1[= Quickly Trace HardFaultHardler

ANO0028
Application Note

Quickly Trace HardFaultHardler

Introduction

This application note describes how to use CmBacktrace library to quickly trace the HardFault and
fix it.

Note: The codes in this application note are based on Artyer’s V2.x.x BSP (board support package).
Therefore, attention should be paid to the differences between the versions of BSP when in use

Applicable parts:

MCU AT32 Family

2024.4.8 1 Rev 2.0.1

?F ? Quickly Trace HardFaultHardler
Contents

1 L0 1 Y YT RSP 5

2 Causes of HardFault generationccciiiiii 6

3 How to analyze HardFault..................c.coooiiiiiiii e 7

3.1 CmBaCKrace lIDraryoooeiiiiiiiiiiiiiiiiiiiiie ettt e e e e eeeeeees 7

3.2 How to use MDK-based CmBacCKIraCeccoovvvviiiiiiiiciiieeeciie e 7

3.3 EXAMIPIE CASES ..ovvviiiii ittt 12

4 ReVISION hiStOrYcooiiiii s 13

2024.4.8 - - 2 - = Rev 2,01

1?[? Quickly Trace HardFaultHardler
List of tables

Table 1. Document reviSion NiSTOIY..........ouiiii e 13

2024.4.8 3 Rev 2.0.1

<[

< Quickly Trace HardFaultHardler

List of figures

2024.4.8

Figure 1. HardFault_Handler FUNCHONooiiiiii e 5
Figure 2. cm_Dacktrace fOIUENooi e 7
Figure 3. Add cm_backtrace 1o the Keil ProjecCt..........oooeiiiiiiii e 8
Figure 4. Configure C99 Mode and header file in Keilcccooiiiiiiiiie e 8
Figure 5. Configure cmb_cCfg.h file.........ovieiee e 9
Figure 6. at32f4XX_it.C COMPIlING EITONcii et e e e e e e e e e e e e e s ssereeeeeeeeeennne 9
Figure 7. Delete the HardFault_Handler fUNCLON ..o 9
Figure 8. Write the division by O fault fuUNCHONoooiiii e 10
Figure 9. Call the divided-by-zero error function in MaIN..........cccoviiiiiiiiii e 10
Figure 10. Error information OUIPULcooiiiiiiiieiiee et 10
Figure 11. LoCate addr2liNE.EXEuuuiiiiieeieiiiiiiie e e e e s ettt e e e e e e e s e e e e e e e e s snsaaeeeeeeeeeennnnnnneneeaeeas 11
[T [0 I DA O] o) V=T [0 [2 1 TN = RS 11
Figure 13. Call CMD 10 run addr2liNE.EXEuuuiiiiieee e it e e e e e eeeee e e e e e e s e e e e e e e e e nanneaeeeeaees 11
Figure 14. Check the €rror COUE Ar€aoccuvviiiiiiee et e e e e e e e e e e e e e e e nnnneeeneeeees 12
T 4 - T T Rev201

ART

< Quickly Trace HardFaultHardler

1

2024.4.8

Overview

Sometimes program execution failure may occur during the use of ARM Cortex-M-based MCU
(such as AT32 MCU). When we attempt to look into the cause of this problem in Debug mode
through compiler, we might find that the program jumps to the HardFault_Handler function, and

thus generates a HardFault.

Figure 1. HardFault_Handler function

] at32f403a 407 int.c

a7 /%%

49 * @param none
50 * @retwval none
=il i
52 vold HardFault_ Handler (void)
53 E¢

54 f* go
EiE) while (1)
56 [+ {

=T }
58]
Sy

to infinite loop when hard fault exception

48 * @brief this function handles hard fault exception.

occurs */

This application note demonstrates how to quickly track and find the root cause of HardFault

through the CmBacktrace-based library.

Rev 2.0.1

<[

< Quickly Trace HardFaultHardler

2024.4.8

Causes of HardFault generation

Here are the possible factors generating HardFault.

B Data array is handled out of the boundary

B Memory overflow causes access outside the boundary
B Stack overflow causes program crash

B Interrupt handle error

Data array out of boundary

The program uses static array but value overflow occurs during dynamic parameter transfer. It is
also possible that the allocated interntal memory is very low to cause program failure.

Memory overflow

Check the RAM area to confirm whether the RAM data count executed after compiling is out of the
boundary. It is not recommended to make extreme value configuration to avoid error during
dynamic parameter transfer of data array.

Stack overflow

This problem often occurs when using operating system code. As in operating system, the
variables of tasks are allocated and placed in a stack space where the tasks applie for.

For example, the xTaskCreate function is called in FreeRTOS to create a task. This function uses
the parameter usStackDepth to assign task stack. If the assigned stack size is too small or not big
enough, this may cause program to enter HardFault.

