

ARM®-based 32-bit Cortex®-M4F MCU+FPU, with 128 to 256 KB Flash, sLib, USBFS/HS-OTG, 12 timers, 1 ADC, 20 communication interfaces

■ Core: ARM® 32-bit Cortex®-M4F CPU with FPU

- 216 MHz maximum frequency, with a Memory Protection Unit (MPU), single-cycle multiplication and hardware division
- Floating Point Unit (FPU)
- DSP instructions

Memories

- 128 to 256 Kbytes of Flash memory
- 20 Kbytes of boot memory used as a Bootloader or as a general instruction/data memory (one-time configured)
- sLib: configurable part of main Flash as a library area with code executable but secured, nonreadable
- 70 to 102 Kbytes of SRAM

■ Power control (PWC)

- 2.4 V to 3.6 V power supply
- Power-on reset (POR)/low voltage reset (LVR), and power voltage monitor (PVM)
- Low-power modes: Sleep, Deepsleep and Standby modes
- 20 x 32-bit RTC data registers (BPR)

■ Clock and reset management (CRM)

- 4 to 25 MHz crystal (HEXT)
- 48 MHz internal factory-trimmed HICK (1% at TA=25 °C, 2% at TA=-40 °C to +105 °C), with automatic clock calibration (ACC)
- PLL with configurable frequency multiplication and division factors
- 32.768 kHz crystal (LEXT)
- Low speed internal clock (LICK)

Analog

- 1 x 12-bit 2 MSPS A/D converter, up to 16 input channels, hardware over-sampling up to equivalent 16-bit resolution
- Temperature sensor (V_{TS}), internal reference voltage (V_{INTR})

■ DMA

- 2 x 7-channel DMA controllers

■ Up to 56 fast GPIOs

- All mappable on 16 external interrupts
- Almost 5 V-tolerant

■ Up to 14 timers (TMR)

- 1 x 16-bit 4-channel advanced timer, each channel PWM output with dead-time generator and emergency break
- Up to 1 x 32-bit and 7 x 16-bit general-purpose timers, each with 4 IC/OC/PWM or pulse counter and incremental encoder input; including 5 timers supporting complementary output with dead-time

generator and emergency brake

- 2 x 16-bit basic timers
- 2 x watchdog timers (WDT and WWDT)
- SysTick timer: 24-bit downcounter

ERTC: Enhanced RTC, with auto wakeup, alarm, subsecond accuracy, hardware calendar, and calibration feature

Up to 19 communication interfaces

- Up to 3 x I²C interfaces (SMBus/PMBus)
- Up to 8 x USARTs/UARTs (ISO7816 interface, LIN, IrDA capability, modem control and RS485 drive enable, TX/RX swap)
- 3 x SPIs, all with I²S interface multiplexed, any combination of two interfaces support full-duplex, with 1 full-duplex I²SF interface
- 1 x CAN interface (2.0B Active)
- USB2.0 FS/host/OTG device interface, supporting crystal-less in device mode
- USB2.0 HS/host/OTG device interface
- 1 x QSPI
- Infrared transmitter (IRTMR)

CRC calculation unit

- 96-bit unique ID (UID)
- Debug mode
 - SWD interface
- Operating temperature: -40 to +105 °C

Packages

- LQFP64 10 x 10 mm
- LQFP64 7 x 7 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm
- QFN32 4 x 4 mm

List of models

Internal Flash	Model
128 Kbytes	AT32F405RBT7 AT32F405RBT7-7
	AT32F405CBT7 AT32F405CBU7
	AT32F405KBU7-4
	AT32F402RBT7 AT32F402RBT7-7
	AT32F402CBT7 AT32F402CBU7
	AT32F402KBU7-4
256 Kbytes	AT32F405RCT7 AT32F405RCT7-7
	AT32F405CCT7 AT32F405CCU7
	AT32F405KCU7-4
	AT32F402RCT7 AT32F402RCT7-7
	AT32F402CCT7 AT32F402CCU7
	AT32F402KCU7-45RCT7-7
	AT32F405RCT7

Contents

1	Syst	em architecture	33
	1.1	System overview	34
		1.1.1 ARM Cortex®-M4F processor	34
		1.1.2 Bit band	34
		1.1.3 Interrupt and exception vectors	36
		1.1.4 System Tick (SysTick)	40
		1.1.5 Reset	40
	1.2	List of abbreviations for registers	41
	1.3	Device characteristics information	42
		1.3.1 Flash memory size register	42
		1.3.2 Device electronic signature	42
2	Mem	ory resources	43
	2.1	Internal memory address map	43
	2.2	Flash memory	44
	2.3	SRAM memory	45
	2.4	Peripheral address map	45
3	Powe	er control (PWC)	48
	3.1	Introduction	48
	3.2	Main features	48
	3.3	POR/LVR	49
	3.4	Power voltage monitor (PVM)	49
	3.5	Power domain	50
	3.6	Power saving modes	50
	3.7	PWC registers	
		3.7.1 Power control register (PWC_CTRL)	52
		3.7.2 Power control/status register (PWC_CTRLSTS)	
		3.7.3 LDO output voltage select register (PWC_LDOOV)	55
4	Cloc	k and reset manage (CRM)	56
	4.1	Clock	56

	4.1.1	Clock sources	57
	4.1.2	System clock	58
	4.1.3	Peripheral clock	58
	4.1.4	Clock fail detector	58
	4.1.5	Auto step-by-step system clock switch	59
	4.1.6	Internal clock output	59
	4.1.7	Interrupts	59
4.2	Rese	t	59
	4.2.1	System reset	59
	4.2.2	Battery powered domain reset	60
4.3	CRM	registers	60
	4.3.1	Clock control register (CRM_CTRL)	60
	4.3.2	PLL clock configuration register (CRM_PLLCFG)	62
	4.3.3	Clock configuration register (CRM_CFG)	63
	4.3.4	Clock interrupt register (CRM_CLKINT)	64
	4.3.5	AHB peripheral reset register 1 (CRM_AHBRST1)	65
	4.3.6	AHB peripheral reset register 2 (CRM_AHBRST2)	67
	4.3.7	AHB peripheral reset register 3 (CRM_AHBRST3)	67
	4.3.8	APB1 peripheral reset register (CRM_APB1RST)	67
	4.3.9	APB2 peripheral reset register (CRM_APB2RST)	68
	4.3.10	AHB peripheral clock enable register 1 (CRM_AHBEN1)	69
	4.3.11	AHB peripheral clock enable register 2 (CRM_AHBEN2)	69
	4.3.12	2 AHB peripheral clock enable register 3 (CRM_AHBEN3)	70
	4.3.13	BAPB1 peripheral clock enable register (CRM_APB1EN)	70
	4.3.14	APB2 peripheral clock enable register (CRM_APB2EN)	71
		AHB peripheral clock enable in low-power mode register 1	
		_AHBLPEN1)	72
		SAHB peripheral clock enable in low-power mode register 2	
	•	_AHBLPEN2)	72
		AHB peripheral clock enable in low-power mode register 3	72
		_AHBLPEN3)	73
		APB1 peripheral clock enable in low-power mode register _APB1LPEN)	73
		APB2 peripheral clock enable in low-power mode register	, 0
		_APB2LPEN)	74

		4.3.20 Battery powered domain control register (CRM_BPDC)	75
		4.3.21 Control/status register (CRM_CTRLSTS)	75
		4.3.22 OTGHS control register (CRM_OTGHS)	76
		4.3.23 Additional register 1 (CRM_MISC1)	76
		4.3.24 Additional register 2 (CRM_MISC2)	77
5	Flash	n memory controller (FLASH)	79
	5.1	FLASH introduction	79
	5.2	Flash memory operation	81
		5.2.1 Unlock/lock	81
		5.2.2 Erase operation	81
		5.2.3 Programming operation	83
		5.2.4 Read operation	85
	5.3	Main Flash memory extension area	85
	5.4	User system data area operation	85
		5.4.1 Unlock/lock	85
		5.4.2 Erase operation	85
		5.4.3 Programming operation	86
		5.4.4 Read operation	87
	5.5	Flash memory protection	87
		5.5.1 Access protection	87
		5.5.2 Erase/program protection	88
	5.6	Read access	89
	5.7	Special functions	89
		5.7.1 Security library settings	89
		5.7.2 Boot memory used as Flash memory extension	90
		5.7.3 CRC verify	90
	5.8	FLASH registers	90
		5.8.1 Flash performance select register (FLASH_PSR)	91
		5.8.2 Flash unlock register (FLASH_UNLOCK)	91
		5.8.3 Flash user system data unlock register (FLASH_USD_UNLOCK)	92
		5.8.4 Flash status register (FLASH_STS)	92
		5.8.5 Flash control register (FLASH_CTRL)	92
		5.8.6 Flash address register (FLASH_ADDR)	93

		5.8.7 User system data register (FLASH_USD)
		5.8.8 Erase/program protection status register (FLASH_EPPS)
		5.8.9 Flash security library status register 0 (SLIB_STS0)
		5.8.10 Flash security library status register 1 (SLIB_STS1)
		5.8.11 Security library password clear register (SLIB_PWD_CLR) 94
		5.8.12 Security library additional status register (SLIB_MISC_STS) 95
		5.8.13 Flash CRC address register (FLASH_CRC_ADDR)
		5.8.14 Flash CRC check control register (FLASH_CRC_CTRL)
		5.8.15 Flash CRC check result register (FLASH_CRC_CHKR) 95
		5.8.16 Security library password setting register (SLIB_SET_PWD) 96
		5.8.17 Security library address setting register (SLIB_SET_RANGE) 96
		5.8.18 Flash extension memory security library setting register
		(EM_SLIB_SET)
		5.8.19 Boot memory mode setting register (BTM_MODE_SET)
		5.8.20 Security library unlock register (SLIB_UNLOCK)
6	GPIO	s and IOMUX98
	6.1	Introduction98
	6.2	Function overview98
		6.2.1 GPIO structure
		6.2.2 GPIO reset status
		6.2.3 General-purpose input configuration
		6.2.4 Analog input/output configuration
		6.2.5 General-purpose output configuration
		6.2.6 I/O port protection
		6.2.7 IOMUX structure
		6.2.8 Multiplexed function pull-up/pull-down configuration100
		6.2.9 IOMUX input/output
		6.2.10 Peripheral MUX function configuration108
		6.2.11 IOMUX mapping priority108
		6.2.12 External interrupt/wake-up lines108
	6.3	GPIO registers
		6.3.1 GPIO configuration register (GPIOx_CFGR) (x=AF)109
		6.3.2 GPIO output mode register (GPIOx_OMODE) (x=AF)109
		6.3.3 GPIO drive capability register (GPIOx_ODRVR) (x=AF)110

	0.4	Introduction
9	DMA	controller (DMA) 122
		8.3.6 Interrupt status register (EXINT_INTSTS)121
		8.3.5 Software trigger register (EXINT_SWTRG)121
		8.3.4 Polarity configuration register 2 (EXINT_POLCFG2)120
		8.3.3 Polarity configuration register 1 (EXINT_POLCFG1)120
		8.3.2 Event enable register (EXINT_EVTEN)120
		8.3.1 Interrupt enable register (EXINT_INTEN)120
	8.3	EXINT registers
	8.2	Function overview and configuration procedure
	8.1	EXINT introduction
8	Exte	rnal interrupt/event controller (EXINT)119
		7.2.7 SCFG ultra high sourcing/sinking strength register (SCFG_UHDRV)118
		7.2.6 SCFG external interrupt configuration register 4 (SCFG_EXINTC4)117
		7.2.5 SCFG external interrupt configuration register 3 (SCFG_EXINTC3)116
		7.2.4 SCFG external interrupt configuration register 2 (SCFG_EXINTC2)116
		7.2.3 SCFG external interrupt configuration register 1 (SCFG_EXINTC1)115
		7.2.2 SCFG configuration register 2 (SCFG_CFG2)114
		7.2.1 SCFG configuration register 1 (SCFG_CFG1)114
	7.2	SCFG registers
	7.1	Introduction
7	Syste	em configuration controller (SYSCFG)114
		6.3.13 GPIO huge current control register (GPIOx_HDRV) (x=AF)113
		6.3.12 GPIO port bit toggle register (GPIOx_TOGR) (x=AF)
		6.3.11 GPIO port bit clear register (GPIOx_CLR) (x=AF)
		6.3.10 GPIO multiplexed function high register (GPIOx_MUXH) (x=AF)112
		6.3.9 GPIO multiplexed function low register (GPIOx_MUXL) (x=AF)111
		6.3.8 GPIO write protection register (GPIOx_WPR) (x=AF)111
		6.3.7 GPIO set/clear register (GPIOx_SCR) (x=AF)110
		6.3.6 GPIO output data register (GPIOx_ODT) (x=AF)110
		6.3.5 GPIO input data register (GPIOx_IDT) (x=AF)110
		6.3.4 GPIO pull-up/pull-down register (GPIOx_PULL) (x=AF)110

10

9.2	Main features	
9.3	Function overview	
	9.3.1 DMA configuration	
	9.3.2 Handshake mechanism	
	9.3.3 Arbiter	
	9.3.4 Programmable data transfer width	
	9.3.5 Errors	
	9.3.6 Interrupts	
9.4	DMA multiplexer (DMAMUX)	
	9.4.1 DMAMUX function overview	
	9.4.2 DMAMUX overflow interrupts	
9.5	DMA registers	
	9.5.1 DMA interrupt status register (DMA_STS)130	
	9.5.2 DMA interrupt flag clear register (DMA_CLR)132	
	9.5.3 DMA channel-x configuration register (DMA_CxCTRL) (x=17)134	
	9.5.4 DMA channel-x number of data register (DMA_CxDTCNT) (x=17)135	
	9.5.5 DMA channel-x peripheral address register (DMA_CxPADDR)	
	(x=17)	
	9.5.6 DMA channel-x memory address register (DMA_CxMADDR) (x=17)13	5
	9.5.7 DMAMUX select register (DMA_MUXSEL)135	
	9.5.8 DMAMUX channel-x control register (DMA_MUXCxCTRL) (x=17)136	
	9.5.9 DMAMUX generator-x control register (DMA_MUXGxCTRL) (x=14)137	7
	9.5.10 DMAMUX channel synchronization status register	
	(DMA_MUXSYNCSTS)	_
	9.5.11 DMAMUX channel interrupt flag clear register (DMA_MUXSYNCCLR)13	7
	9.5.12 DMAMUX generator interrupt status register (DMA_MUXGSTS)138	
	9.5.13 DMAMUX generator interrupt flag clear register (DMA_MUXGCLR)138	
CRC	calculation unit (CRC)139	
10.1	CRC introduction	
	CRC function description	
	CRC registers	
. 3.3	10.3.1 Data register (CRC_DT)140	
	10.3.2 Common data register (CRC_CDT)140	
	10.3.3 Control register (CRC_CTRL)141	
	141	

		10.3.4 Initialization register (CRC_IDT)141
		10.3.5 Polynomial register (CRC_POLY)141
11	I ² C in	terface142
	11.1	I ² C Introduction
	11.2	I ² C main features
	11.3	I ² C function overview
	11.4	I ² C Interface
		11.4.1 I ² C timing control145
		11.4.2 Data transfer management146
		11.4.3 I ² C master communication flow
		11.4.41 ² C slave communication flow152
		11.4.5 SMBus155
		11.4.6 SMBus master communication flow157
		11.4.7 SMBus slave communication flow159
		11.4.8 Data transfer using DMA163
		11.4.9 Error management164
	11.5	I ² C interrupt requests
	11.6	I ² C debug mode
	11.7	I ² C registers
		11.7.1 Control register 1 (I2C_CTRL1)166
		11.7.2 Control register 2 (I2C_CTRL2)167
		11.7.3 Address register 1 (I2C_OADDR1)167
		11.7.4 Address register 2 (I2C_OADDR2)167
		11.7.5 Timing register (I2C_CLKCTRL)168
		11.7.6 Timeout register (I2C_TIMEOUT)168
		11.7.7 Status register (I2C_STS)168
		11.7.8 Status clear flag (I2C_CLR)170
		11.7.9 PEC register (I2C_PEC)170
		11.7.10 Receive data register (I2C_RXDT)170
		11.7.11 Transmit data register (I2C_TXDT)170
12	Unive	ersal synchronous/asynchronous receiver/transmitter (USART)171
	12.1	USART introduction 171

	12.2	Full-duplex/half-duplex selector	173
	12.3	Mode selector	173
		12.3.1 Introduction	.173
		12.3.2 Configuration procedure	.173
	12.4	USART frame format and configuration	176
	12.5	DMA transfer introduction	178
		12.5.1 Transmission using DMA	.178
		12.5.2 Reception using DMA	.179
	12.6	Baud rate generation	179
		12.6.1 Introduction	.179
		12.6.2 Configuration	.179
	12.7	Transmitter	180
		12.7.1 Introduction	.180
		12.7.2 Transmitter configuration	.180
	12.8	Receiver	181
		12.8.1 Introduction	.181
		12.8.2 Receiver configuration	.181
		12.8.3 Start bit and noise detection	.182
	12.9	Tx/Rx swap	183
	12.10	OInterrupts	184
	12.11	II/O pin control	184
	12.12	2USART registers	184
		12.12.1 Status register (USART_STS)	.185
		12.12.2 Data register (USART_DT)	.186
		12.12.3 Baud rate register (USART_BAUDR)	.186
		12.12.4 Control register 1 (USART_CTRL1)	.187
		12.12.5 Control register 2 (USART_CTRL2)	.189
		12.12.6 Control register 3 (USART_CTRL3)	.190
		12.12.7 Guard time and divider register (GDIV)	.192
		12.12.8 Receiver timeout detection register (RTOV)	.192
		12.12.9 Interrupt flag clear register (IFC)	.192
S	Serial	peripheral interface (SPI)	193
		SPI introduction	
	1 J. I	OF FIREFOLD HILL OUR OF THE PROPERTY OF THE PR	เฮง

13

13.2	Functional overview	193
	13.2.1 SPI overview	193
	13.2.2 Full-duplex/half-duplex mode selector	194
	13.2.3 Chip select controller	196
	13.2.4 SPI_SCK controller	196
	13.2.5 CRC overview	197
	13.2.6 DMA transfer	198
	13.2.7 TI mode overview	198
	13.2.8 Transmitter	199
	13.2.9 Receiver	199
	13.2.10 Motorola mode	200
	13.2.11 TI mode communication timings	202
	13.2.12 Interrupts	203
	13.2.13 IO pin control	203
13.3	I ² S functional description	204
	13.3.1 I ² S introduction	204
	13.3.2 I ² S full-duplex mode	205
	13.3.3 Operating mode selection	205
	13.3.4 Audio protocol selector	207
	13.3.5 I2S_CLK controller	208
	13.3.6 DMA transfer	209
	13.3.7 Transmitter/Receiver	210
	13.3.8 I2S communication timings	211
	13.3.9 Interrupts	211
	13.3.10 IO pin control	211
13.4	SPI registers	212
	13.4.1 SPI control register1 (SPI_CTRL1) (Not used in I ² S mode)	212
	13.4.2 SPI control register2 (SPI_CTRL2)	213
	13.4.3 SPI status register (SPI_STS)	214
	13.4.4 SPI data register (SPI_DT)	215
	13.4.5 SPICRC register (SPI_CPOLY) (Not used in I ² S mode)	215
	13.4.6 SPIRxCRC register (SPI_RCRC) (Not used in I ² S mode)	215
	13.4.7 SPITxCRC register (SPI_TCRC)	215
	13.4.8 SPI_I2S register (SPI_I2SCTRL)	215
	13.4.9 SPI_I2S prescaler register (SPI_I2SCLKP)	216

14	Full-c	iuplexed 12S (12SF) 217
	14.1	I2SF introduction
	14.2	I2SF functional overview
		14.2.1 I2SF full duplex mode217
		14.2.2 I2SF master clock sources218
		14.2.3 PCM mode
		14.2.4 Interrupts
		14.2.5 IO pin control
		14.2.6 Special notes on I2SF220
	14.3	I2SF registers
		14.3.1 I2SF control register 2 (I2SF_CTRL2)221
		14.3.2 I2SF status register (I2SF_STS)221
		14.3.3 I2SF data register (I2SF_DT)222
		14.3.4 I2SF register (I2SF_I2SCTRL)222
		14.3.5 I2SF prescaler register (I2SF_I2SCLKP)223
		14.3.6 I2SF additional register (I2SF_MISC1)223
15	Timer	· 224
10		
	15.1	Basic timer (TMR6 and TMR7)
		15.1.1 TMR6 and TMR7 introduction225
		15.1.2 TMR6 and TMR7 main features225
		15.1.3 TMR6 and TMR7 function overview
		15.1.3.1 Counting clock
		15.1.3.2 Counting mode
		15.1.3.3 Debug mode
		15.1.4 TMR6 and TMR7 registers
		15.1.4.1 TMR6 and TMR7 control register1 (TMRx_CTRL1)
		15.1.4.3 TMR6 and TMR7 DMA/interrupt enable register (TMRx_IDEN) 228
		15.1.4.4 TMR6 and TMR7 interrupt status register (TMRx_ISTS)
		15.1.4.5 TMR6 and TMR7 software event register (TMRx_SWEVT) 228
		15.1.4.6 TMR6 and TMR7 counter value (TMRx_CVAL) 228
		15.1.4.7 TMR6 and TMR7 division (TMRx_DIV)
		15.1.4.8 TMR6 and TMR7 period register (TMRx_PR)
	15.2	General-purpose timer (TMR2 to TMR4)

15.3

15.2.2 TMR2 to TMR4 main features	229
15.2.3 TMR2 to TMR4 functional overview	229
15.2.3.1 Counting clock	229
15.2.3.2 Counting mode	233
15.2.3.3 TMR input function	236
15.2.3.4 TMR output function	238
15.2.3.5 TMR synchronization	242
15.2.3.6 Debug mode	244
15.2.4 TMR2 to TMR4 registers	244
15.2.4.1 Control register 1 (TMRx_CTRL1)	245
15.2.4.2 Control register 2 (TMRx_CTRL2)	246
15.2.4.3 Slave timer control register (TMRx_STCTRL)	246
15.2.4.4 DMA/interrupt enable register (TMRx_IDEN)	247
15.2.4.5 Interrupt status register (TMRx_ISTS)	248
15.2.4.6 Software event register (TMRx_SWEVT)	249
15.2.4.7 Channel mode register1 (TMRx_CM1)	249
15.2.4.8 Channel mode register2 (TMRx_CM2)	251
15.2.4.9 Channel control register (TMRx_CCTRL)	252
15.2.4.10 Counter value (TMRx_CVAL)	253
15.2.4.11 Frequency division value (TMRx_DIV)	253
15.2.4.12 Period register (TMRx_PR)	253
15.2.4.13 Channel 1 data register (TMRx_C1DT)	253
15.2.4.14 Channel 2 data register (TMRx_C2DT)	254
15.2.4.15 Channel 3 data register (TMRx_C3DT)	254
15.2.4.16 Channel 4 data register (TMRx_C4DT)	254
15.2.4.17 DMA control register (TMRx_DMACTRL)	254
15.2.4.18 DMA data register (TMRx_DMADT)	255
15.2.4.19 TMR2 channel input remap register (TMR2_RMP)	255
General-purpose timer (TMR9)	255
15.3.1 TMR9 introduction	255
15.3.2 TMR9 main features	255
15.3.3 TMR9 functional overview	256
15.3.3.1 Counting clock	256
15.3.3.2 Counting mode	
15.3.3.3 TMR input function	
15.3.3.4 TMR output function	

	15.3.3.5 TMR Dreak function
	15.3.3.6 TMR synchronization
	15.3.3.7 Debug mode
	15.3.4 TMR9 registers
	15.3.4.1 TMR9 control register1 (TMRx_CTRL1)
	15.3.4.2 TMR9 control register 2 (TMRx_CTRL2)
	15.3.4.3 TMR9 slave timer control register (TMRx_STCTRL)
	15.3.4.4 TMR9 DMA/interrupt enable register (TMRx_IDEN)
	15.3.4.5 TMR9 interrupt status register (TMRx_ISTS)
	15.3.4.6 TMR9 software event register (TMRx_SWEVT)
	15.3.4.7 TMR9 channel mode register 1 (TMRx_CM1)
	15.3.4.8 TMR9 channel control register (TMRx_CCTRL)
	15.3.4.9 TMR9 counter value (TMRx_CVAL)
	15.3.4.10 TMR9 division value (TMRx_DIV)
	15.3.4.11 TMR9 period register (TMRx_PR)
	15.3.4.12 TMR9 repetition period register (TMRx_RPR)
	15.3.4.13 TMR9 channel 1 data register (TMRx_C1DT)
	15.3.4.14 TMR9 channel 2 data register (TMRx_C2DT)
	15.3.4.15 TMR9 break register (TMRx_BRK)
	15.3.4.16 TMR9 DMA control register (TMRx_DMACTRL)
	15.3.4.17 TMR9 DMA data register (TMRx_DMADT)
15.4	General-purpose timer (TMR10/11/13/14)
	15.4.1 TMRx introduction
	15.4.2 TMRx main features
	15.4.3 TMRx functional overview
	15.4.3.1 Counting clock
	15.4.3.2 Counting mode
	15.4.3.3 TMR input function
	15.4.3.4 TMR output function
	15.4.3.5 TMR break function
	15.4.3.6 Debug mode
	15.4.4 TMRx registers293
	15.4.4.1 TMRx control register1 (TMRx_CTRL1) (x=10/11/13/14) 293
	15.4.4.2 TMRx control register 2 (TMRx_CTRL2) (x=10/11/13/14) 294
	15.4.4.3 TMRx DMA/interrupt enable register (TMRx_IDEN) (x=10/11/13/14)294
	15.4.4.4 TMRx interrupt status register (TMRx_ISTS) (x=10/11/13/14) 295
	15.4.4.5 TMRx software event register (TMRx_SWEVT) (x=10/11/13/14) 295

