities\AN0028_demo\non_os\mdk_v5\objects 

Figure 12. Copy addr2line.exe  

 

Enter the cmd window, go to the above folder location and run the command in the serial interface 

assistant window: 

addr2line -e CmBacktrace(This name should be changed according to user’s project name).axf -a 

-f 080019c6 08001ae9 

For example, if the project name in demo is printf, then the command should be addr2line -e 

printf.axf -a -f 080019c6 08001ae9 

Figure 13. Call CMD to run addr2line.exe  

 

We can see that the addr2line.exe tool has located the line number at which the error code is. 



Quickly Trace HardFaultHardler 

2024.4.8 12 Rev 2.0.1 

Figure 14. Check the error code area 

As shown in the figure below, the error code is pointed at the No.60 line in main.c, and the No.38 

in fault_test.c. 

 

 

It is found that this is the very line number where the error occurs. 

The CmBacktrace library can help users quickly locate HardFault error. 

 Example cases 

Case 1: Division by 0 exception on AT32 bare machine 

Project location: AN0028_SourceCode_V2.0.0\utilities\AN0028_demo\non_os 

Test item: division by 0 exception on bare machine 

Case 2: Division by 0 exception on FreeRTOS 

Project location: AN0028_SourceCode_V2.0.0\utilities\AN0028_demo\os\freertos 

Test item: Division by 0 exception on FreeRTOS. It should be noted that there are three locations 

marked with notes /*< Support For CmBacktrace >*/ in tasks.c in an indication of the modifications 

based on CmBacktrace. 

Case 3: Non-aligned access error on USOCⅡ 

Project location: AN0028_SourceCode_V2.0.0\utilities\AN0028_demo\os\ucosiii 

Test item: Non-aligned access error on USOCⅡ. It should be noted that the #define 

OS_CFG_DBG_EN in os_cfg.h represents 1u. 

 



Quickly Trace HardFaultHardler 

2024.4.8 13 Rev 2.0.1 

 Revision history 

Table 1. Document revision history 

Date Revision Changes 

2022.2.7 2.0.0 Initial release 

2024.4.8 2.0.1 
Modified AC6 comiling error descriptions, and upgraded the version of 

cm_backtrace to V1.4.1 

 

 



Quickly Trace HardFaultHardler 

2024.4.8 14 Rev 2.0.1 

 

 

 

 

 

 

 

 

 

 

IMPORTANT NOTICE – PLEASE READ CAREFULLY 

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for 

purchasers’ selection or use of the products and the relevant services. 

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous 

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY 

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third 

party’s products or services or intellectual property in any way. 

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, 

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a 

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other 

intellectual property right. 

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have 

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements 

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other 

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned 

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks 

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with 

all statutory and regulatory requirements regarding these uses. 

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will 

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and 

ARTERY disclaims any responsibility in any form. 

© 2024 Artery Technology -All rights reserved 

 

 


	1 Overview
	2 Causes of HardFault generation
	3 How to analyze HardFault
	3.1 CmBacktrace library
	3.2 How to use MDK-based CmBacktrace
	3.3 Example cases

	4 Revision history