Interrupt handling error

Although users enable some interrupts such as USART, TIMER, RTC, the conditions for interrupt
generation are met during program execution but some of the interrupt service routine functions
cannot be identified, this may lead to error.

6 Rev 2.0.1

U= Quickly Trace HardFaultHardler

3 How to analyze HardFault

When it comes to HardFault probem, the first step in most cases is to check the value in the LR
register to determine whether the current stack you are using is MSP or PSP, find the
corresponding stack pointer, and then check the content of the stack in the memory. When an
error is detected, the core would place RO~R3, R12 Returnaddress, PSR and LR registers in the
stack in sequence. The Return address refers to the next instruction to be executed by PC before
the occurrence of the error.

However, this is a tedious process requiring the engineer to be familiar with ARM core.

The subsequent section will introduce an open force CmBacktrace library to make quick analysis
of an error.

3.1 CmBacktrace library

CmBacktrace (Cortex Microcontroller Backtrace) is an open source library that is capable of
automatically tracking and locating error codes for ARM Cortex-M-based MCUs, and analyzing the
causes of errors.

Main features:
B Error type that can be identified
1) Assert
2) Fault (Hard Fault, Memory Management Fault, Bus Fault, Usage Fault, Debug Fault)

B Failure cause automatic diagnosis: when a failure occurs, the cause of the failure can be
automatically analyzed, and the code location of the failure can be located, without needing
to analyze the complicated fault registers;

B Applicable to Cortex-M0/M3/M4/M7 MCU
B Support IAR, KEIL, GCC compiler
B Support FreeRTOS, UCOSII, RT-Thread, etc

3.2 How to use MDK-based CmBacktrace

Follow the procedures below:

Step 1: Add cm_backtrace file to the MDK

Figure 2. cm_backtrace folder

» AMNO028 SourceCode V2.0.0 » utilities » AMNOD28 demo » non_os * src » cm_backtrace
=i fEHES =3 o
fault_handler 20 5:40 =
| em_backtrace.c 20 B:42 C a0 29 KB
| em_backtrace 20 18:42 HITH 2 KB
| emb _cfg 20 3154 HIH 3 KB
| emb_def 20 B:42 HIoE 15 KB

Copy the cm_backtrace folder and add it to the keil project directory.

2024.4.8 7 Rev 2.0.1

AR

Quickly Trace HardFaultHardler

Figure 3. Add cm_backtrace to the keil project directory

Project

ra

2% Project: printf

=g printf

- user
1 at32f403a 407 clock.c
] at32f403a_407 int.c
_1 main.c
E-iT bsp
] at32f403a_407_board.c
= firmware
] at32f403a_407_gpic.c
] at32f403a 407 crm.c
U] at32f403a 407 usart.c
] at32fd03a_407_misc.c

cm_backtrace

3]

m
e U o8-8

_1 cm_backtrace.c
_1 cmb_fault.5
E-EZF cmsis
] system_at32f403a_407.c
L] startup_at32f403a_407.s
E-£F readme
_1 readme. bt

Step 2: Add the header file, and tick C99 Mode

Figure 4. Configure C99 Mode and header file in Keil

K options for Target 'printf’

Preprocessor Symbols

Device] Target] Dutput] Listing] Uszer CAC++ lAsm] Linker] Debuz] Utilities

Define: |AT32F4D3A\«"GT?.USE_STDPERIPH_DR IVER.AT_START_F403A_V1

Undefine: |

Language / Code Generation
™ Execute-only Code

I Optimize for Time

Optimization: |Level 0(00) =

I~ Split Load and Store Muttiple
[+ One ELF Section per Function

[Strict ANSIC

™ Enum Cortainer always int

[Plain Charig Signed

™ Read-Only Posttion Independent

Wamings:
Al Wamings -
-

[No Auto Includes

™ Read-Write Position Independent ¥ C99 Mode

Paths

Include |..'-...'-...'-...'-.libraries'-drivers'-dnc;..'-...'

. Mibraries\cmsis\em4‘\device _support; ..\ .\ Mibraries\emsisher J

Misc |
Controls

string

Compiler |99 ¢ —cpu Cortex-M4 fp -g 00 —apes=interwork —split_sections - ../_./../. flibraries/drivers./inc -
control | /./._/. Aibraries/cmsis/cm4/device_support - /.7 /ibraries/cmsis/cm4/core_support -l ../inc -l

[0):4 | Cancel Defanlts

| Help

2024.4.8

Rev 2.0.1

AR R Quickly Trace HardFaultHardler

F

Step 3: Compile and debug

First, follow the prompts below to modify the cmb_cfg.h file.