	15.4.4.6 TMRx channel mode register1 (TMRx_CM1) (x=10/11/13/14) 296
	15.4.4.7 TMRx Channel control register (TMRx_CCTRL) (x=10/11/13/14) 297
	15.4.4.8 TMRx counter value (TMRx_CVAL) (x=10/11/13/14)
	15.4.4.9 TMRx division value (TMRx_DIV) (x=10/11/13/14)
	15.4.4.10 TMRx period register (TMRx_PR) (x=10/11/13/14)
	15.4.4.11 TMRx repetition period register (TMRx_RPR) (x=10/11/13/14)300
	15.4.4.12 TMRx channel 1 data register (TMRx_C1DT) (x=10/11/13/14)300
	15.4.4.13 TMRx break register (TMRx_BRK) (x=10/11/13/14)
	15.4.4.14 TMRX DMA control register (TMRX_DMACTRL) (X=10/11/13/14)302
	15.4.4.15 TMRx DMA data register (TMRx_DMADT) (X=10/11/13/14) 302
	15.4.4.16 TMR14 channel input remap register (TMRx_RMP)
15.5	Advanced-control timers (TMR1)
	15.5.1 TMR1 introduction
	15.5.2 TMR1 main features303
	15.5.3 TMR1 functional overview303
	15.5.3.1 Counting clock
	15.5.3.2 Counting mode
	15.5.3.3 TMR input function
	15.5.3.4 TMR output function
	15.5.3.5 TMR break function
	15.5.3.6 TMR synchronization
	15.5.3.7 Debug mode
	15.5.4 TMR1 registers320
	15.5.4.1 TMR1 control register1 (TMR1_CTRL1)
	15.5.4.2 TMR1 control register2 (TMR1_CTRL2)
	15.5.4.3 TMR1 slave timer control register (TMR1_STCTRL)
	15.5.4.4 TMR1 DMA/interrupt enable register (TMR1_IDEN)
	15.5.4.5 TMR1 interrupt status register (TMR1_ISTS)
	15.5.4.6 TMR1 software event register (TMR1_SWEVT)
	15.5.4.7 TMR1 channel mode register1 (TMR1_CM1) 325
	15.5.4.8 TMR1 channel mode register2 (TMR1_CM2) 327
	15.5.4.9 TMR1 channel control register (TMR1_CCTRL)
	15.5.4.10 TMR1 counter value (TMR1_CVAL)
	15.5.4.11 TMR1 division value (TMR1_DIV)
	15.5.4.12 TMR1 period register (TMR1_PR)
	15.5.4.13 TMR1 repetition period register (TMR1_RPR)
	15.5.4.14 TMR1 channel 1 data register (TMR1 C1DT) 330

		15.5.4.15	TMR1 channel 2 data register (TMR1_C2DT)	331
		15.5.4.16	TMR1 channel 3 data register (TMR1_C3DT)	331
		15.5.4.17	TMR1 channel 4 data register (TMRx_C4DT)	331
		15.5.4.18	TMR1 break register (TMR1_BRK)	331
		15.5.4.19	TMR1 DMA control register (TMR1_DMACTRL)	332
		15.5.4.20	TMR1 DMA data register (TMR1_DMADT)	333
		15.5.4.21	TMR1 channel mode register3 (TMR1_ CM3)	
		15.5.4.22	TMR1 channel 5 data register (TMR1_C5DT)	333
16	Wind	ow watchdog t	imer (WWDT)	334
	16.1	WWDT introduc	tion	334
	16.2	WWDT main fea	atures	334
	16.3	WWDT function	al overview	334
	16.4	Debug mode		335
	16.5	WWDT register	3	335
		16.5.1 Control re	gister (WWDT_CTRL)	335
		16.5.2 Configura	tion register (WWDT_CFG)	336
		16.5.3 Status reg	ister (WWDT_STS)	336
17	Watc	hdog timer (W	OT)	337
	17.1	WDT introduction	on	337
	17.2	WDT main feat	ıres	337
	17.3	WDT functional	overview	337
	17.4	Debug mode		338
	17.5	WDT registers .		338
		· ·	register (WDT_CMD)	
			gister (WDT_DIV)	
			gister (WDT_RLD)	
			ister (WDT_STS)	
		17.5.5 Window re	egister (WDT_WIN)	340
18	Enha	nced real-time	clock (ERTC)	341
	18.1	ERTC introduct	ion	341
	18.2	ERTC main fea	tures	341
	1 2 3	ERTC function	overview	342

19

	16.3.1 ENTO CIOCK	342
	18.3.2 ERTC initialization	342
	18.3.3 Periodic automatic wakeup	344
	18.3.4 ERTC calibration	344
	18.3.5 Reference clock detection	345
	18.3.6 Time stamp function	345
	18.3.7 Tamper detection	346
	18.3.8 Multiplexed function output	346
	18.3.9 ERTC wakeup	347
18.4	ERTC registers	348
	18.4.1 ERTC time register (ERTC_TIME)	348
	18.4.2 ERTC date register (ERTC_DATE)	349
	18.4.3 ERTC control register (ERTC_CTRL)	349
	18.4.4 ERTC initialization and status register (ERTC_STS)	350
	18.4.5 ERTC divider register (ERTC_DIV)	352
	18.4.6 ERTC wakeup timer register (ERTC_WAT)	352
	18.4.7 ERTC alarm clock A register (ERTC_ALA)	352
	18.4.8 ERTC alarm clock B register (ERTC_ALB)	352
	18.4.9 ERTC write protection register (ERTC_WP)	353
	18.4.10 ERTC subsecond register (ERTC_SBS)	353
	18.4.11 ERTC time adjustment register (ERTC_TADJ)	353
	18.4.12 ERTC time stamp time register (ERTC_TSTM)	353
	18.4.13 ERTC time stamp date register (ERTC_TSDT)	354
	18.4.14 ERTC time stamp subsecond register (ERTC_TSSBS)	354
	18.4.15 ERTC smooth calibration register (ERTC_SCAL)	354
	18.4.16 ERTC tamper configuration register (ERTC_TAMP)	355
	18.4.17 ERTC alarm clock A subsecond register (ERTC_ALASBS)	356
	18.4.18 ERTC alarm clock B subsecond register (ERTC_ALBSBS)	356
	18.4.19 ERTC battery powered domain data register (ERTC_BPRx)	356
Analo	og-to-digital converter (ADC)	57
19.1	ADC introduction	357
19.2	ADC main features	357
19.3	ADC structure	358
19.4	ADC functional overview	359

	19.4.1 Channel management	359
	19.4.1.1 Internal temperature sensor	359
	19.4.1.2 Internal reference voltage	359
	19.4.2 ADC operation process	359
	19.4.2.1 Power-on and calibration	360
	19.4.2.2 Trigger	361
	19.4.2.3 Sampling and conversion sequence	361
	19.4.3 Conversion sequence management	362
	19.4.3.1 Sequence mode	362
	19.4.3.2 Preempted group automatic conversion mode	362
	19.4.3.3 Repetition mode	363
	19.4.3.4 Partition mode	
	19.4.4 Oversampling	364
	19.4.4.1 Oversampling of ordinary group of channels	364
	19.4.4.2 Oversampling of preempted group of channels	
	19.4.5 Data management	366
	19.4.5.1 Data alignment	366
	19.4.5.2 Data read	366
	19.4.6 Voltage monitoring	366
	19.4.7 Status flag and interrupts	367
19.5	ADC registers	. 367
	19.5.1 ADC status register (ADC_STS)	368
	19.5.2 ADC control register1 (ADC_CTRL1)	368
	19.5.3 ADC control register2 (ADC_CTRL2)	370
	19.5.4 ADC sampling time register 1 (ADC_SPT1)	371
	19.5.5 ADC sampling time register 2 (ADC_SPT2)	372
	19.5.6 ADC preempted channel data offset register x	
	(ADC_ PCDTOx) (x=14)	375
	19.5.7 ADC voltage monitoring high threshold register (ADC_VWHB)	375
	19.5.8 ADC voltage monitor low threshold register (ADC_ VWLB)	375
	19.5.9 ADC ordinary sequence register 1 (ADC_ OSQ1)	375
	19.5.10 ADC ordinary sequence register 2 (ADC_ OSQ2)	
	19.5.11 ADC ordinary sequence register 3 (ADC_ OSQ3)	
	19.5.12 ADC preempted sequence register (ADC_PSQ)	
	19.5.13 ADC preempted data register x (ADC_ PDTx) (x=14)	
	19.5.14 ADC ordinary data register (ADC_ ODT)	3/6

		19.5.15 ADC oversampling register (ADC_OVSP)377
		19.5.16 ADC common control register (ADC_CCTRL)377
20	Contr	oller area network (CAN)
	20.1	CAN introduction
	20.2	CAN main features
	20.3	Baud rate
	20.4	Interrupt management
	20.5	Design tips
		Functional overview
		20.6.1 General description
		20.6.2 Operating modes
		20.6.3 Test modes
		20.6.4 Message filtering
		20.6.5 Message transmission
		20.6.6 Message reception
		20.6.7 Error management
	20.7	CAN registers
		20.7.1 CAN control and status registers
		20.7.1.1 CAN master control register (CAN_MCTRL)
		20.7.1.2 CAN master status register (CAN_MSTS)
		20.7.1.3 CAN transmit status register (CAN_TSTS)
		20.7.1.4 CAN receive FIFO 0 register (CAN_RF0)
		20.7.1.5 CAN receive FIFO 1 register (CAN_RF1)
		20.7.1.6 CAN interrupt enable register (CAN_INTEN)
		20.7.1.7 CAN error status register (CAN_ESTS)
		20.7.1.8 CAN bit timing register (CAN_BTMG)
		20.7.2 CAN mailbox registers400
		20.7.2.1 Transmit mailbox identifier register (CAN_TMIx) (x=02) 400
		20.7.2.2 Transmit mailbox data length and time stamp register
		(CAN_TMCx) (x=02)
		20.7.2.3 Transmit mailbox data low register (CAN_TMDTLx) (x=02) 401
		20.7.2.4 Transmit mailbox data high register (CAN_TMDTHx) (x=02) 401
		20.7.2.5 Receive FIFO mailbox identifier register (CAN_RFIx) (x=01) 401
		20.7.2.6 Receive FIFO mailbox data length and time stamp register (CAN_RFCx) (x=0, 1) 402
		11. A.N. B.E.(.X.I.X.=V. I.I. 4017

	20.7.2.7 Receive FIFO mailbox data low register (CAN_RFDTLx) (x=01)40)2
	20.7.2.8 Receive FIFO mailbox data high register (CAN_RFDTHx) (x=01)4	102
	20.7.3 CAN filter registers40	2
	20.7.3.1 CAN filter control register (CAN_FCTRL) 40	2
	20.7.3.2 CAN filter mode configuration register (CAN_FMCFG) 40	2
	20.7.3.3 CAN filter bit width configuration register (CAN_ FBWCFG) 40	3
	20.7.3.4 CAN filter FIFO association register (CAN_ FRF)	3
	20.7.3.5 CAN filter activation control register (CAN_ FACFG) 40	3
	20.7.3.6 CAN filter bank i filter bit register (CAN_ FiFBx) (i=013; x=12)40	03
21	JSB full-speed/high-speed device interface (OTGFS/HS) 40	4
	21.1 OTGFS/OTGHS structure	4
	21.2 OTGFS/HS functional description	5
	21.3 OTGFS/HS clock and pin configuration	6
	21.3.1 OTGFS clock configuration40	6
	21.3.2 OTGHS clock configuration40	6
	21.3.3 OTGFS/HS pin configuration40	6
	21.4 OTGFS/HS interrupts	7
	21.5 OTGFS/HS functional description	8
	21.5.1 OTGFS/HS initialization40	8
	21.5.2 OTGFS/HS FIFO configuration40	8
	21.5.2.1 Device mode	8
	21.5.2.2 Host mode	9
	21.5.2.3 Refresh controller transmit FIFO	0
	21.5.3 OTGFS /HS host mode41	0
	21.5.3.1 Host initialization	1
	21.5.3.2 OTGFS channel initialization	1
	21.5.3.3 Halting a channel	1
	21.5.3.4 Queue depth41	2
	21.5.3.5 Special cases	3
	21.5.3.6 Host HFIR feature	4
	21.5.3.7 Initialize bulk and control IN transfers	5
	21.5.3.8 Initialize bulk and control OUT/SETUP transfers	
	21.5.3.9 Initialize interrupt IN transfers	
	21.5.3.10 Initialize interrupt OUT transfers	
	21.5.3.11 Initialize synchronous IN transfers	
	21 5 3 12 Initializa synchronous OUT transfore	h

	21.5.4 OTGFS/H	S device mode	426
	21.5.4.1 D	evice initialization	426
	21.5.4.2 E	ndpoint initialization on USB reset	426
	21.5.4.3 E	ndpoint initialization on enumeration completion	427
	21.5.4.4 E	ndpoint initialization on SetAddress command	427
	21.5.4.5 E	ndpoint initialization on SetConfiguration/SetInterface comm	nand427
	21.5.4.6 E	ndpoint activation	428
	21.5.4.7 U	SB endpoint deactivation	428
	21.5.4.8 C	ontrol write transfers (SETUP/Data OUT/Status IN)	428
	21.5.4.9 C	ontrol read transfers (SETUP/Data IN/Status OUT)	429
	21.5.4.10	Control transfers (SETUP/Status IN)	429
	21.5.4.11	Read FIFO packets	429
	21.5.4.12	OUT data transfers	431
	21.5.4.13	IN data transfers	432
	21.5.4.14	Non-periodic (bulk and control) IN data transfers	433
	21.5.4.15	Non-synchronous OUT data transfers	434
	21.5.4.16	Synchronous OUT data transfers	436
	21.5.4.17	Enable synchronous endpoints	438
	21.5.4.18	Incomplete synchronous OUT data transfers	439
	21.5.4.19	Incomplete synchronous IN data transfers	440
	21.5.4.20	Periodic IN (interrupt and synchronous) data transfers	440
21.6	OTGFS control	and status registers	442
	21.6.1 CSR regis	ster map	442
	21.6.2 OTGFS/H	S register address map	443
	21.6.3 OTGFS/H	S global registers	448
	21.6.3.1 O	TGFS/HS status and control register (OTGFS/HS_GOTGCT	L) 449
	21.6.3.2 O	TGFS/HS interrupt status control register (OTGFS/HS_GOT	GINT) 449
	21.6.3.3 O	TGFS/HS AHB configuration register (OTGFS/HS_GAHBCF	G) 449
	21.6.3.4 O	TGFS/HS USB configuration register (OTGFS/HS_GUSBCF	G) 450
	21.6.3.5 O	TGFS/HS reset register (OTGFS/HS_GRSTCTL)	451
	21.6.3.6 O	TGFS/HS interrupt register (OTGFS/HS_GINTSTS)	453
	21.6.3.7 O	TGFS/HS interrupt mask register (OTGFS/HS_GINTMSK)	456
	21.6.3.8 O	TGFS/HS receive status debug read/OTG status read and P	OP
	registers (OTGFS/HS_GRXSTSR / OTGFS/HS_GRXSTSP)	457
	21.6.3.9 O	TGFS/HS receive FIFO size register (OTGFS/HS_GRXFSIZ) . 458
		OTGFS/HS non-periodic Tx FIFO size	
	•	S_GNPTXFSIZ)/Endpoint 0 Tx FIFO size registers	450
	(OTGFS/H	S_DIEPTXF0)	458

		OTGFS/HS non-periodic Tx FIFO size/request queue status S_GNPTXSTS)	Ū
		OTGFS/HS general controller configuration register	459
		OTGFS/HS controller ID register (OTGFS/HS_GUID)	
		OTGFS/HS host periodic Tx FIFO size register	
	(OTGFS/H	S_HPTXFSIZ)	460
		OTGFS/HS device IN endpoint Tx FIFO size register S_DIEPTXFn) (x=115, where n is the FIFO number)	461
21.6.4	4 Host-mod	le registers	461
	21.6.4.1 O	TGFS/HS host mode configuration register (OTGFS/HS_HCFC	9)461
	21.6.4.2 O	TGFS/HS host frame interval register (OTGFS/HS_HFIR)	461
	21.6.4.3 O	TGFS/HS host frame number/frame time remaining register	
	(OTGFS/H	S_HFNUM)	462
		TGFS/HS host periodic Tx FIFO/request queue register	
	`	S_HPTXSTS)	
	21.6.4.5 O	TGFS/HS host all channels interrupt register (OTGFS/HS_HA	NT)463
		TGFS/HS host all channels interrupt mask register	
		S_HAINTMSK)	463
		TGFS/HS host port control and status register S_HPRT)	163
	·	TGFS/HS host channelx characteristics register	403
		S_HCCHARx) (x = 015, where x= channel number)	465
		TGFS/HS host channelx split register (OTGFS/HS_HCSPLTx)	
		, where x= channel number)	
	21.6.4.10	OTGFS/HS host channelx interrupt register (OTGFS/HS_HCI	NTx)
	(x = 01)	5, where x= channel number)	467
	21.6.4.11	OTGFS/HS host channelx interrupt mask register	
	(OTGFS/H	$S_HCINTMSKx$) (x = 015, where x= channel number)	468
		OTGFS/HS host channelx transfer size register	
		S_HCTSIZx) ($x = 015$, where $x =$ channel number)	468
		OTGFS/HS host channel-x DMA address register	
		S_HCDMAx) (x = 015, where x= channel number)	
21.6.5		ode registers	
		TGFS/HS device configure register (OTGFS/HS_DCFG)	
		TGFS/HS device control register (OTGFS/HS_DCTL)	
		TGFS/HS device status register (OTGFS/HS_DSTS)	
		TGFS/HS device OTGFSIN endpoint common interrupt mask r S_DIEPMSK)	-
	21.6.5.5 O	TGFS/HS device OUT endpoint common interrupt mask regist	er

(OTGFS/HS_DOEPMSK)
21.6.5.6 OTGFS/HS device all endpoints interrupt mask register
(OTGFS/HS_DAINT)
21.6.5.7 OTGFS/HS all endpoints interrupt mask register
(OTGFS/HS_DAINTMSK)473
21.6.5.8 OTGFS/HS device IN endpoint FIFO empty interrupt mask register (OTGFS/HS_DIEPEMPMSK)
21.6.5.9 OTGHS device all endpoints interrupt register
(OTGHS_DEACHINT)474
21.6.5.10 OTGHS device all endpoints interrupt register
(OTGHS_DEACHINTMSK)
21.6.5.11 OTGHS device IN endpoint 1 interrupt mask register (OTGHS_DIEPEACHMSK1)
21.6.5.12 OTGHS device OUT endpoint 1 interrupt mask register (OTGHS_
DOEPEACHMSK1))
21.6.5.13 OTGFS/HS device control IN endpoint 0 control register (OTGFS/HS_DIEPCTL0)
21.6.5.14 OTGFS/HS device IN endpoint-x control register
(OTGFS/HS_DIEPCTLx) (x=17, where x is endpoint number) 477
21.6.5.15 OTGFS/HS device control OUT endpoint 0 control register
(OTGFS/HS_DOEPCTL0)
21.6.5.16 OTGFS/HS device control OUT endpoint-x control register
(OTGFS/HS_DOEPCTLx) (x=17, where x if endpoint number) 480
21.6.5.17 OTGFS/HS device IN endpoint-x interrupt register
(OTGFS_DIEPINTx) (x=07, where x if endpoint number)
21.6.5.18 OTGFS/HS device OUT endpoint-x interrupt register
(OTGFS/HS_DOEPINTx) (x=07, where x if endpoint number)
21.6.5.19 OTGFS/HS device IN endpoint 0 transfer size register
(OTGFS/HS_DIEPTSIZ0)
21.6.5.20 OTGFS/HS device OUT endpoint 0 transfer size register
(OTGFS/HS_DOEPTSIZ0)
21.6.5.21 OTGFS/HS device IN endpoint-x transfer size register
(OTGFS/HS_DIEPTSIZx) (x=17, where x is endpoint number) 485
21.6.5.22 OTGHS device IN endpoint-x DMA address register
(OTGHS_DIEPDMAx) (x=17, where x is endpoint number)
21.6.5.23 OTGFS/HS device IN endpoint transmit FIFO status register
(OTGFS/HS_DTXFSTSx) (x=17, where x is endpoint number)
21.6.5.24 OTGFS/HS device OUT endpoint-x transfer size register
(OTGFS/HS_DOEPTSIZx) (x=17, where x is endpoint number)
21.6.5.25 OTGHS device OUT endpoint-x DMA address register
(OTGHS_DOEPDMAx) (x=17, where x is endpoint number)
, o . o o _ o c i o min min in in in in in in in o in o

		21.6.6 Power and clock control registers	487
		21.6.6.1 OTGFS/HS power and clock gating control register (OTGFS/HS_PCGCCTL)	487
22	ніск	auto clock calibration (ACC)	488
	22.1	ACC introduction	488
	22.2	Main features	488
	22.3	Interrupt requests	488
	22.4	Functional description	488
	22.5	Principles	490
		Register description	
		22.6.1 ACC register map	491
		22.6.2 Status register (ACC_STS)	491
		22.6.3 Control register 1 (ACC_CTRL1)	491
		22.6.4 Control register 2 (ACC_CTRL2)	492
		22.6.5 Compare value 1 (ACC_C1)	493
		22.6.6 Compare value 2 (ACC_C2)	493
		22.6.7 Compare value 3 (ACC_C3)	493
23	Quad	-SPI interface (QSPI)	494
	23.1	QSPI introduction	494
	23.2	QSPI main features	494
	23.3	QSPI functional overview	494
		23.3.1 QSPI command slave port	494
		23.3.2 CPU PIO mode	494
		23.3.3 DMA handshake mode	495
		23.3.4 XIP port (direct address map read/write)	495
		23.3.5 XIP port prefetch	495
		23.3.6 SPI device operation	495
	23.4	QSPI registers	501
		23.4.1 Command word 0 (CMD_W0)	501
		23.4.2 Command word 1 (CMD_W1)	501
		23.4.3 Command word 2 (CMD_W2)	502
		23.4.4 Command word 3 (CMD_W3)	
		23.4.5 Control register (CTRL)	503

	23.4.6 FIFO status register (FIFOSTS)	504
	23.4.7 Control register 2 (CTRL2)	505
	23.4.8 Command status register (CMDSTS)	505
	23.4.9 Read status register (RSTS)	505
	23.4.10 Flash size register (FSIZE) (FSIZE)	506
	23.4.11 XIP command word 0 (XIP CMD_W0)	506
	23.4.12 XIP command word 1 (XIP CMD_W1)	506
	23.4.13 XIP command word 2 (XIP CMD_W2)	507
	23.4.14 XIP command word 3 (XIP CMD_W3)	508
	23.4.15 Revision register (REV)	508
	23.4.16 Data port register (DT)	508
24 25	Infrared timer (IRTMR) Debug (DEBUG)	
	25.1 Debug introduction	
	25.2 Debug and Trace	
	25.3 I/O pin control	510
	25.4 DEGUB registers	510
	25.4.1 DEBUG device ID (DEBUG_IDCODE)	511
	25.4.2 DEBUG control register (DEBUG_CTRL)	512
	25.4.3 DEBUG APB1 pause register (DEBUG_ APB1_PAUSE)	512
	25.4.4 DEBUG APB2 pause register (DEBUG_ APB2_PAUSE)	514
26	Pavision history	515

List of figures

Figure 2-1 AT32F402/405 address mapping	43
Figure 3-1 Block diagram of each power supply	48
Figure 3-2 Power-on/Low voltage reset waveform	49
Figure 3-3 PVM threshold and output	49
Figure 4-1 AT32F405 clock tree	56
Figure 4-2 AT32F402 clock tree	57
Figure 4-3 System reset circuit	59
Figure 5-1 Flash memory sector erase process	82
Figure 5-2 Flash memory mass erase process	83
Figure 5-3 Flash memory programming process	84
Figure 5-4 System data area erase process	86
Figure 5-5 System data area programming process	87
Figure 6-1 GPIO basic structure	98
Figure 6-2 IOMXU Structure	100
Figure 8-1 External interrupt/event controller block diagram	119
Figure 9-1 DMA block diagram	122
Figure 9-2 Re-arbitrate after request/acknowledge	123
Figure 9-3 PWIDTH: byte, MWIDTH: half-word	124
Figure 9-4 PWIDTH: half-word, MWIDTH: word	124
Figure 9-5 PWIDTH: word, MWIDTH: byte	124
Figure 9-6 DMAMUX block diagram	125
Figure 9-7 DMAMUX request synchronized mode	127
Figure 9-8 DMAMUX event generation	128
Figure 10-1 CRC calculation unit block diagram	139
Figure 11-1 I ² C bus protocol	142
Figure 11-2 I ² C interface block diagram	143
Figure 11-3 Setup and hold time	145
Figure 11-4 I ² C master transmission flow	149
Figure 11-5 Transfer sequence of I ² C master transmitter	150
Figure 11-6 I ² C master receive flow	150
Figure 11-7 Transfer sequence of I ² C master receiver	151
Figure 11-8 10-bit address read access when READH10=1	151
Figure 11-9 10-bit address read access when READH10=0	151
Figure 11-10 I ² C slave transmission flow	153
Figure 11-11 I ² C slave transmission timing	154
Figure 11-12 I ² C slave receive flow	154
Figure 11-13 I ² C slave receive timing	155
Figure 11-14 SMBus master transmission timing	158
Figure 11-15 SMBus master receive timing	159
Figure 11-16 SMBus slave transmission flow	161
Figure 11-17 SMBus slave transmission timing	161
Figure 11-18 SMBus slave receive flow	162
Figure 11-19 SMBus slave receive timing	163