Figure 5. Configure cmb_cfg.h file

=f CMB CFG H_
= CMB CFG_H_

32 | /* print line, must config by user */

33 | #define cmb printlin(...) printf(_ VA BRGS_ };printf("\r\n"
34 | /* enable bare metal (no 05) platform */
35 | #define CMB_USING BARE METAL PLATFORM OS or No OS

36 | /* enable 0S5 platform */
37 f* #define CMBE_USING O5_ PLATFORM =f
38 | /* 05 platform type, must config when CHMB_USING_OS_PLATFORM is enable wf

38 | /* #define CMB_OS_FPLATFORM TYPE CHE 05 _PLATFORM RTT or CMB OS5 PLATFORM UCOSIT
40 | /* cpu platform type, must config by user #/

41 | #define CMB_CPU_PLATFORM TYPE CHME_CPU_AEM CORTEX M4

42 | /* enable dump stack information */ Cortex-M4

43 | $define CMB USING DUMP STACK INFO
44 | /* language of print information */

45 ine CMB_PRINT LANGUAGE CME_PRINT_LANGUAGE ENGLISH Language
46 if /* _CMB_CFG H */
47

At this point, a compiling error occurs. This is because that the HardFault_Handler is not only
defined in the cmb_fault.c but also in the at32f4xx_it.c. In other words, this function is repeatedlyl

defined.
Figure 6. at32f4xx_it.c compiling error
Build Cutput
*#%#% Using Compiler 'V5.06 update 4 (build 422)', folder: 'C:\Keil v5\ARM\ARMCC\Bin'
Build target 'printf'
linking...

l\objects\printf.axf: Error: L6200E: Symbol HardFault Handler multiply defined (by cmb fauwlt.o and at32f403a_407_int.o).

15 el

& & ¥
Hot enough information to list the image map.

Finished: 2 information, 0 warning and 1 error messages.
" ‘\objects\printf.axf" - 1 Error(s), 0 Warning(s).
Target not created.

Build Time Elapsed: 00:00:00

Delete the HardFault_Handler function defined in the at32f4xx_it.c.

Figure 7. Delete the HardFault_Handler function

] at32f403a_407_int.c

47 5/

48 * @brief this function handles hard fault exception.
49 * @param none

S0 * @retval none

51 *f

52 //void HardFault Handler (void)

53 S/

54 Jf/ /* go to infinite loop when hard fault exception occurs =/
55 // while (1)

56 [/ A
57 [/}
58 f/}

2024.4.8 9 Rev 2.0.1

][R

Quickly Trace HardFaultHardler

Step 4: Test and view

After successful compilation, go and test it.

Figure 8. Write the division by 0 fault function

Elvoid fault_test_by unalign(void) {

* SCB_CCR = (volatile int *) ; // sSCB-=»CCR
*pi

volatile int value;

volatile in

of o |

volatile in

3SCE_CCR |= (1 << 2); / bit3: UNALIGN TRP. */

p = (int *) ;

valus = *p;

printf ("addr:0x%02X value:0x%08X\r\n", (int) p, value);
p = (int *) i

valus = *p;

printf ("addr:0x%02X valus:0x%08X\r\n", (int) p, value);

p = (int *)
valus = *p;
printf ("addr:0x%02X valus:0x%08X\r\n", (int) p, value);

-1

Then call the cm_backtrace_init(); in the main function to initialize the cm_backtrace, and call the

test function:

Figure 9. Call the divided-by-zero error function in main

int main (void)
Bl
system_clock_config();
at32_board_init();
uart_print_init();:

cm_backtrace_init("i cktrace", HARDWARE VERSICN, SOFTWARE VERSION) ;
fault_test_by unalign();
e —— e e

while (1)
=

printf("usart printf counter: %ul\r\n",time cnt++);

delay sesc(l);

=

Download and run the program, the following information will be received on PC.

Figure 10. Error information is displayed

A NCOM V2.6

addr : 0x00 value 0xZ00007ES
addr 0204 value: 0x0300023D

Firmware name: CmBacktrace, hardware version: ¥1.0.0, software version: V0.1.0

Fault on interrupt or bare metalfno 0S) enviromment

Rezisters information
RO : 00000O01e Rl @ O8S0O01942 E2 @ 03001943 E3 © 00000000
Rlz: 00000000 LE : 0800095 PC o 08001912 FPSE: 21000000

i]sage fault 1= cansed by indicates that an unaligned access fdult haz taken place

Show more call stack info by run:[addrZline —e CmBacktrace axf —a —f OoO0191e

05000%9c4 0200028: 08001 256

2024.4.8

10

Rev 2.0.1

[Quickly Trace HardFaultHardler

We can see that the cause of error (divided by zero) and a command line are displayed. To run
this command, you need to use the addr2line.exe tool, which is located in tool folder.