Figure 12-1 USART block diagram	171
Figure 12-2 BFF and FERR detection in LIN mode	173
Figure 12-3 Smartcard frame format	174
Figure 12-4 IrDA DATA(3/16) – normal mode	174
Figure 12-5 Hardware flow control	175
Figure 12-6 Mute mode using Idle line or Address mark detection	176
Figure 12-7 8-bit format USART synchronous mode	176
Figure 12-8 Word length configuration	177
Figure 12-9 Stop bit configuration	
Figure 12-10 Variations when transmitting TDC/TDBE	180
Figure 12-11 Data sampling for noise detection	183
Figure 12-12 Tx/Rx swap	183
Figure 12-13 USART interrupt map diagram	184
Figure 13-1 SPI block diagram	193
Figure 13-2 SPI two-wire unidirectional full-duplex connection	194
Figure 13-3 Single-wire unidirectional receive only in SPI master mode	195
Figure 13-4 Single-wire unidirectional receive only in SPI slave mode	195
Figure 13-5 Single-wire bidirectional half-duplex mode	
Figure 13-6 Master full-duplex communications	200
Figure 13-7 Slave full-duplex communications.	201
Figure 13-8 Master half-duplex transmit	201
Figure 13-9 Slave half-duplex receive	201
Figure 13-10 Slave half-duplex transmit	202
Figure 13-11 Master half-duplex receive	
Figure 13-12 TI mode continous transfer	
Figure 13-13 TI mode continous transfer with dummy CLK	203
Figure 13-14 TI mode continous transfer with dummy CLK	
Figure 13-15 SPI interrupts	
Figure 13-16 I ² S block diagram	
Figure 13-17 I ² S full-duplex structure	
Figure 13-18 I ² S slave device transmission	206
Figure 13-19 2S slave device reception	206
Figure 13-20 I ² S master device transmission	
Figure 13-21 I ² S master device reception	
Figure 13-22 CK & MCK source in master mode	
Figure 13-23 Audio standard timings	
Figure 13-24 I ² S interrupts	
Figure 14-1 I2SF full-duplex host transmit/slave transmit	
Figure 14-2 I2SF full-duplex host transmit/slave receive	
Figure 14-3 I2SF full-duplex host receive/slave transmit	
Figure 14-4 I2SF full-duplex host receive/slave receive	
Figure 14-5 I2SF master clock sources	
Figure 14-6 Data sampling on falling edge in PCM mode	
Figure 14-7 Data sampling on rising edge in PCM mode	
Figure 14-8 I2SF interrupts	220

Figure 15-1 Basic timer block diagram	225
Figure 15-2 Control circuit with CK_INT divided by 1	225
Figure 15-3 Basic structure of a counter	226
Figure 15-4 Overflow event when PRBEN=0	226
Figure 15-5 Overflow event when PRBEN=1	226
Figure 15-6 Counting timing diagram when the prescaler division is 4	226
Figure 15-7 General-purpose timer block diagram	229
Figure 15-8 Counting clock	230
Figure 15-9 Control circuit with CK_INT, TMRx_DIV=0x0 and TMRx_PR=0x16	230
Figure 15-10 Block diagram of external clock mode A	231
Figure 15-11 Counting in external clock mode A, PR=0x32 and DIV=0x0	231
Figure 15-12 Block diagram of external clock mode B	231
Figure 15-13 Counting in external clock mode B, PR=0x32 and DIV=0x0	232
Figure 15-14 Counter timing with prescaler value chang from 1 to 4	232
Figure 15-15 Basic structure of a counter	233
Figure 15-16 Overflow event when PRBEN=0	233
Figure 15-17 Overflow event when PRBEN=1	234
Figure 15-18 Counter timing diagram with internal clock divided by 4	234
Figure 15-19 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32	234
Figure 15-20 Encoder mode structure	
Figure 15-21 Example of counter behavior in encoder interface mode (encoder mode C)	236
Figure 15-22 Input/output channel 1 main circuit	237
Figure 15-23 Channel 1 input stage	
Figure 15-24 PWM input mode configuration example	
Figure 15-25 PWM input mode	
Figure 15-26 Capture/compare channel output stage (channel 1 to 4)	
Figure 15-27 C1ORAW toggles when counter value matches the C1DT value	
Figure 15-28 Upcounting mode and PWM mode A	
Figure 15-29 Up/down counting mode and PWM mode A	241
Figure 15-30 One-pulse mode	241
Figure 15-31 Clearing CxORAW(PWM mode B) by EXT input	242
Figure 15-32 Example of reset mode	242
Figure 15-33 Example of suspend mode	242
Figure 15-34 Example of trigger mode	
Figure 15-35 Master/slave timer connection	
Figure 15-36 Using master timer to start slave timer	
Figure 15-37 Starting master and slave timers synchronously by an external trigger	244
Figure 15-38 Block diagram of general-purpose TMR9	
Figure 15-39 Counting clock	
Figure 15-40 Control circuit with CK_INT, TMRx_DIV=0x0 and TMRx_PR=0x16	
Figure 15-41 Block diagram of external clock mode A	
Figure 15-42 Counting in external clock mode A, PR=0x32 and DIV=0x0	
Figure 15-43 Counter timing with prescaler value chang from 1 to 4	
Figure 15-44 Basic structure of a counter	
Figure 15-45 Overflow event when PRBEN=0	260

Rev 2.00

Figure 15-46 Overflow event when PRBEN=1	260
Figure 15-47 Counter timing diagram with internal clock divided by 4	260
Figure 15-48 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32	261
Figure 15-49 OVFIF in upcounting mode and central-aligned mode	261
Figure 15-50 Encoder mode structure	262
Figure 15-51 Example of counter behavior in encoder interface mode (encoder mode C)	263
Figure 15-52 Input/output channel 1 main circuit	264
Figure 15-53 Channel 1 input stage	264
Figure 15-54 PWM input mode configuration example	265
Figure 15-55 PWM input mode	265
Figure 15-56 Channel 1 output stage	266
Figure 15-57 Channel 2 output stage	266
Figure 15-58 C1ORAW toggles when counter value matches the C1DT value	267
Figure 15-59 Upcounting mode and PWM mode A	267
Figure 15-60 One-pulse mode	268
Figure 15-61 Complementary output with dead-time insertion	268
Figure 15-62 TMR output control	269
Figure 15-63 Example of TMR break function	
Figure 15-64 Example of reset mode	270
Figure 15-65 Example of suspend mode	271
Figure 15-66 Example of trigger mode	
Figure 15-67 TMR10/11/13/14 block diagram	283
Figure 15-68 Basic structure of a counter	283
Figure 15-69 Control circuit with CK_INT, TMRx_DIV=0x0 and PR=0x16	
Figure 15-70 Basic structure of a counter	
Figure 15-71 Overflow event when PRBEN=0	
Figure 15-72 Overflow event when PRBEN=1	285
Figure 15-73 Counter timing diagram with internal clock divided by 4	
Figure 15-74 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32	
Figure 15-75 OVFIF in upcounting mode and central-aligned mode	
Figure 15-76 Input/output channel 1 main circuit	
Figure 15-77 Channel 1 input stage	
Figure 15-78 Channel 1 output stage	
Figure 15-79 C1ORAW toggles when counter value matches the C1DT value	
Figure 15-80 Upcounting mode and PWM mode A	
Figure 15-81 One-pulse mode	
Figure 15-82 Complementary output with dead-time insertion	
Figure 15-83 TMR output control	
Figure 15-84 Example of TMR break function	
Figure 15-85 Block diagram of advanced-control timer	
Figure 15-86 Counting clock	
Figure 15-87 Control circuit with CK_INT, TMRx_DIV=0x0 and TMRx_PR=0x16	
Figure 15-88 Block diagram of external clock mode A	
Figure 15-89 Counting in external clock mode A, PR=0x32 and DIV=0x0	
Figure 15-90 Block diagram of external clock mode B	305

Figure 15-91 Counting in external clock mode B, PR=0x32 and DIV=0x0	306
Figure 15-92 Counter timing with prescaler value changing from 1 to 4	306
Figure 15-93 Basic structure of a counter	307
Figure 15-94 Overflow event when PRBEN=0	307
Figure 15-95 Overflow event when PRBEN=1	307
Figure 15-96 Counter timing diagram with internal clock divided by 4	308
Figure 15-97 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32	308
Figure 15-98 OVFIF behavior in upcounting mode and center-aligned mode	309
Figure 15-99 Structure of encoder mode	309
Figure 15-100 Example of encoder interface mode C	310
Figure 15-101 Input/output channel 1 main circuit	311
Figure 15-102 Channel 1 input stage	311
Figure 15-103 PWM input mode configuration example	
Figure 15-104 PWM input mode	
Figure 15-105 Channel output stage (channel 1 to 3)	313
Figure 15-106 Channel 4 output stage	313
Figure 15-107 C1ORAW toggles when counter value matches the C1DT value	
Figure 15-108 Upcounting mode and PWM mode A	315
Figure 15-109 Up/down counting mode and PWM mode	315
Figure 15-110 One-pulse mode	
Figure 15-111 Clearing CxORAW (PWM mode A) by EXT input	
Figure 15-112 Complementary output with dead-time insertion	317
Figure 15-113 TMR output control	
Figure 15-114 Example of TMR break function	
Figure 15-115 Example of reset mode	
Figure 15-116 Example of suspend mode	
Figure 15-117 Example of trigger mode	
Figure 16-1 Window watchdog block diagram	
Figure 16-2 Window watchdog timing diagram	
Figure 17-1 WDT block diagram	
Figure 18-1 ERTC block diagram	341
Figure 19-1 ADC block diagram	
Figure 19-2 ADC basic operation process	
Figure 19-3 ADC power-on and calibration	
Figure 19-4 Sequence mode	
Figure 19-5 Preempted group auto conversion mode	
Figure 19-6 Repetition mode	
Figure 19-7 Partition mode	
Figure 19-8 rdinary oversampling restart mode selection	
Figure 19-9 Ordinary oversampling trigger mode	
Figure 19-10 Oversampling of preempted group of channels	
Figure 19-11 Data alignment	
Figure 20-1 Bit timing	
Figure 20-2 Frame type	
Figure 20-3 Transmit interrupt generation	381

Figure 20-4 Receive interrupt 0 generation	381
Figure 20-5 Receive interrupt 1 generation	381
Figure 20-6 Status error interrupt generation	381
Figure 20-7 CAN block diagram	382
Figure 20-8 32-bit identifier mask mode	384
Figure 20-9 32-bit identifier list mode	385
Figure 20-10 16-bit identifier mask mode	385
Figure 20-11 16-bit identifier list mode	385
Figure 20-12 Transmit mailbox status	387
Figure 20-13 Receive FIFO status	388
Figure 20-14 ransmit and receive mailboxes	400
Figure 21-1 OTGFS block diagram	404
Figure 21-2 OTGHS block diagram	405
Figure 21-3 OTGFS/HS interrupt hierarchy	407
Figure 21-4 Writing the transmit FIFO	412
Figure 21-5 Reading the receive FIFO	413
Figure 21-6 HFIR behavior when HFIRRLDCTRL=0x0	414
Figure 21-7 HFIR behavior when HFIRRLDCTRL=0x1	415
Figure 21-8 Example of common Bulk/Control OUT/SETUP and Bulk/Control IN transfer	418
Figure 21-9 shows an example of common interrupt OUT/IN transfers	422
Figure 21-10 Example of common synchronous OUT/IN transfers	425
Figure 21-11 Read receive FIFO	430
Figure 21-12 SETUP data packet flowchart	432
Figure 21-13 BULK OUT transfer block diagram	436
Figure 21-14 CSR memory map	443
Figure 22-1 ACC interrupt mapping diagram	488
Figure 22-2 ACC block diagram	489
Figure 22-3 Cross-return algorithm	490
Figure 23-1 QSPI block diagram	494
Figure 23-2 DMA handshake mode	495
Figure 23-3 Write enable	496
Figure 23-4 Page programming	496
Figure 23-5 Status read	496
Figure 23-6 Data read	496
Figure 23-7 read dual command	497
Figure 23-8 Quick read dual-wire I/O command	497
Figure 23-9 Read quad output	498
Figure 23-10 Quick read quad I/O command	498
Figure 23-11 Dual DPI command	499
Figure 23-12 Quad QPI command	499
Figure 24-1 IRTMR block diagram	509

List of tables

Table 1-1 Bit-band address mapping in SRAM	35
Table 1-2 Bit-band address mapping in the peripheral area	36
Table 1-3 AT32F402/405 series vector table	36
Table 1-4 List of abbreviations for registers	41
Table 1-5 Base address and reset value of registers	42
Table 2-1 Flash memory organization (256 KB)	44
Table 2-2 Flash memory organization (128 KB)	44
Table 2-3 Peripheral boundary address	45
Table 3-1 PWC register map and reset values	52
Table 4-1 CRM register map and reset values	60
Table 5-1 Flash memory architecture (256 KB)	79
Table 5-2 Flash memory architecture (128 KB)	79
Table 5-3 User system data area	80
Table 5-4 Flash memory access limit	88
Table 5-5 Flash memory register map and reset value	90
Table 6-1 Port A multiplexed function configuration with GPIOA_MUX* register	101
Table 6-2 Port B multiplexed function configuration with GPIOB_MUX* register	103
Table 6-3 Port C multiplexed function configuration with GPIOC_MUX* register	105
Table 6-4 Port D multiplexed function configuration with GPIOD_MUX* register	107
Table 6-5 Port F multiplexed function configuration with GPIOF_MUX* register	107
Table 6-6 Pins owned by hardware	108
Table 6-7 GPIO register map and reset values	
Table 7-1 SCFG register map and reset value	114
Table 8-1 External interrupt/event controller register map and reset value	120
Table 9-1 DMA error event	125
Table 9-2 DMA interrupts	125
Table 9-3 Flexible DMA1 / DMA2 request mapping	126
Table 9-4 DMAMUX EXINT LINE for trigger input and synchronized input	127
Table 9-5 DMA register map and reset value	128
Table 10-1 CRC register map and reset value	140
Table 11-1 I ² C timing specifications	146
Table 11-2 I ² C configuration	147
Table 11-3 SMBus timeout specification	156
Table 11-4 SMBus timeout detection configuration	157
Table 11-5 SMBus mode configuration	
Table 11-6 I ² C error events	164
Table 11-7 I ² C interrupt requests	165
Table 11-8 I ² C register map and reset value	165
Table 12-1 Error calculation for programmed baud rate	179
Table 12-2 Data sampling over start bit and noise detection	182
Table 12-3 Data sampling over valid data and noise detection	182
Table 12-4 Maximum allowable deviation	183
Table 12-5 USART interrupt requests	184

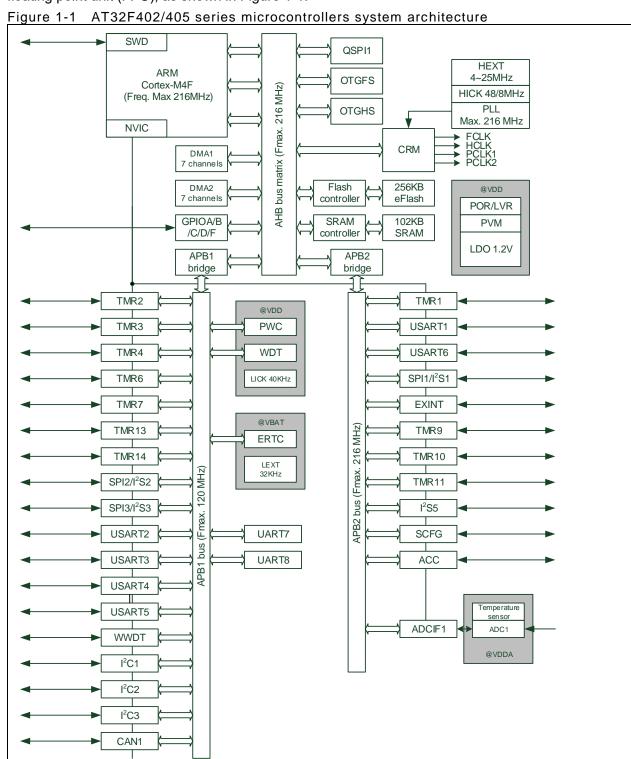


Table 12-6 USART register map and reset value	184
Table 13-1 Audio frequency precision using system clock	209
Table 13-2 SPI register map and reset value	212
Table 14-1 I2SF5 register map and reset value	221
Table 15-1 TMR functional comparison	224
Table 15-2 TMR6 and TMR7 register table and reset value	227
Table 15-3 TMRx internal trigger connection	232
Table 15-4 Counting direction versus encoder signals	236
Table 15-5 TMR2 to TMR4 register map and reset value	245
Table 15-6 Standard CxOUT channel output control bit	253
Table 15-7 TMRx internal trigger connection	258
Table 15-8 Counting direction versus encoder signals	263
Table 15-9 TMR9 register map and reset value	271
Table 15-10 Complementary output channel CxOUT and CxCOUT control bits with break function	279
Table 15-11 TMR10/11/13/14 register map and reset value	293
Table 15-12 Complementary output channel CxOUT and CxCOUT control bits with break function	299
Table 15-13 TMRx internal trigger connection	306
Table 15-14 Counting direction versus encoder signals	310
Table 15-15 TMR1 register map and reset value	320
Table 15-16 Complementary output channel CxOUT and CxCOUT control bits with break function	329
Table 16-1 Minimum and maximum timeout value when PCLK1=72 MHz	335
Table 16-2 WWDT register map and reset value	335
Table 17-1 WDT timeout period (LICK=40kHz)	338
Table 17-2 WDT register and reset value	338
Table 18-1 RTC register map and reset values	342
Table 18-2 ERTC low-power mode wakeup	347
Table 18-3 Interrupt control bits	347
Table 18-4 ERTC register map and reset values	348
Table 19-1 Trigger sources for ordinary channels	361
Table 19-2 Correlation between maximum cumulative data, oversampling multiple and shift digits	364
Table 19-3 ADC register map and reset values	367
Table 20-1 CAN register map and reset values	389
Table 21-1 OTGFS input/output pins	406
Table 21-2 OTGHS input/output pins	407
Table 21-3 OTGFS/HS transmit FIFO SRAM allocation	409
Table 21-4 OTGFS internal storage space allocation	410
Table 21-5 OTGFS/HS register map and reset values	444
Table 21-6 Minimum duration for software disconnect	470
Table 22-1 ACC interrupt requests	488
Table 22-2 ACC register map and reset values	491
Table 23-1 SPI register map and reset values	501
Table 25-1 DEBUG register address and reset value	510

1 System architecture

AT32F402/405 series microcontrollers consists of 32-bit ARM®Cortex®-M4F processor, multiple 16-bit and 32-bit timers, infrared transmitter (IRTMR), DMA controller, ERTC, communication interfaces such as SPI, I²C and USART/UART, CAN bus controller, USB2.0 OTG full-speed interface, HICK with automatic clock calibration (ACC), 12-bit ADC, programmable voltage monitor (PVM) and other peripherals. Cortex®-M4F processor supports enhanced high-performance DSP instruction set, including extended single-cycle 16-bit/32-bit multiply accumulator (MAC), dual 16-bit MAC instructions, optimized 8-bit/16-bit SIMD operation and saturation operation instructions, and single-precision (IEEE-754) floating point unit (FPU), as shown in Figure 1-1.

1.1 System overview

1.1.1 ARM Cortex®-M4F processor

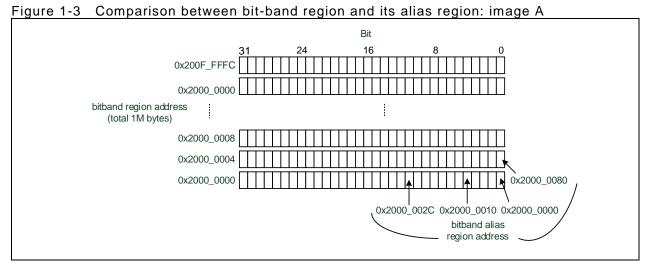
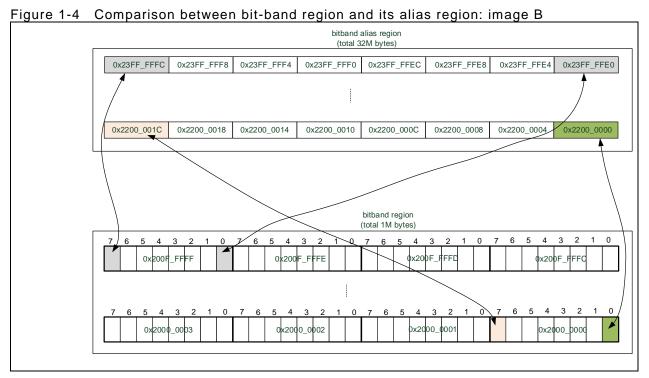

Cortex®-M4F processor is a low-power consumption processor featuring with low gate count, low interrupt latency and low-cost debug. It supports DSP instruction set and FPU, and it is applicable to deeply embedded applications that require quicker response to interruption. Cortex®-M4F processor is based on ARMv7-M architecture, supporting both Thumb instruction set and DSP instruction set.

Figure 1-2 shows the internal block diagram of Cortex®-M4F processor. Please refer to *ARM®Cortex-M4 Technical Reference Manual* for more information.


Figure 1-2 Internal block diagram of Cortex®-M4F Cortex-M4F Interrupts and Power control Cortex-M4 Core NVIC ЕТМ FPU WIC FPB MPU DWT SW-DP or AHB-AP ITM Bus Matrix PIU ROM Table IBUS DBUS SBUS SW/JTAG

1.1.2 Bit band

With the help of bit-band, read and write access to a single bit can be performed using common load/store operations. The Cortex®-M4F memory includes two bit-band regions: the least significant 1 Mbyte of SRAM and the least significant 1 Mbyte of peripherals. In addition to access to bit-band addresses, their respective bit-band alias region can be used to access to any bit in these two bit-band regions. The bit-band alias region transforms each bit into 32-bit word. Thus, accessing to a bit in an alias region has the same effect as read-modify-write operation on the corresponding bit in a bit-band region.

Bit-band region: address region for bit-band operations

Bit-band alias region: access to the alias region has the same effect as read-modify-write operation on the bit-band region

Each bit in a bit-band region is mapped into a word (LSB) in an alias region. When accessing to the address in a bit-band alias region, such address is transformed into a bit-band address first. For a read operation, read one word in the bit-band region, and then move the targeted bit to the right to LSB before returning LSB. For a write operation, first move the targeted bit to the left to the corresponding bit number, then perform a read-modify-write operation on bit level.

The address ranges of two memories supporting bit-band operations:

Least significant 1 Mbyte in SRAM: 0x2000 0000~0x200F FFFF

Least significant 1 Mbyte in peripherals: 0x4000_0000~0x400F FFFF

For a bit in the SRAM bit-band region, if the byte address is A, the bit number is n (0<=n<=7), then the alias address where the bit is:

AliasAddr = 0x2200 0000+ (A-0x2000 0000)*32+n*4

For a bit in the peripheral bit-band region, if the byte address is A, the bit number is n (0<=n<=7), then the alias address where the bit is:

AliasAddr = 0x4200 0000+ (A-0x4000 0000)*32+n*4

Table 1-1 shows the mapping between bit-band region and alias region in SRAM.

Table 1-1 Bit-band address mapping in SRAM

Bit-band region	Equivalent alias address			
0x2000_0000.0	0x2200_0000.0			
0x2000_0000.1	0x2200_0004.0			
0x2000_0000.2	0x2200_0008.0			
0x2000_0000.31	0x2200_007C.0			
0x2000_0004.0	0x2200_0080.0			
0x2000_0004.1	0x2200_0084.0			

-	
0x2000_0004.2	0x2200_0088.0
0x200F FFFC.31	0x23FF FFFC.0

Table 1-2 shows the mapping between bit-band region and alias region in the peripheral area.

Table 1-2 Bit-band address mapping in the peripheral area

Bit-band region	Equivalent alias address
0x4000_0000.0	0x4200_0000.0
0x4000_0000.1	0x4200_0004.0
0x4000_0000.2	0x4200_0008.0
0x4000_0000.31	0x4200_007C.0
0x4000_0004.0	0x4200_0080.0
0x4000_0004.1	0x4200_0084.0
0x4000_0004.2	0x4200_0088.0
0x400F_FFFC.31	0x43FF_FFFC.0

In terms of bit-band operation, one of the advantages is to control LED ON/OFF independently via GPIO pins. On the other hand, it brings great convenience for serial interface operations. In short, it is best suited to hardware I/O-intensive low-level applications.

In addition, bit-band operations can also simplify jump process. When jump operation is based on a bit level, the previous steps are:

- Read the whole register
- Mask the undesired bits
- Compare and jump

For now, you just need to:

- Read the bit status from the bit-band alias region
- Compare and jump

Apart from making code more concise, its important function is also reflected in multi-task environment. When it comes to multiple tasks, it turns the read-modify-write operations into a hardware-supported atomic operation to avoid the scenario where the read-modify-write operation is disrupted, resulting in disorder.