Figure 11. Locate addr2line.exe

» [HEERE s EHBEESE (D:) » AMNO002B_SourceCode V2.0.0 » utilities » ANO0028 demo » tools » addrlline

-

1Ky

Fo
win32
wingd

There are two versions available for this tool, 32 bit and 64 bit. Select the desired version
according to your needs and copy it to the .axf folder under keil project directory:

In this example, it is copied into the
ANO0028_SourceCode_V2.0.0\utilities\AN0028_demo\non_os\mdk_v5\objects

Figure 12. Copy addr2line.exe

> HFEEE » EHEEESE (D) » AN0028_SourceCode V2.0.0 » utilities » AN0028 demo » non_os » mdkvS > objects

~
= R

i}

5= addr2line

7 at32f403a_407 usart.crf
] at32f403a 407 usartd
| at32f403a_407 usart.o
| em_backtrace.crf

| em_backtrace.d

| em_backtrace.o

| emb_faultd

7 emb fault.o

| fault_testcrf

| fault test.d

| fault_test.o

| main.crf

| main.d

7 main.o

Y printh.axf
2] printfbuild_log

L O I O R R RN I U C R CRN CR U R}

| printf.hex

30 KB

Enter the cmd window, go to the above folder location and run the command in the serial interface
assistant window:

addr2line -e CmBacktrace(This name should be changed according to user’s project name).axf -a
-f 080019c6 08001ae9

For example, if the project name in demo is printf, then the command should be addr2line -e
printf.axf -a -f 080019c6 08001ae9

Figure 13. Call CMD to run addr2line.exe

04non_0s

hYutilitiesh,

0hnon_os

2024.4.8 1" Rev 2.0.1

|— Quickly Trace HardFaultHardler

Figure 14. Check the error code area
As shown in the figure below, the error code is pointed at the No.60 line in main.c, and the No.38
in fault_test.c.

) e wp

I int main(void)

|
syztem_clock configl) ;
at32 board init ()
uart_print_ init (1152007

- cm_backtrace init ("CmBacktrace”, HARDWARE WERSION, SOFTWARE VERSION) ;
i [fault_test_by_unaligni): |

=2
10 Hwoid fault_test_ by unalign(woid)

11 volatile int * SCB CCR = (wolatile int #*) 0xEOQOOED14; ff SCE-3CCE
12 volatile int * p;

13 volatile int wvalue;

14

15 *¥SCE_CCR |= (1 << 3); /#% bit3: TNALIGHN TEP. #/

16

17 (int *]' Dx=00;

18 value = #p

19 printf (” addr Ox%02X walue: 0x%08X4rn”, (int) p, walue);
20

21 p = (int *]' (ES

22 value = *p

23 printf (” addr Ox%02X walue: 0x%08X4rn”, (int) p, walue);
24

25 p = fint *) 0z03;

26 |_ | value = #p;

27 prirm addr Dxe02X walue: Ox%08X4rin”, (int) p, walue);
28 |1

It is found that this is the very line number where the error occurs.

The CmBacktrace library can help users quickly locate HardFault error.
3.3 Example cases

Case 1: Division by 0 exception on AT32 bare machine
Project location: AN0028_SourceCode_V2.0.0\utilities\AN0O028_demo\non_os

Test item: division by 0 exception on bare machine

Case 2: Division by 0 exception on FreeRTOS
Project location: AN0028_SourceCode_V2.0.0\utilities\AN0028_demo\os\freertos

Test item: Division by 0 exception on FreeRTOS. It should be noted that there are three locations
marked with notes /*< Support For CmBacktrace >*/ in tasks.c in an indication of the modifications
based on CmBacktrace.

Case 3: Non-aligned access error on USOCII

Project location: AN0028_SourceCode_V2.0.0\utilities\AN0028_demo\os\ucosiii

Test item: Non-aligned access error on USOC II.. It should be noted that the #define
OS_CFG_DBG_EN in os_cfg.h represents 1u.

2024.4.8 12 Rev 2.0.1

AR Quickly Trace HardFaultHardler

4 Revision history
Table 1. Document revision history
Date Revision Changes
2022.2.7 2.0.0 |Initial release
Modified AC6 comiling error descriptions, and upgraded the version of
2024.4.8 20.1
cm_backtrace to V1.4.1

2024.4.8 13 Rev 2.0.1

<[

< Quickly Trace HardFaultHardler

2024.4.8

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous
representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY
authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY'’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,
relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fithess for a
particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have
specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements
on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other
applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned
purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks
caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will
immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and
ARTERY disclaims any responsibility in any form.

© 2024 Artery Technology -All rights reserved

14 Rev 2.0.1

	1 Overview
	2 Causes of HardFault generation
	3 How to analyze HardFault
	3.1 CmBacktrace library
	3.2 How to use MDK-based CmBacktrace
	3.3 Example cases

	4 Revision history