1.1.3 Interrupt and exception vectors

Table 1-3 AT32F402/405 series vector table

Pos.	Priority	Priority type Name		Description	Address
	-	-	-	Reserved	0x0000_0000
	-3	Fixed	Reset	Reset	0x0000_0004
	-2	Fixed	NMI	Non-maskable interrupt CRM clock fail detector (CFD) and SRAM verification are linked to NMI vector	0x0000_0008
	-1	Fixed	HardFault	All class of fault	0x0000_000C
	0	Configurable	e MemoryManage	Memory management	0x0000_0010
	1	Configurable	e BusFault	Pre-fetch fault, memory access fault	0x0000_0014

	2	Configurable UsageFault	Undefined instruction or illegal state	0x0000_0018
	-		Reserved	0x0000_001C ~0x0000_002B
	3	Configurable SVCall	System service call via SWI instruction	0x0000_002C
	4	Configurable DebugMonitor	Debug monitor	0x0000_0030
	-		Reserved	0x0000_0034
	5	Configurable PendSV	Pendable request for system service	0x0000_0038
	6	Configurable SysTick	System tick timer	0x0000_003C
	7	Configurable WWDT	Window watchdog timer	0x0000_0040
	8	Configurable PVM	PVM from EXINT interrupt	0x0000_0044
	9	Configurable TAMPER	Tamper interrupt	0x0000_0048
	10	Configurable ERTC_WKUP	ERTC wakeup interrupt	0x0000_004C
	11	Configurable FLASH	Flash global interrupt	0x0000_0050
	12	Configurable CRM	Clock and Reset Manage (CRM) interrupt	0x0000_0054
	13	Configurable EXINT0	EXINT line0 interrupt	0x0000_0058
	14	Configurable EXINT1	EXINT line1 interrupt	0x0000_005C
	15	Configurable EXINT2	EXINT line2 interrupt	0x0000_0060
	16	Configurable EXINT3	EXINT line3 interrupt	0x0000_0064
0	17	Configurable EXINT4	EXINT line4 interrupt	0x0000_0068
1	18	Configurable DMA1 channel1	DMA1 channel1 global interrupt	0x0000_006C
2	19	Configurable DMA1 channel2	DMA1 channel2 global interrupt	0x0000_0070
3	20	Configurable DMA1 channel3	DMA1 channel3 global interrupt	0x0000_0074
4	21	Configurable DMA1 channel4	DMA1 channel4 global interrupt	0x0000_0078
5	22	Configurable DMA1 channel5	DMA1 channel5 global interrupt	0x0000_007C
6	23	Configurable DMA1 channel6	DMA1 channel6 global interrupt	0x0000_0080
7	24	Configurable DMA1 channel7	DMA1 channel7 global interrupt	0x0000_0084
8	25	Configurable ADC	ADC global interrupt	0x0000_0088
9	26	Configurable CAN1_TX	CAN1 TX interrupt	0x0000_008C
0	27	Configurable CAN1_RX0	CAN1 RX0 interrupt	0x0000_0090
1	28	Configurable CAN1_RX1	CAN1 RX1 interrupt	0x0000_0094
2	29	Configurable CAN_SE	CAN state error interrupt	0x0000_0098
3	30	Configurable EXINT9_5	EXINT line[9:5] interrupt	0x0000_009C
4	31	Configurable TMR1_BRK_TMR9	TMR1 break interrupt and TMR9 global interrupt	0x0000_00A0
5	32	Configurable TMR1_OVF_TMR10	TMR1 overflow interrupt and TMR10 global interrupt	0x0000_00A4
6	33	Configurable TMR1_TRG_HALL_TMR11	TMR1 trigger and HALL interrupt and TMR11 global interrupt	0x0000_000A8

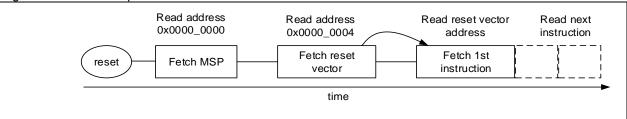
27	34	Configurable TMR1_CH	TMR1 channel interrupt	0x0000_00AC
28	35	Configurable TMR2	TMR2 global interrupt	0x0000_00B0
29	36	Configurable TMR3	TMR3 global interrupt	0x0000_00B4
30	37	Configurable TMR4	TMR4 global interrupt	0x0000_00B8
31	38	Configurable I2C1_EVT	I ² C1 event interrupt	0x0000_00BC
32	39	Configurable I2C1_ERR	I ² C1 error interrupt	0x0000_00C0
33	40	Configurable I2C2_EVT	I ² C2 event interrupt	0x0000_00C4
34	41	Configurable I2C2_ERR	I ² C2 error interrupt	0x0000_00C8
35	42	Configurable SPI1	SPI1 global interrupt	0x0000_00CC
36	43	Configurable SPI2	SPI2 global interrupt	0x0000_00D0
37	44	Configurable USART1	USART1 global interrupt	0x0000_00D4
38	45	Configurable USART2	USART2 global interrupt	0x0000_00D8
39	46	Configurable USART3	USART3 global interrupt	0x0000_00DC
40	47	Configurable EXINT15_10	EXINT line[15:10] interrupt	0x0000_00E0
41	48	Configurable ERTCAlarm	ERTC alarm interrupt linked to EXINT	0x0000_00E4
42	49	Configurable OTGFS1_WKUP	OTGFS1 standby wakeup interrupt linked to EXINT	0x0000_00E8
43	50		-	0x0000_00EC
44	51	Configurable TMR13	TMR13 global interrupt	0x0000_00F0
45	52	Configurable TMR14	TMR14 global interrupt	0x0000_00F4
46	53		-	0x0000_00F8
47	54		-	0x0000_00FC
48	55		-	0x0000_0100
49	56		-	0x0000_0104
50	57		-	0x0000_0108
51	58	Configurable SPI3	SPI3 global interrupt	0x0000_010C
52	59	Configurable USART4	USART4 global interrupt	0x0000_0110
53	60	Configurable USART5	USART5 global interrupt	0x0000_0114
54	61	Configurable TMR6	TMR6 global interrupt	0x0000_0118
55	62	Configurable TMR7	TMR7 global interrupt	0x0000_011C
56	63	Configurable DMA2 channel1	DMA2 channel1 global interrupt	0x0000_0120
57	64	Configurable DMA2 channel2	DMA2 channel2 global interrupt	0x0000_0124
58	65	Configurable DMA2 channel3	DMA2 channel3 global interrupt	0x0000_0128
59	66	Configurable DMA2 channel4	DMA2 channel4 global interrupt	0x0000_012C
60	67	Configurable DMA2 channel5	DMA2 channel5 global interrupt	0x0000_0130
61	68		-	0x0000_0134
				_

62	69		-	0x0000_0138
63	70		-	0x0000_013C
64	71		-	0x0000_0140
65	72		-	0x0000_0144
66	73		-	0x0000_0148
67	74	Configurable OTGFS1	OTGFS1 global interrupt	0x0000_014C
68	75	Configurable DMA2 channel6	DMA2 channel6 global interrupt	0x0000_0150
69	76	Configurable DMA2 channel7	DMA2 channel7 global interrupt	0x0000_0154
70	77		-	0x0000_0158
71	78	Configurable USART6	USART6 global interrupt	0x0000_015C
72	79	Configurable I2C3_EVT	I2C2 event interrupt	0x0000_0160
73	80	Configurable I2C3_ERR	I2C2 error interrupt	0x0000_0164
74	81	Configurable OTGHS_EP1_OUT	OTGHS EP1 OUT interrupt	0x0000_0168
75	82	Configurable OTGHS_EP1_IN	OTGHS EP1 IN interrupt	0x0000_016C
76	83	Configurable OTGHS_WKUP	OTGHS standby wakeup interrupt linked to	EXINT 0x0000_0170
77	84	Configurable OTGHS	OTGHS global interrupt	0x0000_0174
78	85		-	0x0000_0178
79	86		-	0x0-000_017C
80	87		-	0x0000_0180
81	88	Configurable FPU	FPU exception interrupt	0x0000_0184
82	89	Configurable UART7	UART7 global interrupt	0x0000_0188
83	90	Configurable UART8	UART8 global interrupt	0x0000_018C
84	91		-	0x0000_0190
85	92	Configurable I2SF5	I2SF5 global interrupt	0x0000_0194
86	93		-	0x0000_0198
87	94		-	0x0000_019C
88	95		-	0x0000_01A0
89	96		-	0x0000_01A4
90	97		-	0x0000_01A8
91	98		-	0x0000_01AC
92	99	Configurable QSPI1	QSPI1 global interrupt	0x0000_01B0
93	100		-	0x0000_01B4
94	101	Configurable DMAMUX	DMAMUX overflow interrupt	0x0000_01B8
95	102		-	0x0000_01BC
96	103		-	0x0000_01C0

97	104		-	0x0000_01C4
98	105		-	0x0000_01C8
99	106		-	0x0000_01CC
100	107		-	0x0000_01D0
101	108		-	0x0000_01D4
102	109		-	0x0000_01D8
103	110	Configurable ACC	ACC global interrupt	0x0000_01DC

1.1.4 System Tick (SysTick)

The System Tick is a 24-bit downcounter. It will be reloaded with the initial value automatically when it is decremented to zero. It can generate periodic interrupts, so it is often used as multi-task scheduling counter for embedded operating system, and also to call the periodic tasks for non-embedded system. The System Tick calibration value is fixed to 9000, which gives a reference time base of 1 ms when the System Tick clock is set to 9 MHz.

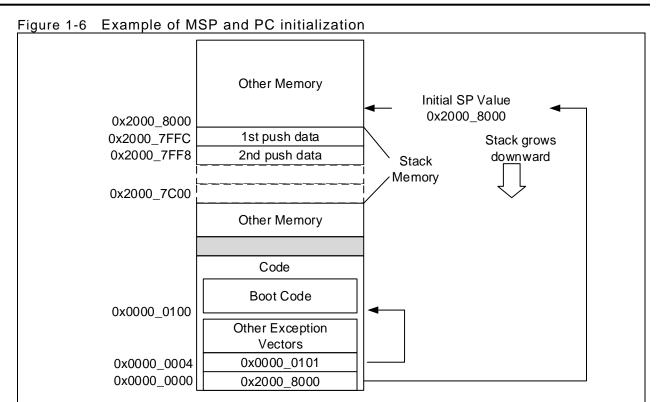

1.1.5 Reset

The processor reads the first two words from the CODE memory after a system reset and before program execution.

Get the initial value of the main stack pointer (MSP) from address 0x0000_0000

Get the initial value of the program counter (PC) from address 0x0000_0004. This value is a reset vector and LSB must be 1. Then, take the instructions from the address corresponding to this value.

Figure 1-5 Reset process



Cortex®-M4F uses a full stack that increases downward, so the initial value of the main stack pointer (MSP) must be the end address of the stack memory plus 1. For example, if the stack area is set between 0x2000_7C00 and 0x2000_7FFF, then the initial value of MSP must be defined as 0x2000_8000.

The vector table follows the initial value of MSP. Cortex®-M4F operates in Thumb state, and thus each value in the vector table must set the LSB to 1. In Figure 1-6, 0x0000_0101 is used to represent 0x0000_0100. After the instruction at 0x0000_0100 is executed, the program starts running formally. Before that, it is a must for initializing MSP, because the first instruction may be interrupted by NMI or other faults before being executed. After the completion of MSP initialization, it is ready to prepare stack room for its service routines.

2023.08.31 Page 40 Rev 2.00

In the AT32F402/405 series, the main Flash memory, boot memory or SRAM can be remapped to the CODE area between 0x0000_0000 and 0x07FF_FFFF. The nBOOT1 corresponds to the value of system setting byte (SSB) bit of the user system data area (USD). The nBOOT1 and BOOT0 are used to set the specific memory from which CODE starts.

{nBOOT1, BOOT0}=00/10: CODE starts from the main Flash memory.

{nBOOT1, BOOT0}=11: CODE starts from the boot memory.

{nBOOT1, BOOT0}=01: CODE starts from SRAM.

After a system reset or when leaving from Standby mode, the pin values of both nBOOT1 and BOOT0 will be relatched.

If on-chip SRAM mode is used, the BOOT state is locked. In this case, it is impossible to select another boot mode, even after a system reset. A new boot mode can be selected only after the next power-on reset.

Boot memory contains an embedded Bootloader program that provides not only Flash programming function through USART, I2C, SPI, CAN or USB interface, but also provides extra firmware including communication protocol stacks that can be called for use by software developers through API.

1.2 List of abbreviations for registers

Table 1-4 List of abbreviations for registers

Register type	Description	
rw	Software can read and write to this bit.	
ro	Software can only read this bit.	
wo Software can only write to this bit. Reading it returns to its reset value.		
rrc	Software can read this bit. Reading this bit automatically clears it.	
rw0c	Software can read this bit and clear it by writing 0. Writing 1 has no effect on this bit.	
rw1c Software can read this bit and clear it by writing 1. Writing 0 has no effect on this		
rw1s Software can read this bit and set it by writing 1. Writing 0 has no effect on th		

tog	Software can read this bit and toggle it by writing 1. Writing 0 has no effect on this bit.
rwt	Software can read this bit. Writing any value will trigger an event.
resd	Reserved

1.3 Device characteristics information

Table 1-5 Base address and reset value of registers

Register abbr.	Base address	Reset value
F_SIZE	0x1FFF F7E0	0xXXXX
UID[31:0]	0x1FFF F7E8	0xXXXX XXXX
UID[63:32]	0x1FFF F7EC	0xXXXX XXXX
UID[95:64]	0x1FFF F7F0	0xXXXX XXXX

1.3.1 Flash memory size register

This register contains the information about Flash memory size.

Bit	Abbr.	Reset value	Туре	Description
Bit 15:0	F_SIZE	0xXXXX	ro	Flash size, in terms of Kbyte
				For example, 0x0040 = 64 Kbytes

1.3.2 Device electronic signature

The device electronic signature contains the memory size and the unique device ID (96 bits). It is stored in the information block of the Flash memory. The 96-bit ID is unique for any device, and cannot be altered by users. It can be used for the following:

- Serial number, such as USB string serial number
- Part of security keys

Bit	Abbr.	Reset value Type	Description
Bit 31:0	UID[31:0]	0xXXXX XXXX ro	UID for bit31 to bit0
Bit	Abbr.	Reset value Type	Description
Bit 31:0	UID[63:32]	0xXXXX XXXX ro	UID for bit63 to bit32
Bit	Abbr.	Reset value Type	Description
Bit 31:0	UID[95:64]	0xXXXX XXXX ro	UID for bit95 to bit64

Note: UID[95:88] is Series ID, which is 0x13h for AT32F405 and 0x14h for AT32F402.

2 Memory resources

2.1 Internal memory address map

Internal memory contains program memory (Flash), data memory (SRAM), peripheral registers and core registers. Their respective address mapping are shown in Figure 2-1.

Figure 2-1 AT32F402/405 address mapping 0xFFFF_FFFF Reserved 0xE010_0000 0xE00F_FFFF Cortex-M4 Internal 0x1FFF_FFFF Peripherals Reserved 0xE000 0000 0x1FFF_FA00 0xDFFF_FFFF Reserved 0x1FFF_F9FF 0xA000_1400 User system data 0xA000_13FF QSPI1 Register 0x1FFF F800 0xA000_1000 0x1FFF_F3FF 0xA000_0FFF Boot memory Reserved 0x1FFF A400 0xA000_0000 0x1FFF_A3FF 0x9FFF_FFFF QSPI1 Data 0x9000_0000 0x8FFF_FFFF Reserved 0x6000_0000 Reserved 0x5FFF_FFFF Peripherals 0x4000_0000 0x3FFF_FFFF Reserved 0x8004 0000 0x2001 9800 0x2001_97FF 0x8003_FFFF **SRAM** Flash memory 0x2000 0000 0x1FFF_FFFF 0x8000 0000 Aliased to Flash or 0x07FF_FFFF system memory or Aliased to Flash or SRAM according to system memory BOOT pins according to BOOT configuration pins configuration 0x0000 0000 0x0000 0000

2.2 Flash memory

AT32F402/405 series provide up to 256 KB of on-chip Flash memory, supporting a single-cycle 32-bit read operation.

Refer to Chapter 5 for more details about Flash memory controller and register configuration.

Flash memory organization (256 KB)

The main memory contains bank 1 (256 Kbytes), including 128 sectors, 2 Kbytes per sector.

Table 2-1 Flash memory organization (256 KB)

Bank		Name	Address range
		Sector 0	0x0800 0000 – 0x0800 07FF
	Bank 1	Sector 1	0x0800 0800 – 0x0800 0FFF
		Sector 2	0x0800 1000 – 0x0800 17FF
Main memory		Sector 3	0x0800 1800 – 0x0800 1FFF
	256 KB	Sector 4	0x0800 2000 – 0x0800 27FF
		Sector 127	0x0803 F800 – 0x0803 FFFF
Information block		20 KB bootloader	0x1FFF A400 – 0x1FFF F3FF
		512 B user system data	0x1FFF F800 – 0x1FFF F9FF

Flash memory organization (128 KB)

The main memory contains bank 1 (128 Kbytes), including 128 sectors, 1 Kbyte per sector.

Table 2-2 Flash memory organization (128 KB)

Bank		Name	Address range
		Sector 0	0x0800 0000 – 0x0800 03FF
	Bank 1 128 KB	Sector 1	0x0800 0400 – 0x0800 07FF
		Sector 2	0x0800 0800 – 0x0800 0BFF
Main memory		Sector 3	0x0800 0C00 - 0x0800 0FFF
		Sector 4	0x0800 1000 – 0x0800 13FF
		Sector 127	0x0801 FC00 – 0x0801 FFFF
Information block		20 KB bootloader	0x1FFF A400 – 0x1FFF F3FF
		512 B user system data	0x1FFF F800 – 0x1FFF F9FF

2.3 SRAM memory

The AT32F402/405 series contain a 102-KB on-chip SRAM that starts at the address of 0x2000_0000. It can be accessed by bytes, half-words (16-bit) or words (32-bit).

2.4 Peripheral address map

Table 2-3 Peripheral boundary address

Bus	Boundary address	Peripherals
	0xC000 0000 - 0xFFFF FFFF	Reserved
	0xA000 1400 - 0xBFFF FFFF	Reserved
	0xA000 1000 - 0xA000 13FF	QSPI Register
	0xA000 0000 - 0xA000 0FFF	Reserved
	0x9000 0000 - 0x9FFF FFFF	QSPI1
	0x6000 0000 - 0x8FFF FFFF	Reserved
	0x5004 0000 - 0x5FFF FFFF	Reserved
	0x5000 0000 - 0x5003 FFFF	OTG_FS1
	0x4008 0000 - 0x4FFF FFFF	Reserved
	0x4004 0000 - 0x4007 FFFF	OTG_HS
	0x4002 6800 - 0x4003 FFFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
АНВ	0x4002 4000 - 0x4002 5FFF	Reserved
	0x4002 3C00 - 0x4002 3FFF	Flash memory interface (FLASH)
	0x4002 3800 - 0x4002 3BFF	Clock and reset manage (CRM)
	0x4002 3400 - 0x4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2000 - 0x4002 2FFF	Reserved
	0x4002 1C00 - 0x4002 1FFF	Reserved
	0x4002 1800 - 0x4002 1BFF	Reserved
	0x4002 1400 - 0x4002 17FF	GPIO port F
	0x4002 1000 - 0x4002 13FF	Reserved
	0x4002 0C00 - 0x4002 0FFF	GPIO port D
	0x4002 0800 - 0x4002 0BFF	GPIO port C
	0x4002 0400 - 0x4002 07FF	GPIO port B
	0x4002 0000 - 0x4002 03FF	GPIO port A
	0x4001 8000 - 0x4001 FFFF	Reserved
	0x4001 7C00 - 0x4001 7FFF	Reserved
	0x4001 7800 - 0x4001 7BFF	Reserved
APB2	0x4001 7400 - 0x4001 77FF	ACC
	0x4001 7000 - 0x4001 73FF	Reserved
	0x4001 6C00 - 0x4001 6FFF	Reserved
	0x4001 6800 - 0x4001 6BFF	Reserved

0x4001 6400 - 0x4001 67FF	Reserved
0x4001 6000 - 0x4001 63FF	I ² SF5
0x4001 5C00 - 0x4001 5FFF	Reserved
0x4001 5800 - 0x4001 5BFF	Reserved
0x4001 5400 - 0x4001 57FF	Reserved
0x4001 5000 - 0x4001 53FF	I ² SF5
0x4001 4C00 - 0x4001 4FFF	Reserved
0x4001 4800 - 0x4001 4BFF	TMR11 timer
0x4001 4400 - 0x4001 47FF	TMR10 timer
0x4001 4000 - 0x4001 43FF	TMR9 timer
0x4001 3C00 - 0x4001 3FFF	EXINT
0x4001 3800 - 0x4001 3BFF	SCFG
0x4001 3400 - 0x4001 37FF	Reserved
0x4001 3000 - 0x4001 33FF	SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF	Reserved
0x4001 2800 - 0x4001 2BFF	Reserved
0x4001 2400 - 0x4001 27FF	Reserved
0x4001 2000 - 0x4001 23FF	ADC1
0x4001 1C00 - 0x4001 1FFF	Reserved
0x4001 1800 - 0x4001 1BFF	Reserved
0x4001 1400 - 0x4001 17FF	USART6
0x4001 1000 - 0x4001 13FF	USART1
0x4001 0C00 - 0x4001 0FFF	Reserved
0x4001 0800 - 0x4001 0BFF	Reserved
0x4001 0400 - 0x4001 07FF	Reserved
0x4001 0000 - 0x4001 03FF	TMR1 timer
0x4000 8000 - 0x4000 FFFF	Reserved
0x4000 7C00 - 0x4000 7FFF	UART8
0x4000 7800 - 0x4000 7BFF	UART7
0x4000 7400 - 0x4000 77FF	Reserved
0x4000 7000 - 0x4000 73FF	Power control (PWC)
0x4000 6C00 - 0x4000 6FFF	Reserved
0x4000 6800 - 0x4000 6BFF	Reserved
0x4000 6400 - 0x4000 67FF	CAN1
0x4000 6000 - 0x4000 63FF	Reserved
0x4000 5C00 - 0x4000 5FFF	I2C3
0x4000 5800 - 0x4000 5BFF	I2C2
0x4000 5400 - 0x4000 57FF	12C1
0x4000 5000 - 0x4000 53FF	USART5
0x4000 4C00 - 0x4000 4FFF	USART4
0x4000 4800 - 0x4000 4BFF	USART3

APB1

0x4000 4400 - 0x4000 47FF	USART2
0x4000 4000 - 0x4000 43FF	Reserved
0x4000 3C00 - 0x4000 3FFF	SPI3/I2S3
0x4000 3800 - 0x4000 3BFF	SPI2/I2S2
0x4000 3400 - 0x4000 37FF	Reserved
0x4000 3000 - 0x4000 33FF	Watchdog timer (WDT)
0x4000 2C00 - 0x4000 2FFF	Window watchdog timer (WWDT)
0x4000 2800 - 0x4000 2BFF	ERTC
0x4000 2400 - 0x4000 27FF	Reserved
0x4000 2000 - 0x4000 23FF	TMR14 timer
0x4000 1C00 - 0x4000 1FFF	TMR13 timer
0x4000 1800 - 0x4000 1BFF	Reserved
0x4000 1400 - 0x4000 17FF	TMR7 timer
0x4000 1000 - 0x4000 13FF	TMR6 timer
0x4000 0C00 - 0x4000 0FFF	Reserved
0x4000 0800 - 0x4000 0BFF	TMR4 timer
0x4000 0400 - 0x4000 07FF	TMR3 timer
0x4000 0000 - 0x4000 03FF	TMR2 timer
·	

3 Power control (PWC)

3.1 Introduction

For AT32F402/405 series, the operating voltage supply is $2.4 \text{ V} \sim 3.6 \text{ V}$, with an operating temperature range of -40~+105 °C. To reduce power consumption, this series provides three types of power saving modes, including Sleep, Deepsleep and Standby modes so as to achieve the best tradeoff among the conflicting demands of CPU operating time, speed and power consumption. The AT32F402/405 series have two power domains, including VDD/VDDA domain and 1.2 V domain. The VDD/VDDA domain is supplied directly by external power, and the 1.2 V domain is powered by an embedded LDO in the VDD/VDDA domain.

Figure 3-1 Block diagram of each power supply VDD Power domain 1.2v Power domain I/O Ring WTD LICK Digital Memory Peripherals sleeping Wake Up Logic CPU deepsleep PLL V_{DD} POR PVM LDO HICK VDD Power domain **LEXT** RTC POR_BPD **BPR** CRM BPDC Registers Register VDDA Power domain (Vss) VssA ADC

3.2 Main features

(VDD) VDDA

(V_{DDA}) V_{REF+}

(VSSA) VREF-

- Two power domains: VDD/VDDA domain and 1.2 V domain
- Three types of power saving modes: Sleep mode, Deepsleep mode and Standby mode
- Internal voltage regulator supplies 1.2 V voltage source for the core domain
- Power voltage detector is provided to issue an interrupt or event when the supply voltage is lower or higher than the programmed threshold

Temp

Sensor

VDD/VDDA applies separated digital and analog module to reduce noise on external power

3.3 POR/LVR

A POR analog module embedded in the VDD/VDDA domain is used to generate a power reset. The power reset signal is released at V_{POR} when the VDD is increased from 0 V to the operating voltage, or it is triggered at V_{LVR} when the VDD drops from the operating voltage to 0 V. During the power-on reset period, the reset signal has certain amount of time delay compared to VDD boost process. At the same time, hysteresis occurs in power-on reset (POR) and low voltage reset (LVR).

Figure 3-2 Power-on/Low voltage reset waveform

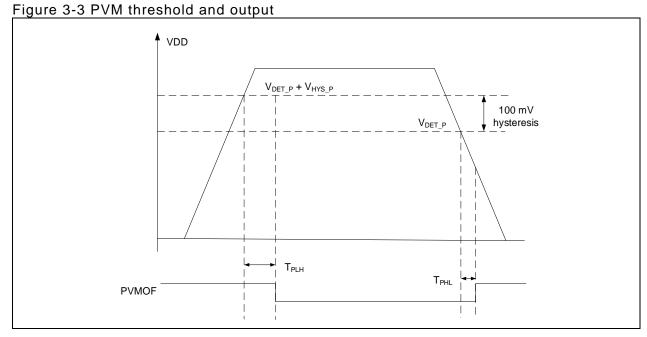
VPOR

VPOR

VPOR

VEX.

VEX.


Temporization tRESTTEMPO

Reset

3.4 Power voltage monitor (PVM)

The PVM is used to monitor the power supply variations. It is enabled by setting the PVMEN bit in the power control register (PWC_CTRL), and the threshold value for voltage monitor is selected with the PVMSEL[2:0].

After PVM is enabled, the comparison result between VDD and the programmed threshold is indicated by the PVMOF bit in the PWC_CTRLSTS register, with the hysteresis voltage VHYS_P being 100 mv. The PVM interrupt will be generated through EXINT line 16 when VDD rises above the PVM threshold.

2023.08.31 Page 49 Rev 2.00

3.5 Power domain

1.2 V domain

The 1.2 V core domain includes a CPU core, SRAM, embedded digital peripherals and Phase Locked Loop (PLL). Such power domain is supplied by LDO (voltage regulator).

VDD/VDDA domain

VDD/VDDA domain includes VDD domain and VDDA domain. The VDD domain contains I/O circuit, power-saving mode wakeup circuit, watchdog timer (WDT), power-on reset/low voltage reset (POR/LVR), LDO, ERTC circuit, LEXT and all PAD circuits. The VDDA domain contains ADC (AD converter), temperature sensor and so on.

Typically, to ensure a better accuracy of ADC at a low voltage, the digital circuit is supplied by VDD while the analog circuit is supplied by VDDA. On 64-pin packages and packages with less pins, the external reference voltage VREF+ and VREF- are connected to VDDA pin and VSSA pin, respectively.

In Run Mode, the LDO supplies full power to the 1.2 V core domain and outputs 1.2 V voltage, by default. The LDO output voltage is selected through the PWC_LDOOV register. The maximum operating frequency for the system depends on the selected output voltage. Refer to *AT32F402/405 Series Datasheet* for details. The LDO output voltage is changeable only when the HEXT or HICK is used as system clock.

LDO output voltage regulation

- 1) Select HICK or HEXT as system clock;
- 2) Change LDO voltage (LDOOVSEL[1:0]);
- 3) Set the FLASH_PSR register;
- 4) Set the targeted frequency for PLL-related registers, enable PLL, and wait for PLL_STBL;
- 5) Set pre-division factors for AHB and APB;
- 6) Enable auto step-by-step frequency switch function when PLL frequency is greater than 108 MHz;
- 7) Switch the system clock to PLL.

3.6 Power saving modes

When the CPU does not need to be kept running, there are three types of low-power modes available (Sleep mode, Deepsleep mode and Standby mode) to save power. Users can select the mode that gives the best compromise according to the low-power consumption, short startup time and available wakeup sources. In addition, the power consumption in Run mode can be reduced by slowing down the system clocks or gating the clocks to the APB and AHB peripherals when they are not used.

Sleep mode

The Sleep mode is entered by executing WFI or WFE instruction. There are two options to select the Sleep mode entry mechanism through the SLEEPONEXIT bit in the Cortex®-M4F system control register. SLEEP-NOW mode:

When SLEEPDEEP=0 and SLEEPONEXIT=0, the MCU enters Sleep mode as soon as WFI or WFE instruction is executed.

SLEEP-ON-EXIT mode:

When SLEEPDEEP=0 and SLEEPONEXIT=1, by executing the WFI instruction, the MCU enters Sleep mode as soon as the system exits the lowest-priority interrupt service routine.

In Sleep mode, all clocks and LDO work normally except CPU clocks (stopped), and all I/O pins keep the same state as in Run mode. The LDO provides power (for CPU core, memory and embedded peripherals) as it is in normal power consumption mode.

- 1) If the WFI is executed to enter Sleep mode, any peripheral interrupt can wake up the device from Sleep mode.
- 2) If the WFE is executed to enter Sleep mode, the MCU exits Sleep mode as soon as an event occurs. The wakeup event can be generated by the following:

- Enabling a peripheral interrupt (it is not enabled in the NVIC) and enabling the SEVONPEND bit.
 When the MCU resumes, the peripheral interrupt pending bit and NVIC channel pending bit must be cleared.
- Configuring an internal EXINT line as an event mode to generate a wakeup event.
- The wakeup time required by a WFE instruction is the shortest, since no time is wasted on interrupt entry/exit.

Deepsleep mode

Deepsleep mode is entered by setting the SLEEPDEEP bit in the Cortex®-M4F system control register and clearing the LPSEL bit in the PWC_CTRL register before executing WFI or WFE instructions.

The LDO status is selected by setting the VRSEL bit in the power control register (PWC_CTRL). When VRSEL=0, the LDO works in normal mode. When VRSEL=1, the LDO is set in low-power consumption mode.

In addition, in Deepsleep mode, with VRSEL=1 and LDO in low-power mode, the system power consumption can be further reduced by setting the VREXLPEN bit.

In Deepsleep mode, all clocks in 1.2 V domain are stopped, and both HICK and HEXT oscillators are disabled. The LDO supplies power to the 1.2 V domain in normal mode or low-power mode. All I/O pins keep the same state as in Run mode. SRAM and register contents are preserved.

- 1) If the WFI is executed to enter Deepsleep mode, the interrupt generated on any external interrupt line in Interrupt mode can wake up the system from Deepsleep mode.
- 2) If the WFE is executed to enter Deepsleep mode, the event generated on any external interrupt line in Event mode can wake up the system from Deepsleep mode.

When the MCU exits the Deepsleep mode, the HICK RC oscillator is enabled and selected a system clock after stabilization. When the LDO operates in low-power mode, an additional wakeup delay is incurred for the reason that the LDO must be stabilized before the system is waken from the Deepsleep mode.

Low-power Deepsleep LDO voltage regulation process (note that Sleep and Standby modes have no such limits)

- 1) Select HICK as system clock
- 2) Change LDO voltage to 1.0 V by setting the LDOOVSEL[1:0] bit
- 3) Set the LDO in low-power mode by setting the VRSEL bit
- 4) System enters Deepsleep state
- 5) System exits Deepsleep state (if wakeup conditions are met)
- 6) Change LDO voltage by setting the LDOOVSEL[1:0] bit
- 7) Set the FLASH PSR register
- 8) If the HEXT is used as PLL clock source, enable HEXT and wait for HEXTSTBL
- 9) Set the targeted frequency for PLL-related registers
- 10) Enable PLL and wait for PLL STBL
- 11) Set pre-division factors for AHB and APB
- 12) Enable auto step-by-step frequency switch function when PLL frequency is greater than 108 MHz
- 13) Switch system clock to PLL

Note: If the clock, after low-power mode is waken up, needs to keep the same state as in low-power mode, the above-mentioned steps 3/9/11 can be ignored.

Standby mode

Standby mode can achieve the lowest power consumption for the device. In this mode, the LDO is disabled. The whole 1.2 V domain, PLL, HICK and HEXT oscillators are also powered off. SRAM and register contents are lost. Only registers in the battery powered domain and standby circuitry remain supplied.

The Standby mode is entered by the following procedures:

- Set the SLEEPDEEP bit in the Cortex®-M4F system control register
- Set the LPSEL bit in the PWC_CTRL register
- Clear the SWEF bit in the PWC CTRLSTS register
- Execute a WFI or WFE instruction

In Standby mode, all I/O pins remain in a high-impedance state except reset pins, TAMPER pins that set as anti-tamper or calibration output, and the wakeup pins enabled.

The MCU exits the Standby mode when a rising edge on the WKUP pin, a rising edge of an ERTC alarm event, an ERTC tamper event, ERTC timestamp, ERTC periodic automatic wakeup, an external reset (NRST pin) or a WDT reset occurs.

Debug mode

By default, the debug connection is lost if the MCU enters Deepsleep mode or Standby mode while debugging. The reason is that the Cortex[®]-M4F is no longer clocked. However, the software can be debugged even in the low-power mode by setting some configuration bits in the DEBUG control register (DEBUG CTRL).

3.7 PWC registers

These peripheral registers can be accessed by half-words (16 bits) or words (32 bits).

Table 3-1 PWC register map and reset values

Register abbr.	Offset	Reset value
PWC_CTRL	0x00	0x0000 0000
PWC_CTRLSTS	0x04	0x0000 0000
PWC_LDOOV	0x10	0x0000 0012

3.7.1 Power control register (PWC_CTRL)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:9	Reserved	0x000000	resd	Kept at its default value.
				Battery powered domain write enable
				0: Disabled
Bit 8	BPWEN	0x0	rw	1: Enabled
Dit 0	DI WEN	0.00	I VV	Note:
				After reset, the battery powered domain write access is disabled. To write, this bit must be set.
				Power voltage monitoring boundary select
				000: Unused, not configurable
				001: 2.3 V
				010: 2.4 V
Bit 7:5	PVMSEL	0x0	rw	011: 2.5 V
				100: 2.6 V
				101: 2.7 V
				110: 2.8 V
				111: 2.9 V
				Power voltage monitoring enable
Bit 4	PVMEN	0x0	rw	0: Disabled
				1: Enabled
				Clear SEF flag
				0: No effect
Bit 3	CLSEF	0x0	WO	1: Clear the SEF flag
				Note: This bit is cleared by hardware after clearing the SEF flag. Reading this bit at any time will return all zero.
				Clear SWEF flag
				0: No effect
Bit 2	CLSWEF	0x0	wo	1: Clear the SWEF flag
				Note:
				Clear the SWEF flag after two system clock cycles.

				This bit is cleared by hardware after clearing the SWEF flag. Reading this bit at any time will return all zero.
			Low-power mode select when Cortex®-M4F is in Deepsleep mode	
Bit 1	LPSEL	0x0	rw	0: Enter Deepsleep mode
				1: Enter Standby mode
				LDO state select in Deepsleep mode
Bit 0	VRSEL	RSEL 0x0	rw	0: Enabled
		1: Low-power consumption mode		

3.7.2 Power control/status register (PWC_CTRLSTS)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:14	Reserved	0x000000	resd	Kept at its default value.
				Standby wake-up pin6 enable
Dit 40	CMDENC	0.0		0: Disabled (this pin can be used as a general-purpose I/O)
Bit 13	SWPEN6	0x0	rw	1: Enabled (this pin is forced in input pull-down mode, and no longer used as a general-purpose I/O)
				Note: This bit is cleared by hardware after system reset.
Bit 12:10	Reserved	0x0	resd	Kept at its default value.
				Standby wake-up pin2 enable
D:4 0	OMPENO	0.0		0: Disabled (this pin can be used as a general-purpose I/O)
Bit 9	SWPEN2	0x0	rw	1: Enabled (this pin is forced in input pull-down mode, and no longer used as a general-purpose I/O)
				Note: This bit is cleared by hardware after system reset.
				Standby wake-up pin1 enable
D:1 0	OM/DENIA	0.0		0: Disabled (this pin can be used as a general-purpose I/O)
Bit 8	SWPEN1	0x0 ı	rw	1: Enabled (this pin is forced in input pull-down mode, and no longer used as a general-purpose I/O)
				Note: This bit is cleared by hardware after system reset.
Bit 7:3	Reserved	0x00	resd	Kept at its default value.
				Power voltage monitoring output flag
				0: Power voltage is higher than the threshold
Bit 2	PVMOF	0x0	ro	1: Power voltage is lower than the threshold
				Note: The power voltage monitoring is stopped in Standby mode.
				Standby mode entry flag
				0: Device is not in Standby mode
Bit 1	SEF	0x0	ro	1: Device is in Standby mode
				Note: This bit is set by hardware (enter Standby mode) and cleared by POR/LVR or by setting the CLSEF bit.
				Standby wake-up event flag
				0: No wakeup event occurred
				1: A wakeup event occurred
D:1 0	0)4/55	0.0		Note:
Bit 0	SWEF	VEF 0x0 ro	ro	This bit is set by hardware (on a wakeup event) and is cleared by POR/LVR or by setting the CLSWEF bit.
				A wakeup event is generated by one of the following: - When the rising edge on the Standby wakeup pin
				occurs;

2023.08.31 Page 53 Rev 2.00

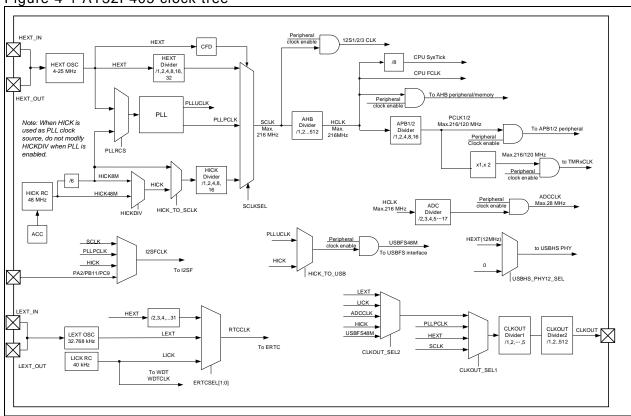
When the ERTC alarm event occurs;

 If the Standby wakeup pin is enabled when the Standby wakeup pin level is high.

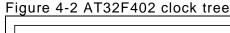
3.7.3 LDO output voltage select register (PWC_LDOOV)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:5	Reserved	0x0000000	resd	Kept at its default value.
				Voltage regulator extra low power mode enable
-			This bit works together with the LPSEL and VRSEL bits in the PWC_CTRL register, and it is valid when VRSEL = 1 and the chip enters Deepsleep mode.	
Bit 4	VREXLPEN	REXLPEN 0x1 rw 0: Disabled	0: Disabled	
				1: Enabled
				Note: To enable extra low power mode, set the VREXLPEN bit before setting LPSEL and VRSEL bits.
Bit 3:2	Reserved	0x0	resd	Kept at its default value.
				Voltage regulator output voltage select
Bit 1:0	LDOOVSEL 0x02 n	rw	00: 1.0 V 01: Reserved 10: 1.2 V	
				11: 1.3 V

2023.08.31 Page 55 Rev 2.00



4 Clock and reset manage (CRM)


4.1 Clock

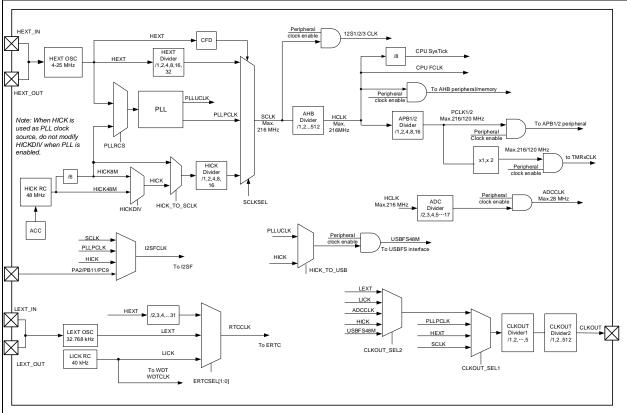

AT32F402/405 series provide different clock sources, including HEXT oscillator clock, HICK oscillator clock, PLL clock, LEXT oscillator clock and LICK oscillator clock.

Figure 4-1 AT32F405 clock tree

HEXT: High speed external crystal LEXT: Low speed external crystal HICK: High speed internal clock LICK: Low speed internal clock

AHB, APB2 and APB1 all support multiple frequency divisions. The AHB domain has a maximum frequency of 216 MHz, APB1 domain is up to 120 MHz, and APB2 is up to 216 MHz.

4.1.1 Clock sources

High-speed external oscillator (HEXT)

The HEXT includes two clock sources: crystal/ceramic resonator and bypass clock.

The HEXT crystal/ceramic resonator is connected externally to a 4~25 MHz HEXT crystal that produces a highly accurate clock for the system. The HEXT clock signal is not released until it becomes stable.

An external clock source can be provided by HEXT bypass. Its frequency can be up to 25 MHz. The external clock signal should be connected to the HEXT IN pin while the HEXT OUT pin should be released for GPIO control.

High-speed internal clock (HICK)

The HICK oscillator is clocked by a high-speed RC in the microcontroller. The internal frequency of the HICK clock is 48 MHz. Although it is less accurate, its startup time is shorter than the HEXT crystal oscillator. The HICK clock frequency of each device is calibrated by ARTERY to 1% accuracy (TA=25°C) in factory. The factory-trimmed value is loaded into the HICKCAL[7:0] bit of the clock control register. The RC oscillator speed may be affected by voltage or temperature variations. Thus the HICK frequency can be trimmed by setting the HICKTRIM[5:0] bit in the clock control register.

The HICK clock signal is not released until it becomes stable.

PLL clock

The HICK or HEXT clock can be used as an input clock source of the PLL. The PLL input clock, after being divided by a pre-divider internally, is sent to the VCO for frequency multiplication, and the VCO output frequency is output after being divided by a post-divider. At the same time, the clock after predivider must remain between 2 MHz and 16 MHz, and the VCO operating frequency must be kept between 500 MHz and 1000 MHz. The PLL must be configured before being enabled. The reason is that

the configuration parameters cannot be changed once the PLL is enabled. The PLL clock signal is not released until it becomes stable.

PLL formula:

PLL output clock = PLL input clock x PLL frequency multiplication factor / (PLL pre-divider factor x PLL post-divider factor)

500 MHz <= PLL input clock x PLL frequency multiplication factor / PLL pre-divider factor <= 1000 MHz 2 MHz <= PLL input clock / PLL pre-divider factor <= 16 MHz

For example, when the PLL input clock is 25 MHz, the PLL output frequency = $25 \times 160 / (5 \times 4) = 200 \text{ MHz}$.

Low-speed external oscillator (LEXT)

The LEXT oscillator provides two clock sources: LEXT crystal/ceramic resonator and LEXT bypass.

LEXT crystal/ceramic resonator:

The LEXT crystal/ceramic resonator provides a low-power and accurate 32.768 KHz low-speed clock source. The LEXT clock signal is not released until it becomes stable.

LEXT bypass clock

In LEXT bypass mode, an external clock source with a frequency of 32.768 KHz can be provided. The external clock signal should be connected to the LEXT_IN pin, and the LEXT_OUT pin should be released for GPIO control.

Low-speed internal RC oscillator (LICK)

The LICK oscillator is clocked by an internal low-speed RC oscillator. The clock frequency is between 30 KHz and 60 KHz. It acts as a clock source that can be kept running in Deepsleep mode and Standby mode for watchdog and auto wakeup unit.

The LICK clock signal is not released until it becomes stable.

4.1.2 System clock

After a system reset, the HICK oscillator is selected as system clock. The system clock can make flexible switch among HICK oscillator, HEXT oscillator and PLL clock. However, a switch from one clock source to another occurs only if the target clock source becomes stable. When the HICK oscillator is used directly or indirectly through the PLL as the system clock, it cannot be stopped.

4.1.3 Peripheral clock

Most peripherals use HCLK, PCLK1 or PCLK2 clock. The individual peripherals have their dedicated clocks.

System Tick timer (SysTick) is clocked by HCLK or HCLK/8.

ADC is clocked by HCLK divided by 2, 3, 4, 5...17.

The timers are clocked by APB1/2. In particular, if the APB prescaler is 1, the timer clock frequency is equal to that of APB1/2; otherwise, the timer clock frequency doubles that of the APB1/2 frequency.

The USB clock source can be switched between HICK and PLLU. If the HICK is selected as a cock source, it should be set as 48 MHz. If the PLLU is selected as a clock source, it should be configured as 48 MHz clock output.

ERTC clock source: divided HEXT oscillator, LEXT oscillator and LICK oscillator. Once the clock source is selected, it cannot be altered unless a reset of battery powered domain is performed. If the LEXT is used as an ERTC clock, the ERTC is not affected when the VDD is powered off. If the HEXT or LICK is selected as an ERTC clock, the ERTC state is not guaranteed when both HEXT and LICK are powered off.

Watchdog is clocked by LICK oscillator. If the watchdog is enabled by either hardware option or software access, the LICK oscillator is forced ON. The clock is provided to the watchdog only after the LICK oscillator temporization.

4.1.4 Clock fail detector

The clock fail detector (CFD) is designed to respond to HEXT clock failure when the HEXT is used as the system clock, directly or indirectly. If a failure is detected on the HEXT clock, a clock failure event is sent to the break input of TMR1/9/10/11/12/13/14 and a CFD interrupt is generated. This interrupt is

directly linked to CPU NMI so that the software can perform rescue operations. The NMI interrupt keeps executing until the CFD interrupt pending bit is cleared. This is way the CFD interrupt has to be cleared in the NMI service routine. The HEXT clock failure will result in a switch of the system clock to the HICK clock, the CFD to be disabled, HEXT clock to be stopped, and even PLL to be disabled if the HEXT is selected as system clock through PLL.

4.1.5 Auto step-by-step system clock switch

The automatic frequency switch is designed to ensure a smooth and stable switch of system frequency when the system clock source is switched from others to the PLL or when the AHB prescaler factor is changed from large to small. When the operational target is larger than 108 MHz, it is recommended to enable the automatic frequency switch. Once it is enabled, the AHB bus is halted by hardware till the completion of the switch. During this switch period, the DMA remain working, and the interrupt events are recorded and then handled by NVIC when the AHB bus resumes.

4.1.6 Internal clock output

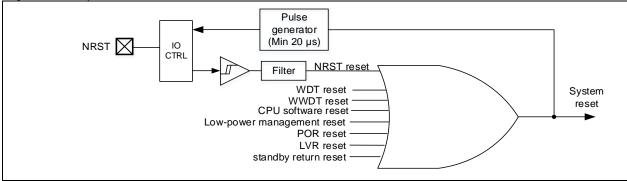
The microcontroller allows the internal clock signal to be output to external CLKOUT pin. That is, ADCCLK, USBFS48M, SCLK, LICK, LEXT, HICK, HEXT and PLLCLK can be used as CLKOUT clock. When being used as the CLKOUT clock output pin, the corresponding GPIO port registers must be configured accordingly.

4.1.7 Interrupts

The microcontroller specifies a stable flag for each clock source. As a result, when a clock source is enabled, it is possible to determine if the clock is stable by checking the flag pertaining to the clock source. An interrupt request is generated when the interrupt corresponding to the clock source is enabled.

If a failure is detected on the HEXT clock, the CFD interrupt is generated. Such interrupt is directly linked to CPU NMI.

4.2 Reset


4.2.1 System reset

AT32F402/405 series provide the following system reset sources:

- NRST reset: on the external NRST pin
- WDT reset: watchdog overflow
- WWDT reset: window watchdog overflow
- CPU software reset: Cortex®-M4F software reset
- Low-power management reset: This type of reset is enabled when entering Standby mode (by clearing the nSTDBY_RST bit in the user system data area), or it is enabled when entering Deepsleep mode (by clearing the nDEPSLP_RST bit in the user system data area)
- POR reset: power-on reset
- LVR reset: low voltage reset
- When exiting Standby mode

NRST reset, WDT reset, WWDT reset, software reset and low-power management reset sets all registers to their reset values except the clock control/status register (CRM_CTRLSTS) and battery powered domain registers. The power-on reset, low voltage reset or reset generated when exiting Standby mode sets all registers to their reset values except the battery powered domain registers.

Figure 4-3 System reset circuit

4.2.2 Battery powered domain reset

Battery powered domain has two specific reset sources:

- Software reset: triggered by setting the BPDRST bit in the battery powered domain control register (CRM_BPDC)
- VDD power on, if it has been powered off

Software reset affects only the battery powered domain.

4.3 CRM registers

These peripheral registers can be accessed by bytes (8 bits), half-words (16 bits) and words (32 bits).

Table 4-1 CRM register map and reset values

Register abbr.	Offset	Reset value
CRM_CTRL	0x000	0x0000 XX83
CRM_PLLCFG	0x004	0x0000 07C1
CRM_CFG	0x008	0x4000 0000
CRM_CLKINT	0x00C	0x0000 0000
CRM_AHBRST1	0x010	0x0000 0000
CRM_AHBRST2	0x014	0x0000 0000
CRM_AHBRST3	0x018	0x0000 0000
CRM_APB1RST	0x020	0x0000 0000
CRM_APB2RST	0x024	0x0000 0000
CRM_AHBEN1	0x030	0x0000 0000
CRM_AHBEN2	0x034	0x0000 0000
CRM_AHBEN3	0x038	0x0000 0000
CRM_APB1EN	0x040	0x0000 0000
CRM_APB2EN	0x044	0x0000 0000
CRM_AHBLPEN1	0x050	0x6141 902F
CRM_AHBLPEN2	0x054	0x0000 0080
CRM_AHBLPEN3	0x058	0x0000 0002
CRM_APB1LPEN	0x060	0xD2FE C9B7
CRM_APB2LPEN	0x064	0xA017 5131
CRM_BPDC	0x070	0x0000 0000
CRM_CTRLSTS	0x074	0x0C00 0000
CRM_OTGHS	0x078	0x0100 0000
CRM_MISC1	0x0A0	0x000F 0000
CRM_MISC2	0x0A4	0x4000 000D

4.3.1 Clock control register (CRM_CTRL)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Туре	Description
Bit 31:27	Reserved	0x00	resd	Kept at its default value.
Bit 26	PLLUSTBL	0x0	ro	PLLU clock stable This bit is set by hardware after PLLU is ready. 0: PLLU clock is not ready 1: PLLU clock is ready

Bit 25	PLLSTBL	0x0	ro	PLL clock stable This bit is set by hardware after PLL is ready. 0: PLL is not ready 1: PLL is ready
Bit 24	PLLEN	0x0	rw	PLL enable This bit is set and cleared by software. It can also be cleared by hardware when entering Standby or Deepsleep mode. When the PLL clock is used as system clock, this bit cannot be cleared. 0: PLL is disabled 1: PLL is enabled
Bit 23:20	Reserved	0x0	resd	Kept at its default value.
Bit 19	CFDEN	0x0	rw	Clock fail detector enable 0: Disabled 1: Enabled
Bit 18	HEXTBYPS	0x0	rw	High-speed external crystal bypass This bit can be set only if the HEXT is disabled. 0: Disabled 1: Enabled
Bit 17	HEXTSTBL	0x0	ro	High-speed external crystal stable This bit is set be hardware after HEXT becomes stable. 0: HEXT is not ready 1: HEXT is ready
Bit 16	HEXTEN	0x0	rw	High-speed external crystal enable This bit is set and cleared by software. It can also be cleared by hardware when entering Standby or Deepsleep mode. When the HEXT clock is used as system clock, this bit cannot be cleared 0: Disabled 1: Enabled
Bit 15:8	HICKCAL	0xXX	rw	High-speed internal clock calibration The default value of this field is the initial factory calibration value. When the HICK output frequency is 48 MHz, it needs adjust 240 KHz (design value) based on this frequency for each HICKCAL value change. When HICK output frequency is 8 MHz, it needs adjust 40 KHz (design value) based on this frequency for each HICKCAL value change. Note: This bit can be written only if the HICKCAL_KEY[7:0] is set as 0x5A.
Bit 7:2	HICKTRIM	0x20	rw	High-speed internal clock trimming These bits work with the HICKCAL[7:0] to determine the HICK oscillator frequency. The default value is 32, which can trim the HICK to be ±1%.
Bit 1	HICKSTBL	0x1	ro	High-speed internal clock stable This bit is set by hardware after HICK is ready. 0: HICK is not ready 1: HICK is ready
Bit 0	HICKEN	0x1	rw	High-speed internal clock enable This bit is set and cleared by software. It can also be cleared by hardware when entering Standby or Deepsleep mode. When a HEXT clock failure occurs, this bit can also be set. When the HICK clock is used as system clock, this bit cannot be cleared 0: Disabled 1: Enabled

2023.08.31 Page 61 Rev 2.00

4.3.2 PLL clock configuration register (CRM_PLLCFG)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31	Reserved	0x0	resd	Kept at its reset value.
Bit 30	PLLRCS	0x0	rw	PLL reference clock select The PLL reference clock source is selected by setting "1" or clearing this bit by software. This bit can be written only when the PLL is disabled. 0: HICK is used as PLL reference clock 1: HEXT is used as PLL reference clock
Bit 29	PLLU_EN	0x0	rw	PLLU enable This bit is set and cleared by software. It can also be cleared by hardware when entering Standby or Deepsleep mode. 0: Disabled 1: Enabled
Bit 28:23	Reserved	0x0	resd	Kept at its reset value.
Bit 22:20	PLL_FU	0x0	rw	PLLU post-division PLL_FU range (0~7) This bit cannot be set when PLL is enabled. 000: PLLU post-division=11 001: PLLU post-division=13 010: PLLU post-division=12 011: PLLU post-division=14 100: PLLU post-division=16 101: PLLU post-division=18 110: PLLU post-division=20 111: PLLU post-division=11 Note to the correlation between the PLL_FR value and post-division factor.
Bit 19:16	PLL_FP	0x0	rw	PLLP post-division PLL_FP range (0~15) This bit cannot be set when PLL is enabled. 0000: PLLP post-division=1 0001: PLLP post-division=2 0010: PLLP post-division=4 0011: PLLP post-division=6 0100: PLLP post-division=8 0101: PLLP post-division=10 0110: PLLP post-division=12 0111: PLLP post-division=12 0111: PLLP post-division=14 1000: PLLP post-division=16 1001: PLLP post-division=18 1010: PLLP post-division=20 1011: PLLP post-division=22 1100: PLLP post-division=22 1101: PLLP post-division=24 1101: PLLP post-division=28 1111: PLLP post-division=30 Note to the correlation between the PLL_FR value and post-division factor.
Bit 15	Reserved	0x0	resd	Kept at its reset value.

2023.08.31 Page 62 Rev 2.00

Bit 14:6	PLL_NS	0x01F	rw	PLL multiplication factor PLL_NS range (31~500) This bit cannot be set when PLLEN is enabled. 000000000 ~ 000011110: Forbidden 000011111: 31 000100000: 32 000100001: 33
				 111110011: 499
				111110100: 500
				111110101~111111111: Forbidden
Bit 5:4	Reserved	0x0	resd	Kept at its reset value.
Bit 3:0	PLL_MS	0x1	rw	PLL pre-division PLL_MS range (1~15) This bit cannot be set when PLLEN is enabled. 0000: Forbidden 0001: 1 0010: 2 0011: 3
				 1110: 14 1111: 15

Note: PLL clock formulas:

PLLP output clock = PLL input clock x PLL frequency multiplication factor / (PLL pre-divider factor x PLL_FP post-divider factor)

PLLU output clock = PLL input clock x PLL frequency multiplication factor / (PLL pre-divider factor x PLL_FU post-divider factor)

500 MHz <= PLL input clock x PLL frequency multiplication factor / PLL predivider factor <= 1000 MHz

2 MHz <= PLL input clock / PLL pre-divider factor <= 16 MHz

4.3.3 Clock configuration register (CRM_CFG)

Access: 0 to 2 wait states, accessible by words, half-words and bytes; 1 or 2 wait states are inserted only when the access occurs during a clock source switch.

Bit	Abbr.	Reset value	Type	Description
Bit 31:30	CLKOUT_SEL1	0x1	rw	Clock output selection 1 This bit is set and cleared by software. 00: System clock (SCLK) output 01: Secondary clock output, selected by the CLKOUT_SEL2 bit in the CRM_MISC1 register 10: External oscillator clock (HEXT) output 11: PLL clock output Note: This clock output may be cut off during the startup and switch of CLKOUT clock source. While being used as an output to CLKOUT pin, the system clock output must be no more than 50 MHz (the maximum frequency of an I/O port).
Bit 29:27	CLKOUTDIV1	0x0	rw	Clock output division1 0xx: CLKOUT 100: CLKOUT/2 101: CLKOUT/3 110: CLKOUT/4 111: CLKOUT/5
Bit 26:24	Reserved	0x0	resd	Kept at its default value.
Bit 23:22	I2SF5CLKSEL	0x0	resd	I2SF5 clock source selection 00: System Clock 01: PLL

				10: HICK 11: External input clock
Bit 21	Reserved	0x0	resd	Kept at its default value.
Bit 20:16	ERTCDIV	0x00	rw	HEXT division for ERTC clock This field is set and cleared by software to divide the HEXT for ERTC clock. These bits must be configured before selecting the ERTC clock source. 00000: Forbidden 00001: Forbidden 00010: HEXT/2 00011: HEXT/3 00100: HEXT/4
				 11110: HEXT/30 11111: HEXT/31
Bit 15:13	APB2DIV	0x0	rw	APB2 division The divided HCLK is used as APB2 clock. 0xx: Not divided 100: HCLK/2 101: HCLK/4 110: HCLK/8 111: HCLK/16
Bit 12:10	APB1DIV	0x0	rw	APB1 division The divided HCLK is used as APB1 clock. 0xx: Not divided 100: HCLK/2 101: HCLK/4 110: HCLK/8 111: HCLK/16
Bit 9:8	Reserved	0x0	resd	Kept at its default value.
Bit 7:4	AHBDIV	0x0	rw	AHB division 0xxx: SCLK not divided 1000:SCLK/2 1100:SCLK/64 1001:SCLK/4 1101:SCLK/128 1010:SCLK/8 1110:SCLK/256 1011:SCLK/16 1111:SCLK/512
Bit 3:2	SCLKSTS	0x0	ro	System clock select status 00: HICK 01: HEXT 10: PLL 11: Reserved. Kept at its default value.
Bit 1:0	SCLKSEL	0x0	rw	System clock select 00: HICK 01: HEXT 10: PLL 11: Reserved. Kept at its default value.

4.3.4 Clock interrupt register (CRM_CLKINT)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:24	Reserved	0x00	resd	Kept at its default value.
Bit 23	CFDFC	0x0	wo	Clock failure detection interrupt clear Writing "1" by software to clear CFDF. 0: No effect 1: Clear
Bit 22:21	Reserved	0x0	resd	Kept at its default value.
Bit 20	PLLSTBLFC	0x0	wo	PLL stable flag clear Writing "1" by software to clear PLLSTBLF. 0: No effect 1: Clear

Bit 19	HEXTSTBLFC	0x0	wo	HEXT stable flag clear Writing "1" by software to clear HEXTSTBLF. 0: No effect 1: Clear
Bit 18	HICKSTBLFC	0x0	wo	HICK stable flag clear Writing "1" by software to clear HICKSTBLF. 0: No effect 1: Clear
Bit 17	LEXTSTBLFC	0x0	wo	LEXT stable flag clear Writing "1" by software to clear LEXTSTBLF. 0: No effect 1: Clear
Bit 16	LICKSTBLFC	0x0	wo	LICK stable flag clear Writing "1" by software to clear LICKSTBLF. 0: No effect 1: Clear
Bit 15:13	Reserved	0x0	resd	Kept at its default value.
Bit 12	PLLSTBLIEN	0x0	rw	PLL stable interrupt enable 0: Disabled 1: Enabled
Bit 11	HEXTSTBLIEN	0x0	rw	HEXT stable interrupt enable 0: Disabled 1: Enabled
Bit 10	HICKSTBLIEN	0x0	rw	HICK stable interrupt enable 0: Disabled 1: Enabled
Bit 9	LEXTSTBLIEN	0x0	rw	LEXT stable interrupt enable 0: Disabled 1: Enabled
Bit 8	LICKSTBLIEN	0x0	rw	LICK stable interrupt enable 0: Disabled 1: Enabled
Bit 7	CFDF	0x0	ro	Clock failure detection flag This bit is set by hardware when the HEXT clock failure occurs. 0: No clock failure 1: Clock failure
Bit 6:5	Reserved	0x0	resd	Kept at its default value.
Bit 4	PLLSTBLF	0x0	ro	PLL stable flag This bit is set by hardware. 0: PLL is not ready 1: PLL is ready
Bit 3	HEXTSTBLF	0x0	ro	HEXT stable flag This bit is set by hardware. 0: HEXT is not ready 1: HEXT is ready
Bit 2	HICKSTBLF	0x0	ro	HICK stable flag This bit is set by hardware. 0: HICK is not ready 1: HICK is ready
Bit 1	LEXTSTBLF	0x0	ro	LEXT stable flag This bit is set by hardware. 0: LEXT is not ready 1: LEXT is ready
Bit 0	LICKSTBLF	0x0	ro	LICK stable flag This bit is set by hardware. 0: LICK is not ready 1: LICK is ready

4.3.5 AHB peripheral reset register 1 (CRM_AHBRST1)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:30	Reserved	0x0	resd	Kept at its default value.
Bit 29	OTGHSRST	0x0	rw	OTGHS reset 0: Does not reset OTGHS

				1: Reset OTGHS	
Bit 28:25	Reserved	0x0	resd	Kept at its default value.	
				DMA2 reset	
Bit 24	DMA2RST	0x0	rw	0: Does not reset DMA2	
				1: Reset DMA2	
Bit 23	Reserved	0x0	resd	Kept at its default value.	
				DMA1 reset	
Bit 22	DMA1RST	0x0	rw	0: Does not reset DMA1	
				1: Reset DMA1	
Bit 21:13	Reserved	0x000	resd	Kept at its default value.	
				CRC reset	
Bit 12	CRCRST	0x0	rw	0: Does not reset CRC	
				1: Reset CRC	
Bit 11:6	Reserved	0x00	resd	Kept at its default value.	
				IO port F reset	
Bit 5	GPIOFRST	0x0	rw	0: Does not reset IO port F	
				1: Reset IO port F	
Bit 4	Reserved	0x0	resd	Kept at its default value.	
				IO port D reset	
Bit 3	GPIODRST	0x0	rw	0: Does not reset IO port D	
				1: Reset IO port D	
				IO port C reset	
Bit 2	GPIOCRST	0x0	rw	0: Does not reset IO port C	
				1: Reset IO port C	
				IO port B reset	
Bit 1	GPIOBRST	0x0	rw	0: Does not reset IO port B	
				1: Reset IO port B	
	•			IO port A reset	
Bit 0	GPIOARST	0x0	rw	0: Does not reset IO port A	
				1: Reset IO port A	

2023.08.31 Page 66 Rev 2.00

4.3.6 AHB peripheral reset register 2 (CRM_AHBRST2)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	resd	Kept at its default value.
Bit 7	OTGFS1RST	0x0	rw	OTGFS1 reset 0: Does not reset OTGFS1 1: Reset OTGFS1
Bit 6:0	Reserved	0x00	resd	Kept at its default value.

4.3.7 AHB peripheral reset register 3 (CRM_AHBRST3)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:2	Reserved	0x00000000	resd	Kept at its default value.
Bit 1	QSPI1RST	0x0	rw	QSPI1 reset 0: Does not reset QSPI1 1: Reset QSPI1
Bit 0	Reserved	0x0	resd	Kept at its default value.

4.3.8 APB1 peripheral reset register (CRM_APB1RST)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31	UART8RST	0x0	rw	UART8 reset 0: Does not reset UART8 1: Reset UART8
Bit 30	UART7RST	0x0	rw	UART7 reset 0: Does not reset UART7 1: Reset UART7
Bit 29	Reserved	0x0	resd	Kept at its default value.
Bit 28	PWCRST	0x0	rw	Power interface reset 0: Does not reset power interface 1: Reset power interface
Bit 27:26	Reserved	0x0	resd	Kept at its default value.
Bit 25	CAN1RST	0x0	rw	CAN1 reset 0: Does not reset CAN1 1: Reset CAN1
Bit 24	Reserved	0x0	resd	Kept at its default value.
Bit 23	I2C3RST	0x0	rw	I2C3 reset 0: Does not reset I2C3 1: Reset I2C3
Bit 22	I2C2RST	0x0	rw	I2C2 reset 0: Does not reset I2C2 1: Reset I2C2
Bit 21	I2C1RST	0x0	rw	I2C1 reset 0: Does not reset I2C1 1: Reset I2C1
Bit 20	USART5RST	0x0	rw	USART5 reset 0: Does not reset USART5 1: Reset USART5
Bit 19	USART4RST	0x0	rw	USART4 reset 0: Does not reset USART4 1: Reset USART4
Bit 18	USART3RST	0x0	rw	USART3 reset This bit is set and cleared by software. 0: No effect 1: Reset USART3
Bit 17	USART2RST	0x0	rw	USART2 reset 0: Does not reset USART2 1: Reset USART2
Bit 16	Reserved	0x0	resd	Kept at its default value.
Bit 15	SPI3RST	0x0	rw	SPI3 reset 0: Does not reset SPI3 1: Reset SPI3
Bit 14	SPI2RST	0x0	rw	SPI2 reset 0: Does not reset SPI2

-				1: Reset SPI2	
Bit 13:12	Reserved	0x0	resd	Kept at its default value.	
				Window watchdog reset	
Bit 11	WWDTRST	0x0	rw	0: Does not reset window watchdog	
				1: Reset window watchdog	
Bit 10:9	Reserved	0x0	resd	Kept at its default value.	
				Timer14 reset	
Bit 7	TMR14RST	0x0	rw	0: Does not reset Timer14	
				1: Reset Timer14	
				Timer13 reset	
Bit 7	TMR13RST	0x0	rw	0: Does not reset Timer13	
				1: Reset Timer13	
Bit 6	Reserved	0x0	resd	Kept at its default value.	
				Timer7 reset	
Bit 5	TMR7RST	0x0	rw	0: Does not reset Timer7	
				1: Reset Timer7	
				Timer6 reset	
Bit 10:9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1	TMR6RST	0x0	rw	0: Does not reset Timer6	
				1: Reset Timer6	
Bit 3	Reserved	0x0	resd	Kept at its default value.	
				Timer4 reset	
Bit 2	TMR4RST	0x0	rw	0: Does not reset Timer4	
				1: Reset Timer4	
				Timer3 reset	
Bit 1	TMR3RST	0x0	rw	0: Does not reset Timer3	
				1: Reset Timer3	
				Timer2 reset	
Bit 0	TMR2RST	0x0	rw	0: Does not reset Timer2	
				1: Reset Timer2	

4.3.9 APB2 peripheral reset register (CRM_APB2RST)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Туре	Description
Bit 31:30	Reserved	0x0	resd	Kept at its default value.
Bit 29	ACCRST	0x0	rw	ACC reset 0: Does not reset ACC 1: Reset ACC
Bit 28:21	Reserved	0x00	resd	Kept at its default value.
Bit 20	I2SF5RST	0x0	rw	I2SF5 reset 0: Does not reset I2SF5 1: Reset I2SF5
Bit 19	Reserved	0x0	resd	Kept at its default value.
Bit 18	TMR11RST	0x0	rw	Timer11 reset 0: Does not reset Timer11 1: Reset Timer11
Bit 17	TMR10RST	0x0	rw	Timer10 reset 0: Does not reset Timer10 1: Reset Timer10
Bit 16	TMR9RST	0x0	rw	Timer9 reset 0: Does not reset Timer9 1: Reset Timer9
Bit 15	Reserved	0x0	resd	Kept at its default value.
Bit 14	SCFGRST	0x0	rw	SCFG reset 0: Does not reset SCFG 1: Reset SCFG
Bit 13	Reserved	0x0	resd	Kept at its default value.
Bit 12	SPI1RST	0x0	rw	SPI1 reset 0: Does not reset SPI1 1: Reset SPI1
Bit 11:9	Reserved	0x0	resd	Kept at its default value.
Bit 8	ADCRST	0x0	rw	ADC interface reset 0: Does not reset ADC interface 1: Reset ADC interface
Bit 7:6	Reserved	0x0	resd	Kept at its default value.
Bit 5	USART6RST	0x0	rw	USART6 reset

2023.08.31 Page 68 Rev 2.00

				0: Does not reset USART6	
				1: Reset USART6	
				USART1 reset	
Bit 4	USART1RST	0x0	rw	0: Does not reset USART1	
				1: Reset USART1	
Bit 3:1	Reserved	0x0	resd	Kept at its default value.	
				TMR1 reset	
Bit 0	TMR1RST	0x0	rw	0: Does not reset TMR1	
				1: Reset TMR1	

4.3.10 AHB peripheral clock enable register 1 (CRM_AHBEN1)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:30	Reserved	0x0	resd	Kept at its default value.
				OTGHS clock enable
Bit 29	OTGHSEN	0x0	rw	0: Disabled
				1: Enabled
Bit 28:25	Reserved	0x0	resd	Kept at its default value.
				DMA2 clock enable
Bit 24	DMA2EN	0x0	rw	0: Disabled
				1: Enabled
Bit 23	Reserved	0x0	resd	Kept at its default value.
				DMA1 clock enable
Bit 22	DMA1EN	0x0	rw	0: Disabled
				1: Enabled
Bit 21:13	Reserved	0x000	resd	Kept at its default value.
				CRC clock enable
Bit 12	CRCEN	0x0	rw	0: Disabled
				1: Enabled
Bit 11:6	Reserved	0x00	resd	Kept at its default value.
				IO port F clock enable
Bit 5	GPIOFEN	0x0	rw	0: Disabled
				1: Enabled
Bit 4	Reserved	0x0	resd	Kept at its default value.
				IO port D clock enable
Bit 3	GPIODEN	0x0	rw	0: Disabled
				1: Enabled
				IO port C clock enable
Bit 2	GPIOCEN	0x0	rw	0: Disabled
				1: Enabled
				IO port B clock enable
Bit 1	GPIOBEN	0x0	rw	0: Disabled
				1: Enabled
				IO port A clock enable
Bit 0	GPIOAEN	0x0	rw	0: Disabled
				1: Enabled

4.3.11 AHB peripheral clock enable register 2 (CRM_AHBEN2)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	resd	Kept at its default value.
'				OTGFS1 clock enable
Bit 7	OTGFS1EN	0x0	rw	0: Disabled
				1: Enabled
Bit 6:0	Reserved	0x00	resd	Kept at its default value.

2023.08.31 Page 69 Rev 2.00

4.3.12 AHB peripheral clock enable register 3 (CRM_AHBEN3)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:2	Reserved	0x00000000	resd	Kept at its default value.
Bit 1	QSPI1EN	0x0	rw	QSPI1 clock enable 0: Disabled 1: Enabled
Bit 0	Reserved	0x0	resd	Kept at its default value.

4.3.13 APB1 peripheral clock enable register (CRM_APB1EN)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
				UART8 clock enable
Bit 31	UART8EN	0x0	rw	0: Disabled
				1: Enabled
				UART7 clock enable
Bit 30	UART7EN	0x0	rw	0: Disabled
				1: Enabled
Bit 29	Reserved	0x0	resd	Kept at its default value.
				Power interface clock enable
Bit 28	PWCEN	0x0	rw	0: Disabled
D. 1. 2.0		O/O		1: Enabled
Bit 27:26	Reserved	0x0	resd	Kept at its default value.
		• • • • • • • • • • • • • • • • • • • •		CAN1 clock enable
Bit 25	CAN1EN	0x0	rw	0: Disabled
Bit 20	O/ II TI EIT	OXO	. **	1: Enabled
Bit 24	Reserved	0x0	resd	Kept at its default value.
<u> </u>	110001100	- OAO	1004	I2C3 clock enable
Bit 23	I2C3EN	0x0	rw	0: Disabled
Dit 20	IZOOLIV	OXO	1 44	1: Enabled
				I2C2 clock enable
Bit 22	I2C2EN	0x0	rw	0: Disabled
DIL ZZ	IZOZLIN	UNU	I VV	1: Enabled
				I2C1 clock enable
Bit 21	I2C1EN	0x0	rw	0: Disabled
DIL Z I	IZUTLIN	UXU	I VV	1: Enabled
-				USART5 clock enable
Bit 20	USART5EN	0x0	ma.	0: Disabled
DIL 20	USANTSEN	UXU	rw	
				1: Enabled USART4 clock enable
Bit 19	USART4EN	0x0	r\A/	0: Disabled
טונ ופ	USAN 14EN	UXU	rw	1: Enabled
-				USART3 clock enable
Bit 18	USART3EN	0x0	r\A/	0: Disabled
DIL TO	USAKISEN	UXU	rw	1: Enabled
-				USART2 clock enable
Bit 17	USART2EN	0x0	m.,	0: Disabled
DIL 17	USAKTZEN	UXU	rw	1: Enabled
Bit 16	Pagar (ad	0x0	rood	
DIL 10	Reserved	UXU	resd	Kept at its default value. SPI3 clock enable
Di+ 15	CDISEN	0.40	m	
Bit 15	SPI3EN	0x0	rw	0: Disabled
				1: Enabled
Bit 14	SPI2EN	0x0	r)A/	SPI2 clock enable 0: Disabled
14 ווט	SFIZEIN	UXU	rw	1: Enabled
Dit 12:12	Doggrad	0x0	rood	
Bit 13:12	Reserved	UXU	resd	Kept at its default value.
Dit 11	\^/\^/DTEN	0.40	m	Window watchdog clock enable
Bit 11	WWDTEN	0x0	rw	0: Disabled
D:4 4 0 - 0	Danamur -	0.40	l	1: Enabled
Bit 10:9	Reserved	0x0	resd	Kept at its default value.
D:4 0	TMD445N	00		Timer14 clock enable
Bit 8	TMR14EN	0x0	rw	0: Disabled
				1: Enabled

				Timer13 clock enable	
Bit 7	TMR13EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 6	Reserved	0x0	resd	Kept at its default value.	
, <u> </u>				Timer 7 clock enable	
Bit 5	TMR7EN	0x0	rw	0: Disabled	
				1: Enabled	
				Timer 6 clock enable	
Bit 4	TMR6EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 3	Reserved	0x0	resd	Kept at its default value.	
				Timer 4 clock enable	
Bit 2	TMR4EN	0x0	rw	0: Disabled	
				1: Enabled	
				Timer 3 clock enable	
Bit 1	TMR3EN	0x0	rw	0: Disabled	
				1: Enabled	
				Timer 2 clock enable	
Bit 0	TMR2EN	0x0	rw	0: Disabled	
				1: Enabled	

4.3.14 APB2 peripheral clock enable register (CRM_APB2EN)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description	
Bit 31:30	Reserved	0x00	resd	Kept at its default value.	
				ACC clock enable	
Bit 29	ACCEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 28:21	Reserved	0x00	resd	Kept at its default value.	
				I2SF5 clock enable	
Bit 20	I2SF5EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 19	Reserved	0x0	resd	Kept at its default value.	
				Timer11 clock enable	
Bit 18	TMR11EN	0x0	rw	0: Disabled	
				1: Enabled	
				Timer10 clock enable	
Bit 17	TMR10EN	0x0	rw	0: Disabled	
				1: Enabled	
				Timer9 clock enable	
Bit 16	TMR9EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 15	Reserved	0x0	resd	Kept at its default value.	
				SCFG clock enable	
Bit 14	SCFGEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 13	Reserved	0x0	resd	Kept at its default value.	
				SPI1 clock enable	
Bit 12	SPI1EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 11:9	Reserved	0x0	resd	Kept at its default value.	
				ADC1 interface clock enable	
Bit 8	ADC1EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 7:6	Reserved	0x0	resd	Kept at its default value.	
				USART6 clock enable	
Bit 5	USART6EN	0x0	rw	0: Disabled	
				1: Enabled	
				USART1 clock enable	
Bit 4	USART1EN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 3:1	Reserved	0x0	resd	Kept at its default value.	
			<u>-</u>	TMR1 clock enable	
Bit 0	TMR1EN	0x0	rw	0: Disabled	
				1: Enabled	

4.3.15 AHB peripheral clock enable in low-power mode register 1 (CRM_AHBLPEN1)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:30	Reserved	0x1	resd	Kept at its default value.
				OTGHS clock enable in Sleep mode
Bit 29	OTGHSLPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 28:25	Reserved	0x00	resd	Kept at its default value.
				DMA2 clock enable in Sleep mode
Bit 24	DMA2LPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 23	Reserved	0x0	resd	Kept at its default value.
				DMA1 clock enable in Sleep mode
Bit 22	DMA1LPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 21:17	Reserved	0x00	resd	Kept at its default value.
				SRAM clock enable in Sleep mode
Bit 16	SRAMLPEN	0x1	rw	0: Disabled
				1: Enabled
				FLASH clock enable in Sleep mode
Bit 15	FLASHLPEN	0x1	rw	0: Disabled
-				1: Enabled
Bit 14:13	Reserved	0x0	resd	Kept at its default value.
				CRC clock enable in Sleep mode
Bit 12	CRCLPEN	0x1	rw	0: Disabled
-				1: Enabled
Bit 11:6	Reserved	0x0	resd	Kept at its default value.
				IO port F clock enable in Sleep mode
Bit 5	GPIOFLPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 4	Reserved	0x0	resd	Kept at its default value.
				IO port D clock enable in Sleep mode
Bit 3	GPIODLPEN	0x1	rw	0: Disabled
				1: Enabled
				IO port C clock enable in Sleep mode
Bit 2	GPIOCLPEN	0x1	rw	0: Disabled
				1: Enabled
				IO port B clock enable in Sleep mode
Bit 1	GPIOBLPEN	0x1	rw	0: Disabled
				1: Enabled
				IO port A clock enable in Sleep mode
Bit 0	GPIOALPEN	0x1	rw	0: Disabled
				1: Enabled

4.3.16 AHB peripheral clock enable in low-power mode register 2 (CRM_AHBLPEN2)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description	
Bit 31:8	Reserved	0x000000	resd	Kept at its default value.	
Bit 7	OTGFS1LPEN	0x1	rw	OTGFS1 clock enable in Sleep mode 0: Disabled 1: Enabled	
Bit 6:0	Reserved	0x00	resd	Kept at its default value.	

2023.08.31 Page 72 Rev 2.00

4.3.17 AHB peripheral clock enable in low-power mode register 3 (CRM_AHBLPEN3)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description	
Bit 31:2	Reserved	0x00000000	resd	Kept at its default value.	
Bit 1	QSPI1LPEN	0x1	rw	QSPI1 clock enable in Sleep mode 0: Disabled 1: Enabled	
Bit 0	Reserved	0x0	resd	Kept at its default value.	

4.3.18 APB1 peripheral clock enable in low-power mode register (CRM_APB1LPEN)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
				UART8 clock enable in Sleep mode
Bit 31	UART8LPEN	0x1	rw	0: Disabled
				1: Enabled
				UART7 clock enable in Sleep mode
Bit 30	UART7LPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 29	Reserved	0x0	resd	Kept at its default value.
				Power interface clock enable in Sleep mode
Bit 28	PWCLPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 27:26	Reserved	0x0	resd	Kept at its default value.
				CAN1 clock enable in Sleep mode
Bit 25	CAN1LPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 24	Reserved	0x0	resd	Kept at its default value.
				I2C3 clock enable in Sleep mode
Bit 23	I2C3LPEN	0x1	rw	0: Disabled
				1: Enabled
				I2C2 clock enable in Sleep mode
Bit 22	I2C2LPEN	0x1	rw	0: Disabled
				1: Enabled
				I2C1 clock enable in Sleep mode
Bit 21	I2C1LPEN	0x1	rw	0: Disabled
				1: Enabled
				USART5 clock enable in Sleep mode
Bit 20	USART5LPEN	0x1	rw	0: Disabled
				1: Enabled
				USART4 clock enable in Sleep mode
Bit 19	USART4LPEN	0x1	rw	0: Disabled
				1: Enabled
				USART3 clock enable in Sleep mode
Bit 18	USART3LPEN	0x1	rw	0: Disabled
				1: Enabled
				USART2 clock enable in Sleep mode
Bit 17	USART2LPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 16	Reserved	0x0	resd	Kept at its default value.
				SPI3 clock enable in Sleep mode
Bit 15	SPI3LPEN	0x1	rw	0: Disabled
				1: Enabled
				SPI 2 clock enable in Sleep mode
Bit 14	SPI2LPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 13:12	Reserved	0x0	resd	Kept at its default value.
				Window watchdog clock enable in Sleep mode
Bit 11	WWDTLPEN	0x1	rw	0: Disabled
				1: Enabled
Bit 10:9	Reserved	0x0	resd	Kept at its default value.
				Timer14 clock enable in Sleep mode
Bit 8	TMR14LPEN	0x1	rw	0: Disabled

				1: Enabled	
				Timer13 clock enable in Sleep mode	
Bit 7	TMR13LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 6	Reserved	0x0	resd	Kept at its default value.	
				Timer 7 clock enable in Sleep mode	
Bit 5	TMR7LPEN	0x1	rw	0: Disabled	
				1: Enabled	
				Timer 6 clock enable in Sleep mode	
Bit 4	TMR6LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 3	Reserved	0x0	resd	Kept at its default value.	
				Timer 4 clock enable in Sleep mode	
Bit 2	TMR4LPEN	0x1	rw	0: Disabled	
				1: Enabled	
				Timer 3 clock enable in Sleep mode	_
Bit 1	TMR3LPEN	0x1	rw	0: Disabled	
				1: Enabled	
	·			Timer 2 clock enable in Sleep mode	
Bit 0	TMR2LPEN	0x1	rw	0: Disabled	
				1: Enabled	

4.3.19 APB2 peripheral clock enable in low-power mode register (CRM_APB2LPEN)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description	
Bit 31:30	Reserved	0x2	resd	Kept at its default value.	
				ACC clock enable in Sleep mode	
Bit 29	ACCLPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 28:21	Reserved	0x00	resd	Kept at its default value.	
				I2SF5 clock enable in Sleep mode	
Bit 20	I2SF5LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 19	Reserved	0x0	resd	Kept at its default value.	
				Timer11 clock enable in Sleep mode	
Bit 18	TMR11LPEN	0x1	rw	0: Disabled	
				1: Enabled	
				Timer10 clock enable in Sleep mode	
Bit 17	TMR10LPEN	0x1	rw	0: Disabled	
				1: Enabled	
				Timer9 clock enable in Sleep mode	
Bit 16	TMR9LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 15	Reserved	0x0	resd	Kept at its default value.	
				SCFG clock enable in Sleep mode	
Bit 14	SCFGLPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 13	Reserved	0x0	resd	Kept at its default value.	
				SPI1 clock enable in Sleep mode	
Bit 12	SPI1LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 11:9	Reserved	0x0	resd	Kept at its default value.	
				ADC1 interface clock enable in Sleep mode	
Bit 8	ADC1LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 7:6	Reserved	0x0	resd	Kept at its default value.	
				USART6 clock enable in Sleep mode	
Bit 5	USART6LPEN	0x1	rw	0: Disabled	
				1: Enabled	
				USART1 clock enable in Sleep mode	
Bit 4	USART1LPEN	0x1	rw	0: Disabled	
				1: Enabled	
Bit 3:1	Reserved	0x0	resd	Kept at its default value.	

2023.08.31 Page 74 Rev 2.00

Bit 0	TMR1LPEN	0x1	rw	TMR1 timer clock enable in Sleep mode 0: Disabled 1: Enabled	

4.3.20 Battery powered domain control register (CRM_BPDC)

This register is reset only by the battery powered domain reset.

Access: 0 to 3 wait states, accessible by words, half-words and bytes. Wait states are inserted in the case of consecutive accesses to this register.

Note: LEXTEN, LEXTBYPS, ERTCSEL and ERTCEN bits of the CRM_BPDC register are in the battery powered domain. As a result, these bits are write-protected after reset, and can only be modified by setting the BPWEN bit in the PWC_CTRL register. These bits could be reset only by battery powered domain reset. Any internal or external reset does not affect these bits.

The maximum frequency of AHB is 120 MHz while accessing this register.

Bit	Abbr.	Reset value	Type	Description
Bit 31:17	Reserved	0x0000	resd	Kept at its default value.
Bit 16	BPDRST	0x0	rw	Battery powered domain software reset 0: Does not reset battery powered domain software 1: Reset battery powered domain software
Bit 15	ERTCEN	0x0	rw	ERTC clock enable This bit is set and cleared by software. 0: Disabled 1: Enabled
Bit 14:10	Reserved	0x00	resd	Kept at its default value.
Bit 9:8	ERTCSEL	0x0	rw	ERTC clock source selection Once the ERTC clock source is selected, it cannot be changed until the BPDRST bit is reset. 00: None 01: LEXT 10: LICK 11: Divided HEXT (with the ERTC_DIV bit in the CRM_CFG register)
Bit 7:3	Reserved	0x00	resd	Kept at its default value.
Bit 2	LEXTBYPS	0x0	rw	Low-speed external crystal bypass 0: Disabled 1: Enabled
Bit 1	LEXTSTBL	0x0	ro	External low-speed oscillator stable This bit is set by hardware after the LEXT is ready. 0: LEXT is not ready 1: LEXT is ready
Bit 0	LEXTEN	0x0	rw	External low-speed oscillator enable 0: Disabled 1: Enabled

4.3.21 Control/status register (CRM_CTRLSTS)

Reset flag can be cleared by power reset or by writing the RSTFC bit, while others are cleared by system reset.

Access: 0 to 3 wait states, accessible by words, half-words and bytes. Wait states are inserted in the case of consecutive accesses to this register.

Note: The maximum frequency of AHB is 120 MHz while accessing the LICKEN bit.

Bit	Abbr.	Reset value	Type	Description
Bit 31	LPRSTF	0x0	ro	Low-power reset flag This bit is set by hardware and cleared by writing to the RSTFC bit with software. 0: No low-power reset occurs 1: Low-power reset occurs
Bit 30	WWDTRSTF	0x0	ro	WWDT reset flag This bit is set by hardware and cleared by writing with software to the RSTFC bit. 0: No WWDT reset occurs 1: WWDT reset occurs

Bit 29	WDTRSTF	0x0	ro	WDT reset flag This bit is set by hardware and cleared by writing to the RSTFC bit with software. 0: No WDT reset occurs 1: WDT reset occurs
Bit 28	SWRSTF	0x0	ro	Software reset flag This bit is set by hardware and cleared by writing to the RSTFC bit with software. 0: No software reset occurs 1: Software reset occurs
Bit 27	PORRSTF	0x1	ro	POR/LVR reset flag This bit is set by hardware and cleared by writing to the RSTFC bit with software. 0: No POR/LVR reset occurs 1: POR/LVR reset occurs
Bit 26	NRSTF	0x1	ro	NRST reset flag This bit is set by hardware and cleared by writing to the RSTFC bit with software. 0: No NRST reset occurs 1: NRST reset occurs
Bit 25	Reserved	0x0	resd	Kept at its default value.
Bit 24	RSTFC	0x0	rw	Reset flag clear This bit is cleared by writing "1" with software. 0: No effect 1: Clear reset flag
Bit 23:2	Reserved	0x000000	resd	Kept at its default value.
Bit 1	LICKSTBL	0x0	ro	LICK stable 0: LICK is not ready 1: LICK is ready
Bit 0	LICKEN	0x0	rw	LICK enable 0: Disabled 1: Enabled

4.3.22 OTGHS control register (CRM_OTGHS)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:5	Reserved	0x0	resd	Kept at its default value.
Bit 4	USBHS_PHY12_SEL	0x0	rw	USBHS PHY 12M clock source select 0: HEXT/1 1: Reserved
Bit 3:0	Reserved	0x0	resd	Kept at its default value.

4.3.23 Additional register 1 (CRM_MISC1)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:28	CLKOUTDIV2	ΩvΩ	rw.	Clock output division2 0xxx: Clock output not divided 1000: Clock output divided by 2 1001: Clock output divided by 4 1010: Clock output divided by 8 1011: Clock output divided by 16
	CENCOTBIVE	DIV2 0x0 rw	TVV	1011: Clock output divided by 16 1100: Clock output divided by 64 1101: Clock output divided by 128 1110: Clock output divided by 256 1111: Clock output divided by 512
Bit 27:20	Reserved	0x00	resd	Kept at its default value.
Bit 19:16	CLKOUT_SEL2	0xF	rw	Clock output sel2 0000: USBFS 48M clock output 0001: ADC clock output 0010: internal RC oscillator clock (HICK) output frequency divider 0011: LICK clock output 0100: LEXT clock output

				0101: USBHS 48M clock output
				0110~1111: Reserved
Bit 15	Reserved	0x0	resd	Kept at its default value.
				HICK as system clock frequency select
				When the HICK is selected as system clock by setting the
Bit 14	HICK_TO_SCLK	0x0	rw	SCLKSEL bit, the frequency of SCLK is:
				0: Fixed 8 MHz, that is, HICK/6
				1: 48 MHz or 8 MHz, depending on the HICKDIV
Bit 13	Reserved	0x0	resd	Kept at its default value.
				HICK 6 divider selection
				This bit is used to select HICK or HICK/6. If the HICK/6 is
				selected, the system clock is 8 MHz; otherwise, the system
Bit 12	HICKDIV	0x0	rw	clock is 48 MHz.
DIL 12	THORDIV		I VV	0: HICK/6
				1: HICK
				Note: When HICK is used as PLL clock source, do not
				modify the HICKDIV while PLL is enabled.
Bit 11:8	Reserved	0x0	resd	Kept at its default value.
				HICK calibration key
Bit 7:0	HICKCAL_KEY	0x00	rw	The HICKCAL[7:0] can be written only when this field is set
				to 0x5A.

4.3.24 Additional register 2 (CRM_MISC2)

Access: 0 wait state, accessible by words, half-words and bytes

Bit	Abbr.	Reset value	Type	Description
Bit 31:30	Reserved	0x1	resd	Fixed to 0x1. Do not modify.
Bit 29:22	Reserved	0x0	resd	Kept at its default value.
Bit 21:19	HEXT_TO_SCLK_DIV	′ 0x00	rw	HEXT as system clock frequency division 000: HEXT 001: HEXT/2 010: HEXT/4 011: HEXT/8 100: HEXT/16 101: HEXT/32 Others: Reserved
Bit 18:16	HICK_TO_SCLK_DIV	0x00	rw	HICK as system clock frequency division 000: HICK 001: HICK/2 010: HICK/4 011: HICK/8 100: HICK/16 Others: Reserved
Bit 15:11	Reserved	0x0	resd	Kept at its default value.
Bit 10	PLLU_USB48_SEL	0x0	rw	USBFS/USBHS 48M clock source selection 0:PLLU 1:HICK
Bit 9:6	Reserved	0x0	resd	Kept at its default value.
Bit 5:4	AUTO_STEP_EN	0x0	rw	Auto step-by-step system clock switch enable When the system clock source is switched from others to the PLL or when the AHB prescaler is changed from large to small (system frequency is from small to large), it is recommended to enable the auto step-by-step system clock switch if the operational target is larger than 108 MHz. Once it is enabled, the AHB bus is halted by hardware till the completion of the switch. During this switch period, the DMA remain working, and the interrupt events are recorded and then handled by NVIC when the AHB bus resumes. 00: Disabled 01: Reserved 10: Reserved 11: Enabled. When AHBDIV or SCLKSEL bits is modified, the auto step-by-step system clock switch is activated automatically.

2023.08.31 Page 77 Rev 2.00

Bit 3:0 Reserved 0xD resd It is fixed to 0xD. Do not change.

5 Flash memory controller (FLASH)

5.1 FLASH introduction

Flash memory is divided into three parts: main Flash memory, information block and Flash memory registers.

- Main Flash memory is up to 256 KB.
- Information block consists of 20 KB bootloader and the user system data area. The bootloader uses USART1, USART2, I2C, SPI, CAN or USB for ISP programming.

Main Flash memory contains bank 1 (256 KB), including 128 sectors, 2 KB per sector.

Table 5-1 Flash memory architecture (256 KB)

Bank		Name	Address range	
		Sector 0	0x0800 0000 – 0x0800 07FF	
	Bank 1 256 KB	Sector 1	0x0800 0800 – 0x0800 0FFF	
Main memory		Sector 2	0x0800 1000 – 0x0800 17FF	
		Sector 127	0x0803 F800 – 0x0803 FFFF	
Information block		20 KB bootloader	0x1FFF A400 – 0x1FFF F3FF	
		512 B user system data	0x1FFF F800 – 0x1FFF F9FF	

Main Flash memory contains bank 1 (128 KB), including 128 sectors, 1 KB per sector.

Table 5-2 Flash memory architecture (128 KB)

Bank		Name	Address range	
		Sector 0	0x0800 0000 – 0x0800 03FF	
		Sector 1	0x0800 0400 – 0x0800 07FF	
Main memory	Bank 1 128 KB	Sector 2	0x0800 0800 – 0x0800 0BFF	
		Sector 127	0x0801 FC00 – 0x0801 FFFF	
		20 KB bootloader	0x1FFF A400 – 0x1FFF F3FF	
Information blo	DCK	512 B user system data	0x1FFF F800 – 0x1FFF F9FF	

User system data area

The system data will be read from the information block of Flash memory whenever a system reset occurs, and is saved in the user system data register (FLASH_USD) and erase/programming protection status register (FLASH_EPPS).

Each system data occupies two bytes, where the low bytes corresponds to the contents in the system data area, and the high bytes represent the inverse code that is used to verify the correctness of the selected bit. When the high byte is not equal to the inverse code of the low byte (except when both high and low byte are all 0xFF), the system data loader will issue a system data error flag (USDERR) and the corresponding system data and their inverse codes are forced 0xFF.

Note: The update of the contents in the user system data area becomes effective only after a system reset.

Table 5-3 User system data area

Address	Bit	Description FAP[7:0]: Flash memory access protection (Access protection enable/o						
		result is stored in the FLAS						
	[7:0]		0xA5: Flash access protection disabled					
	[0xCC: High-level Flash acc						
		Others: Low-level Flash access protection enabled						
	[15:8]	nFAP[7:0]: Inverse code of FAP[7:0]						
		SSB[7:0]: System setting byte (stored in the FLASH_USD[9:2])						
		Bit 7 (nRAM_PRT_CHK)	0: Enable RAM parity check 1: Disable RAM parity check					
			WDT stops counting while entering Standby mode					
		Bit 6 (nSTDBY_WDT)	WDT does not stop counting while entering Standby mode					
			0: WDT stops counting while entering					
		Dit 5 (= DEDOLD MDT)	Deepsleep mode					
0x1FFF_F800		Bit 5 (nDEPSLP_WDT)	1: WDT does not stop counting while entering					
_			Deepsleep mode					
	[23:16]		nBOOT1: It defines boot mode together with					
	[23.10]		BOOT0 pin.					
		Bit 4 (nBOOT1)	When BOOT0 = 1:					
			0: Boot from SRAM					
	i	D'' 0	1: Boot from boot memory					
		Bit 3	Reserved					
		Bit 2 (nSTDBY_RST)	Reset occurs when entering Standby mode No reset occurs when entering Standby mode					
			No reset occurs when entering Standby mode Reset occurs when entering Deepsleep mode					
		Bit 1 (nDEPSLP_RST)	1: No reset occurs when entering Deepsleep mount					
		Bit I (IIBEI GEI _KGI)	mode					
			0: Watchdog is enabled					
		Bit 0 (nWDT_ATO_EN)	1: Watchdog is disabled					
	[31:24]	nSSB[7:0]: Inverse code o						
	[7:0]	Data0[7:0] : User data 0 (st	tored in the FLASH_USD[17:10])					
	[15:8]	nData0[7:0]: Inverse code of Data0[7:0]						
0x1FFF_F804	[23:16]	Data1[7:0]: Inverse code of Data0[7:0] Data1[7:0]: User data 1 (stored in the FLASH_USD[25:18])						
	[31:24]	nData1[7:0]: Inverse code						
	1		e/write protection byte 0 (stored in the					
		FLASH EPPS[7:0])	, ,					
		This field is used to protect	t sector0~sector15 of the main Flash memory (25)					
	[7:0]	KB) and sector0~sector31	of the main Flash memory (128 KB). Each bit take					
		care of 4 KB sectors.						
		0: Erase/write protection is						
		1: Erase/write protection is						
0x1FFF_F808	[15:8]	nEPP0[7:0]: Inverse code						
_			e/write protection byte 1 (stored in the					
		FLASH_EPPS[15:8])						
	[22:16]	FLASH_EPPS[15:8]) This field is used to protect	sector16~sector31 of the main Flash memory (25					
	[23:16]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63	sector16~sector31 of the main Flash memory (25					
	[23:16]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors.	sector16~sector31 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take					
	[23:16]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is	sector16~sector31 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take enabled					
		FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is	sector16~sector31 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take enabled disabled					
	[23:16]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code	sector16~sector31 of the main Flash memory (25d 3 of the main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0]					
		FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras	sector16~sector31 of the main Flash memory (25 3 of the main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0]					
		FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16])	e/write protection byte 2 (stored in the					
		FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect	enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector32~sector47 of the main Flash memory (25)					
	[31:24]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors.	enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector32~sector47 of the main Flash memory (128 KB). Each bit take					
	[31:24]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is	esector16~sector31 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector32~sector47 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take enabled					
	[31:24] [7:0]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is	enabled of the protection byte 2 (stored in the sector32~sector47 of the main Flash memory (25 of the main Flash memory (128 KB). Each bit take enabled of EPP1[7:0] e/write protection byte 2 (stored in the sector32~sector47 of the main Flash memory (25 of the main Flash memory (128 KB). Each bit take enabled disabled					
0x1FFF_F80C	[31:24]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP2[7:0]: Inverse code	enabled of the main Flash memory (25 softhe main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector 32~sector 47 of the main Flash memory (25 of the main Flash memory (128 KB). Each bit take enabled disabled of EPP2[7:0]					
0x1FFF_F80C	[31:24] [7:0]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP2[7:0]: Inverse code EPP3[7:0]: Flash eras	sector16~sector31 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector32~sector47 of the main Flash memory (25) of the main Flash memory (128 KB). Each bit take enabled disabled of EPP2[7:0]					
0x1FFF_F80C	[31:24] [7:0]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is 1: Erase/write protection is nEPP2[7:0]: Inverse code EPP3[7:0]: Flash eras FLASH_EPPS[31:24])	enabled disabled enabled disabled enabled disabled enabled disabled of the main Flash memory (128 KB). Each bit takes sector 32~sector 47 of the main Flash memory (256 of the main Flash memory (128 KB). Each bit takes enabled disabled of EPP2[7:0] e/write protection byte 3 (stored in the elements) e/write protection byte 3 (stored in the					
0x1FFF_F80C	[31:24] [7:0] [15:8]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is 1: Erase/write protection is nEPP2[7:0]: Inverse code EPP3[7:0]: Flash eras FLASH_EPPS[31:24]) Bit [6:0] is used to protect	enabled disabled enabled disabled disabled of the main Flash memory (128 KB). Each bit takes sector 32~sector 47 of the main Flash memory (256 of the main Flash memory (128 KB). Each bit takes sector 32~sector 47 of the main Flash memory (256 of the main Flash memory (128 KB). Each bit takes enabled disabled of EPP2[7:0] e/write protection byte 3 (stored in the sector 48~sector 61 of the main Flash memory (256 of the main					
 0x1FFF_F80C	[31:24] [7:0]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP2[7:0]: Inverse code EPP3[7:0]: Flash eras FLASH_EPPS[31:24]) Bit [6:0] is used to protect KB) and sector96~sector1	enabled disabled of the main Flash memory (250 of the main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector 32~sector 47 of the main Flash memory (250 of the main Flash memory (128 KB). Each bit take enabled disabled of EPP2[7:0] e/write protection byte 3 (stored in the sector 48~sector 61 of the main Flash memory (128 KB). Each bit take 90 of the main Flash memory (128 KB). Each bit take 90 of EPP2[7:0]					
0x1FFF_F80C	[31:24] [7:0] [15:8]	FLASH_EPPS[15:8]) This field is used to protect KB) and sector32~sector63 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is nEPP1[7:0]: Inverse code EPP2[7:0]: Flash eras FLASH_EPPS[23:16]) This field is used to protect KB) and sector64~sector95 care of 4 KB sectors. 0: Erase/write protection is 1: Erase/write protection is 1: Erase/write protection is nEPP2[7:0]: Inverse code EPP3[7:0]: Flash eras FLASH_EPPS[31:24]) Bit [6:0] is used to protect KB) and sector96~sector1 takes care of 4 KB sectors.	enabled disabled enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the main Flash memory (128 KB). Each bit take enabled disabled of EPP1[7:0] e/write protection byte 2 (stored in the sector 32~sector 47 of the main Flash memory (25 of the main Flash memory (128 KB). Each bit take enabled disabled of EPP2[7:0] e/write protection byte 3 (stored in the sector 48~sector 61 of the main Flash memory (128 KB). Each bit 23 of the main Flash memory (128 KB). Each bit 25 of the main Flash memory (128 KB).					

		also used for the main Flash memory (256 KB/128 KB) extension area.		
		0: Erase/write protection is enabled		
		1: Erase/write protection is disabled		
	[31:24]	nEPP3[7:0]: Inverse code of EPP3[7:0]		
0x1FFF F810				
~	[31:0]	Reserved		
0x1FFF F830	' '			
0x1FFF_F834	[7:0]	QSPIKEY0[7:0]: Quad SPI (QSPI) ciphertext access area encryption key byte 0 The situations for non-encryption includes: QSPIKEYx and nQSPIKEYx are 0xFF (default erase status) Write 0x00 to QSPIKEYx Write 0xFF to QSPIKEYx That is, {nQSPIKEYx, QSPIKEYx} are all 0xFFFF, 0xFF00, 0x00FF.		
		Among them, QSPIKEY0-QSPIKEY3 are the encrypted key of QSPI1.		
	[15:8]	nQSPIKEY0[7:0]: Inverse code of QSPIKEY0[7:0]		
	[23:16]	QSPIKEY1[7:0]: Quad SPI (QSPI) ciphertext access area encryption key byte 1		
	[31:24]	nQSPIKEY1[7:0]: Inverse code of QSPIKEY1[7:0]		
	[7:0]	QSPIKEY2[7:0]: Quad SPI (QSPI) ciphertext access area encryption key byte 2		
0 4555 5000	[15:8]	nQSPIKEY2[7:0]: Inverse code of QSPIKEY2[7:0]		
0x1FFF_F838	[23:16]	QSPIKEY3[7:0]: Quad SPI (QSPI) ciphertext access area encryption key byte 3		
	[31:24]	nQSPIKEY3[7:0]: Inverse code of QSPIKEY3[7:0]		
0x1FFF_F83C ~ 0x1FFF_F848	[31:0]	Reserved		
	[7:0]	Data2[7:0]: User data 2		
	[15:8]	nData2[7:0]: Inverse code of Data2[7:0]		
0x1FFF_F84C	[23:16]	Data3[7:0]: User data 3		
	[31:24]	nData3[7:0]: Inverse code of Data3[7:0]		
-	[31.24]	IIData5[1.0]. Inverse code of Data5[1.0]		
	[7:0]	Data218[7:0]: User data 218		
	[15:8]	nData218[7:0]: Inverse code of Data218[7:0]		
0x1FFF_F9FC	[23:16]	Data219[7:0] : User data 219		
5X1111_1 01 0		nData219[7:0]: Inverse code of Data219[7:0]		
-	[31:24]	IIDataz 13[1.0]. IIIVerse code or Dataz 13[1.0]		

5.2 Flash memory operation

5.2.1 Unlock/lock

After reset, Flash memory is protected, by default. The FLASH_CTRL register cannot be written. Write and erase operation can be performed only when the Flash memory is unlocked.

Unlock procedure:

Flash memory block can be unlocked by writing KEY1 (0x45670123) and KEY2 (0xCDEF89AB) to the FLASH_UNLOCK register.

Note: Writing an incorrect key sequence leads to a bus error and the Flash memory is also locked until the next reset.

Lock procedure:

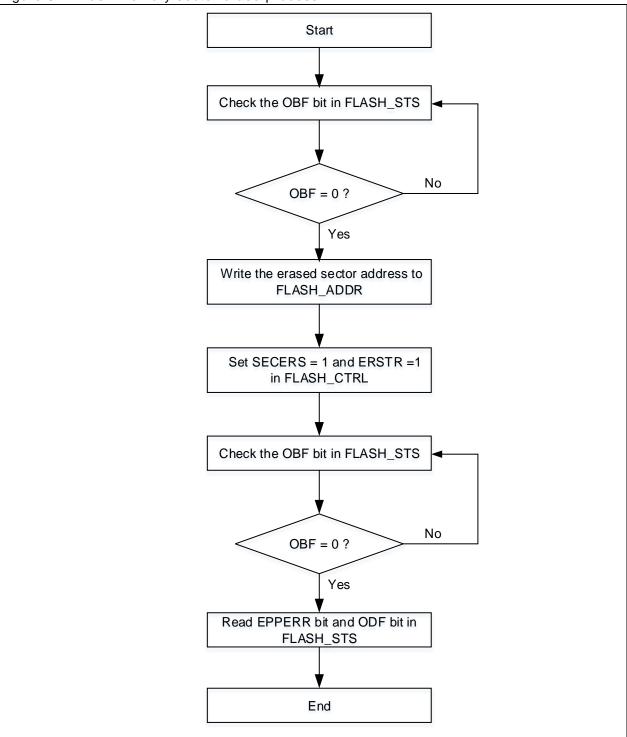
Flash memory block can be locked by setting the OPLK bit in the FLASH_CTRL register.

5.2.2 Erase operation

Erase operation must be done before programming. Flash memory erase includes sector erase and mass erase.

Sector erase

Any sector in the Flash memory and the Flash memory extension area can be erased with sector erase function independently.


The following process is recommended:

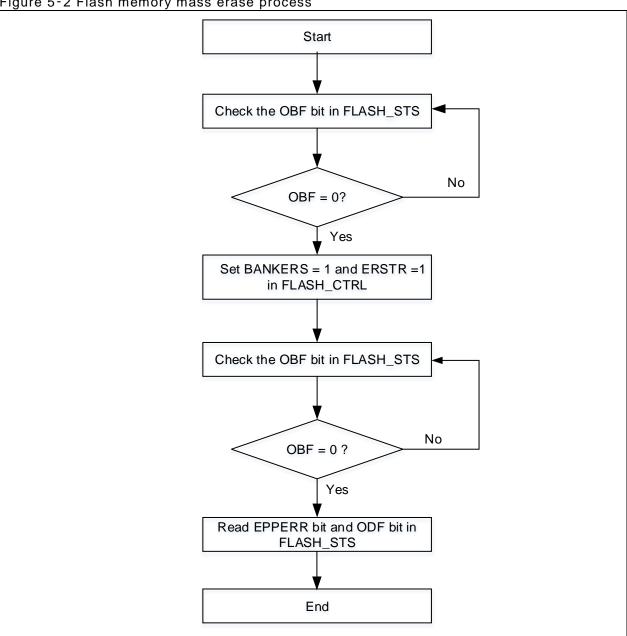
- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Write the sector to be erased in the FLASH_ADDR register;
- Set the SECERS and ERSTR bits in the FLASH CTRL register to enable sector erase;
- Wait until the OBF bit in the FLASH_STS register becomes "0". Read the EPPERR and ODF bits in the FLASH_STS register to verify the erased sectors.

Note: When the boot memory is configured as the Flash memory extension area, performing sectorerase operation erases the entire Flash memory extension area.

Figure 5-1 Flash memory sector erase process

Mass erase

Mass erase function can be used to erase all the Flash memory. The following process is recommended:



- Check the OBF bit in the FLASH STS register to confirm that there is no other programming operation in progress:
- Set the BANKERS and ERSTR bits in the FLASH_CTRL register to enable mass erase;
- Wait until the OBF bit in the FLASH STS register becomes "0". Read the EPPERR and ODF bits in the FLASH STS register to verify the erase result.

Note:

- 1) When the boot memory is configured as the Flash memory extension area, performing masserase operation erases automatically the entire Flash memory and its extension area.
- Read access during erase operation halts the CPU and waits until the completion of erase.
- 3) Internal HICK must be enabled prior to erase operation.

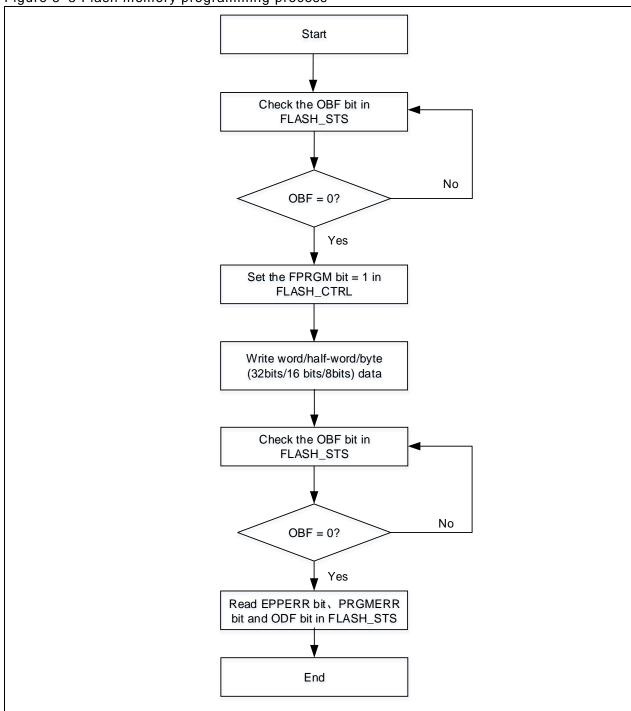
Figure 5-2 Flash memory mass erase process

Programming operation 5.2.3

The Flash memory can be programmed with 32 bits, 16 bits or 8 bits at a time.

The following process is recommended:

- Check the OBF bit in the FLASH STS register to confirm that there is no other programming operation in progress;
- Set FPRGM=1 in the FLASH_CTRL register, so that the Flash memory programming instructions can be received;



- Write the data (word/half-word/byte) to be programmed to the designated address;
- Wait until the OBF bit in the FLASH_STS register becomes "0". Read the EPPERR, PRGMERR and ODF bits in the FLASH_STS register to verify the programming result.

Note:

- 1) When the address to be written is not erased in advance, the programming operation is not executed unless the data to be written is all 0. In this case, a programming error is reported by the PRGMERR bit in the FLASH_STS register.
- 2) Read operation to the Flash memory during programming halts the CPU and waits until the completion of programming.
- 3) Internal HICK must be enabled prior to programming.

Figure 5-3 Flash memory programming process

5.2.4 Read operation

Flash memory can be accessed through AHB bus of the CPU.

5.3 Main Flash memory extension area

Boot memory can also be programmed as the extension area of the main Flash memory to store user-application code. When used as main Flash memory extension area, it behaves like the main Flash memory, including read, unlock, erase and programming operations.

5.4 User system data area operation

5.4.1 Unlock/lock

After reset, user system data area is protected, by default. Write and erase operations can be performed only after the Flash memory is unlocked before the unlock operation for the user system data area.

Unlock procedure:

Flash memory can be unlocked by writing KEY1 (0x45670123) and KEY2 (0xCDEF89AB) to the FLASH_UNLOCK register.

When KEY1 (0x45670123) and KEY2 (0xCDEF89AB) are written to the FLASH_USD_UNLOCK register, the USDULKS bit in the FLASH_CTRL register will be automatically set by hardware, indicating that it supports write/erase operation to the user system data area.

Note: Writing an incorrect key sequence leads to bus error and the Flash memory is also locked until the next reset.

Lock procedure:

User system data area is locked by clearing the USDULKS bit in the FLASH_CTRL register.

5.4.2 Erase operation

Erase operation must be done before programming. User system data area can be erased independently. The following process is recommended:

- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Set the USDERS and ERSTR bits in the FLASH_CTRL register to enable erase operation;
- Wait until the OBF bit in the FLASH_STS register becomes "0". Read the ODF bit in the FLASH_STS register to verify the erase result.

Note:

- 1) Read operation to the Flash memory during programming halts CPU and waits until the completion of erase.
- 2) The internal HICK must be enabled prior to erase operation.

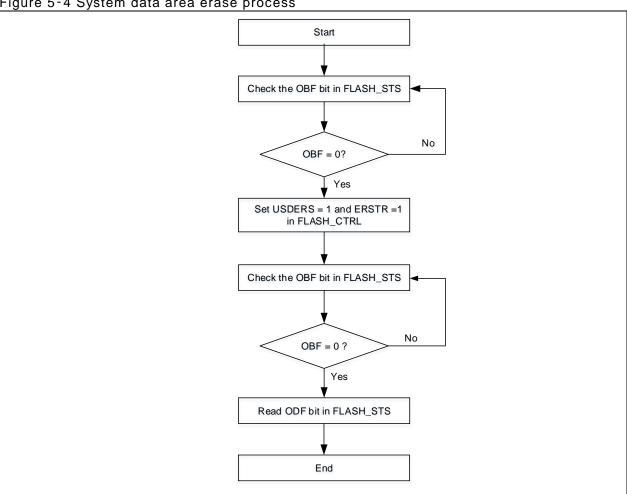
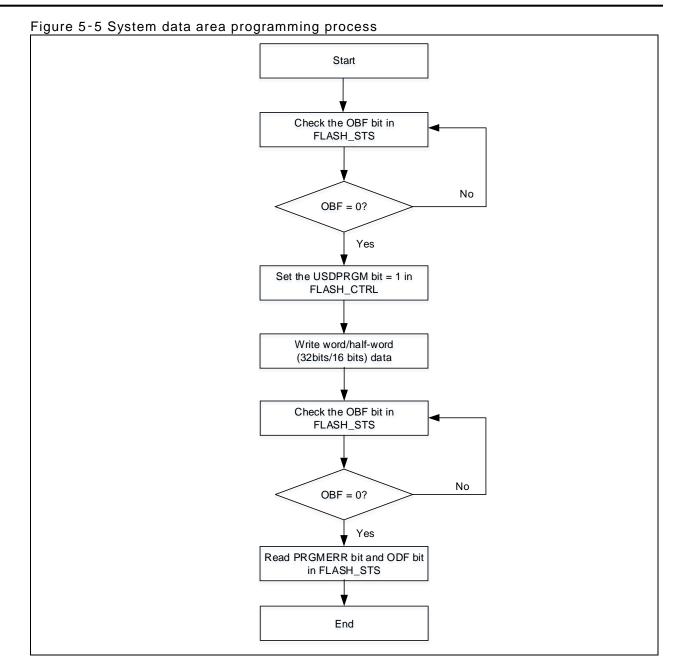


Figure 5-4 System data area erase process

5.4.3 **Programming operation**

The user system data area can be programmed with 16 bits or 32 bits at a time.


The following process is recommended:

- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Set USDPRGM=1 in the FLASH_CTRL register, so that the programming instructions for the user system data area can be received;
- Write the data (word/half-word) to be programmed to the designated address;
- Wait until the OBF bit in the FLASH STS register becomes "0". Read the PRGMERR and ODF bits in the FLASH STS register to verify the programming result.

Note:

- Read operation to the Flash memory during programming halts CPU and waits until the 1) completion of programming.
- 2) The internal HICK must be enabled prior to erase operation.

5.4.4 Read operation

User system data area can be accessed through AHB bus of the CPU.

5.5 Flash memory protection

Flash memory protection includes access and erase/program protection.

5.5.1 Access protection

Flash memory access protection is divided into two parts: high-level and low level.

Once enabled, only the Flash program is allowed to read Flash memory data. This read operation is not permitted in debug mode or by booting from non-Flash memory.

Low-level access protection

When the contents in the nFAP and FAP are different from 0x5A and 0xA5, and 0x33 and 0xCC, the low-level Flash memory access protection is enabled after a system reset.

When the Flash access is protected, the user can re-erase the system data area, and unlock Flash access protection (switching from low-level protection to unprotected state will trigger mass erase on the Flash memory and its extension area automatically) by writing 0xA5 to FAP byte, and then perform a

system reset. Subsequently, the system data loader will be reloaded with system data and updated with Flash memory access protection disable state (FAP byte).

High-level access protection

When the content in the nFAP is different from 0x33, and the content in the FAP byte is equal to 0xCC, the high-level Flash memory access protection is enabled after a system reset.

Once enabled, it cannot be unlocked, and it is not permissible for users to re-erase and write the system data area.

Note:

- 1) The main Flash memory extension area can also be protected.
- 2) If the access protection bit is set in debug mode, then the debug mode has to be cleared by POR instead of system reset in order to resume access to Flash memory data.

Table 5-4 shows Flash memory access limits when Flash access protection is enabled.

Table 5-4 Flash memory access limit

Block	Protection	Access limits					
		In debug mod memory	Boot from main Flash memory				
		Read	Write	Erase	Read	Write	Erase
Main Flash	Low-level protection	Not allowed (1)(2)		Accessible	·	•	
memory	High-level protection	None (3)			Accessible		
User system data area	Low-level protection	Not allowed Accessible		Accessible			
	High-level protection	None (3)			Accessible	Not allow	/ed

- (1) Main Flash memory is cleared automatically by hardware only when the access protection is disabled:
- (2) Only sector erase is forbidden, and mass erase is not affected;
- (3) When the high-level access protection is enabled, the system automatically boots from the main Flash memory.

5.5.2 Erase/program protection

Erase/program protection is performed on the basis of 4 KB. This is used to protect the contents in the Flash memory against inadvertent operation when the program crash occurs.

Erase/program operation is not permitted under one of the following events, and the EPPERR bit is set accordingly when:

- Erasing/programming the pages (in Flash memory and its extension area) where erase/program protection is enabled;
- Performing mass erase on the sectors and main Flash memory extension area where erase/program protection enabled;
- When the Flash access protection is enabled, the sector0~sector1 in the 256 KB main Flash memory and sector0~sector3 in the 128 KB Flash memory will be protected against sector erase/program automatically;
- When the Flash access protection is enabled, the main Flash memory is protected against sector
 erase and programming operation when the main Flash memory and its extension area are in
 debug mode or when it boots from non-main Flash memory.

5.6 Read access

To increase system clock frequency, program the number of wait states to access the Flash memory through the WTCYC bit in the FLASH PSR register.

The Flash read times can be decreased through the PFT_EN, PFT_EN2 and PFT_LAT_DIS bits in the FLASH_PSR register.

5.7 Special functions

5.7.1 Security library settings

Security library is a defined area protected by a code in the main memory. This area is only executable but cannot be written or deleted unless a correct code is keyed in. Security library includes instruction security library (cannot be read) and data security library (can be read).

Advantages of security library:

Security library is protected by codes so that solution providers can program core algorithm into this area:

Security library cannot be read or deleted (including ISP/IAP/SWD) but only executed unless the code defined by the solution provider is keyed in;

The rest of the area can be used for secondary development by solution providers;

Solution providers can sell core algorithm with security library function and do not have to develop full solutions for every customer.

Security library helps prevent from deliberate damage or changing terminal application codes.

Note:

Security library code must be programmed by sector, with its start address aligned with the main memory address;

Only CPU instruction is allowed to read instruction security library;

In an attempt of writing or erasing the security library code, a warning message will be issued by EPPERR=1 in the FLASH_STS register;

Executing mass erase in the main memory will not erase the security library.

By default, security library setting register is unreadable and write protected. To enable write access to this register, security library should be unlocked first, by writing 0xA35F6D24 to the SLIB_UNLOCK register, and checking the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if it is unlocked successfully, and then writing the programmed value to the security library setting register.

The steps to enable security library are as follows:

- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock the security library;
- Check the SLIB ULKF bit in the SLIB MISC STS register to verify that it is unlocked successfully:
- If the security library is set in the main Flash memory, set the sectors to be protected in the SLIB_SET_RANGE register (including the addresses of instruction/data security library); if the security library is set in the main Flash memory extension area, set the EM_SLIB_SET register;
- Wait until the OBF bit becomes "0";
- Set the security library password in the SLIB_SET_PWD register;
- Wait until the OBF bit becomes "0";
- Program the code to be saved in security library;
- Perform a system reset, and then reload security library setting word;
- Read the SLIB_STS0/STS1 register to verify the security library settings.

Note: The main Flash memory and its extension area cannot be set as security library at the same time.

Security library should be enabled when the Flash access protection is not activated.

The steps to unlock security library are as follows:

Write the previously set security library password to the SLIB_PWD_CLR register;

- Wait until the OBF bit becomes "0";
- Perform a system reset, and then reload security library setting word;
- Read the SLIB_STS0 register to verify that if the security library is unlocked successfully.

Note: Disabling the security library will automatically perform mass erase for the main Flash memory and its extension, as well as the security library setting block.

5.7.2 Boot memory used as Flash memory extension

There is only one chance for users to program the boot memory as the main Flash extension area, which will have the same features as those of Flash memory after successful configuration as follows:

- Read bit [0] in the SLIB STS0 register to get the current mode of the boot memory;
- Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock the current mode of boot memory;
- Write non-0xFF to bit [7:0] in the BTM_MODE_SET register;
- Wait until the OBF bit becomes "0";
- Perform a system reset, and then reload setting words;
- Read the SLIB_STS0 register to verify the settings.

Note:

The above-mentioned process must be performed when the Flash memory access protection not activated.

Once the boot memory is used as Flash memory extension area, the "boot from boot memory" is forced to "boot from main Flash memory".

5.7.3 CRC verify

The optional CRC check for security library code or user code is performed on a sector level.

CRC verify procedure is as follows:

- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Program the start address of the code to be CRC check in the FLASH_CRC_ADDR register;
- Program the code count (in terms of sectors) to be CRC check through the bit [15:0] in the FLASH_CRC_CTRL register;
- Enable CRC verify by setting the bit [16] in the FLASH_CRC_CTRL register;
- Wait until the OBF bit becomes "0";
- Read the FLASH_CRC_CHKR register to verify the result.

Note:

The values of FLASH_CRC_ADDR register must be aligned with the start address of the sector.

CRC verify must not cross the main Flash memory and its extension area.

5.8 FLASH registers

These peripheral registers must be accessed by words (32 bits).

Table 5-5 Flash memory register map and reset value

Register abbr.	Offset	Reset value
FLASH_PSR	0x00	0x0000 01F0
FLASH_UNLOCK	0x04	0xXXXX XXXX
FLASH_USD_UNLOCK	0x08	0xXXXX XXXX
FLASH_STS	0x0C	0x0000 0000
FLASH_CTRL	0x10	0x0002 0080
FLASH_ADDR	0x14	0x0000 0000
FLASH_USD	0x1C	0x03FF FFFC
FLASH_EPPS	0x20	0xFFFF FFFF
SLIB_STS0	0x74	0x00FF 0000
SLIB_STS1	0x78	0xFFFF FFFF

SLIB_PWD_CLR	0x7C	0xFFFF FFFF
SLIB_MISC_STS	0x80	0x0000 0000
FLASH_CRC_ADDR	0x84	0x0000 0000
FLASH_CRC_CTRL	0x88	0x0000 0000
FLASH_CRC_CHKR	0x8C	0x0000 0000
SLIB_SET_PWD	0x160	0x0000 0000
SLIB_SET_RANGE	0x164	0x0000 0000
EM_SLIB_SET	0x168	0x0000 0000
BTM_MODE_SET	0x16C	0x0000 0000
SLIB_UNLOCK	0x170	0x0000 0000

5.8.1 Flash performance select register (FLASH PSR)

Bit	Abbr.	Reset value	Type	Description
Bit 31:9	Reserved	0x000000	resd	Kept at its default value.
				Prefetch latency disable
				0: Prefetch buffer latency enabled, one system clock cycle
Bit 8	PFT LAT DIS	1	rw	for buffer access
Dit 0	111	•	. **	1: Prefetch buffer latency disabled, 0-wait state for buffer
				access
				It is recommended to set this bit to 1 and do not change.
				Prefetch enabled flag2
Bit 7	PFT_ENF2	1	ro	When this bit is set, it indicates that the prefetch buffer 2 is
				enabled.
				Prefetch enable2
Bit 6	PFT_EN2	1	rw	0: Prefetch buffer 2 is disabled
				1: Prefetch buffer 2 is enabled
				It is recommended to set this bit to 1 and do not change.
D# E	DET ENE	4		Prefetch enabled flag
Bit 5	PFT_ENF	1	ro	When this bit is set, it indicates that the prefetch buffer is enabled.
				Prefetch enable
Bit 4	PFT EN	1	rw	0: Prefetch buffer is disabled
DIL 4	FFI_EIN	ļ	I VV	1: Prefetch buffer is enabled
Bit 3	Reserved	0	resd	Kept at its default value.
<u>Bit 0</u>	110001104		1004	Wait cycle
				The wait states depend on the size of the system clock,
				and they are in terms of system clocks.
				000: Zero wait state, 0 MHz< system clock≤32 MHz
D:1 0 0	MTOVO	0.0		001: One wait state, 32 MHz< system clock≤64 MHz
Bit 2:0	WTCYC	0x0	rw	010: Two wait states, 64 MHz< system clock≤96 MHz
				011: Three wait states, 96 MHz< system clock≤128 MHz
				100: Four wait states, 128 MHz< system clock≤160 MHz
				101: Five wait states, 160 MHz< system clock≤192 MHz
				110: Six wait states, 192 MHz< system clock≤216 MHz

5.8.2 Flash unlock register (FLASH_UNLOCK)

Bit	Abbr.	Reset value Ty	e Descrip	otion
Bit 31:0	UKVAL	0xXXXX XXXX wo		key value used to unlock the Flash memory and its extension

Note: All these bits are write-only, and return 0 when being read.

5.8.3 Flash user system data unlock register (FLASH_USD_UNLOCK)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:0	USD UKVAL	0xXXXX XXXX	wo	User system data unlock key value

Note: All these bits are write-only, and return 0 when being read.

5.8.4 Flash status register (FLASH_STS)

		<u> </u>	<u> </u>	
Bit	Abbr.	Reset value	Type	Description
Bit 31:6	Reserved	0x0000000	resd	Kept at its default value.
Bit 5	ODF	0	rwc1	Operation done flag This bit is set by hardware when Flash memory operations (program/erase) are completed. It is cleared by writing "1".
Bit 4	EPPERR	0	rwc1	Erase/program protection error This bit is set by hardware when erasing or programming the erase/program-protected Flash memory address. It is cleared by writing "1".
Bit 3	Reserved	0	resd	Kept at its default value.
Bit 2	PRGMERR	0	rwc1	Program error When the programming address is not in erase state, this bit is set by hardware. It is cleared by writing "1".
Bit 1	Reserved	0	resd	Kept at its default value.
Bit 0	OBF	0	ro	Operation busy flag When this bit is set, it indicates that Flash memory operations are in progress. It is cleared when operations are completed.

5.8.5 Flash control register (FLASH_CTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 31:13	Reserved	0x0000	resd	Kept at its default value.
				Operation done flag interrupt enable
Bit 12	ODFIE	0	rw	0: Disabled
				1: Enabled
Bit 11,8,3	Reserved	0	resd	Kept at its default value.
				Error interrupt enable
Bit 10	ERRIE	0	rw	This bit enables EPPERR or PRGMERR interrupt.
				0: Disabled
				1: Enabled
				User system data unlock success
Bit 9	USDULKS	0	rw	This bit is set by hardware when the user system data is unlocked properly, indicating that erase/program operation
טונ פ	USDULKS	U	I VV	to the user system data is allowed. This bit is cleared by
				writing "0", which will re-lock the user system data area.
				Operation lock
				This bit is set by default, indicating that Flash memory is
Bit 7	OPLK	4		protected against operations. This bit is cleared by
DIL /	OPLK	1	rw	hardware after unlock, indicating that erase/program
				operation to Flash memory is allowed. Writing "1" can
				relock the Flash memory.
				Erase start
Bit 6	ERSTR	0	rw	An erase operation is triggered when this bit is set by
				software. This bit is cleared by hardware after the
				completion of the erase operation.
Bit 5	USDERS	0	rw	User system data erase
				It indicates the user system data erase operation. User system data program
Bit 4	USDPRGM	0	rw	It indicates the user system data programming operation.
				Bank erase
Bit 2	BANKERS	0	rw	It indicates bank erase operation.
D:4 4	CECEDO	0		Sector erase
Bit 1	SECERS	0	rw	It indicates sector erase operation.
Bit 0	FPRGM	0	rw	Flash program
טונ ט	i i NGW	U	i VV	It indicates Flash programming operation.

5.8.6 Flash address register (FLASH_ADDR)

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	FA	0x0000 0000	wo	Flash address Select the address of the sectors to be erased.

5.8.7 User system data register (FLASH_USD)

	***		_	<u> </u>
Bit	Abbr.	Reset value	Type	Description
Bit 31:27	Reserved	0x00	resd	Kept at its default value.
				Flash access protection high level
				The status of the Flash access protection is determined by
				bit [26] and bit [1].
				00: Flash access protection disabled, and FAP=0xA5
Bit 26	FAP_HL	0	ro	01: Low-level Flash access protection enabled, and
				FAP=non-0xCC and non-0xA5
				10: Reserved
				11: High-level Flash access protection enabled, and
				FAP=0xCC
Bit 25:18	USER_D1	0xFF	ro	User data 1
Bit 17:10	USER_D0	0xFF	ro	User data 0
				System setting byte
				It includes the system setting bytes in the loaded user
				system data area.
				Bit 9: nRAM_PRT_CHK
				Bit 8: nSTDBY_WDT
Bit 9:2	SSB	0xFF	ro	Bit 7: nDEPSLP_WDT
				Bit 6: nBOOT1
				Bit 5: Unused
				Bit 4: nSTDBY_RST
				Bit 3: nDEPSLP_RST
				Bit 2: nWDT_ATO_EN
Bit 1	FAP	0	ro	Flash access protection
				User system data error
- · ·				When this bit is set, it indicates that certain byte does not
Bit 0	USDERR	0	ro	match its inverse code in the user system data area. At this
				point, this byte and its inverse code will be forced to 0xFF
				when being read.

5.8.8 Erase/program protection status register (FLASH_EPPS)

		•		<u> </u>
Bit	Abbr.	Reset value	Type	Description
Bit 31:0	EPPS	0xFFFF FFFF	ro	Erase/program protection status This register reflects the erase/program protection byte status in the loaded user system data.

5.8.9 Flash security library status register 0 (SLIB_STS0)

For Flash security library only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:24	Reserved	0x00	resd	Kept at its default value.
				Extension memory sLib instruction start sector 000000000: Sector 0 00000001: Sector 1 00000010: Sector 2
Bit 23:16	EM_SLIB_INST_SS	0xFF	ro	 00001001: Sector 9 (the last sector of 256 KB main Flash memory)
				 00010011: Sector 19 (the last sector of 128 KB main Flash memory) 11111111: None Others: Invalid
Bit 15:4	Reserved	0x000	resd	Kept at its default value.
Bit 3	SLIB_ENF	0	ro	sLib enabled flag When this bit is set, it indicates that the main Flash memory is partially or completely (depending on the setting of SLIB STS1) used as security library.
Bit 2	EM_SLIB_ENF	0	ro	Extension memory sLib enabled flag

				When this bit is set, it indicates that the boot memory is used as the Flash extension area (BTM_AP_ENF is set) and stores security library code.
Bit 1	Reserved	0	resd	Kept at its default value.
Bit 0	BTM_AP_ENF	0	ro	Boot memory store application code enabled flag When this bit is set, it indicates that the boot memory can be used as main Flash extension area to store user application code; otherwise, it is only used for system boot code.

5.8.10 Flash security library status register 1 (SLIB_STS1)

For Flash security library only.

Bit	Abbr.	Reset value	Type	Description
				sLib end sector 0000000000: Sector 0 000000001: Sector 1 000000010: Sector 2
Bit 31:22	SLIB_ES	0x3FF	ro	 0000111111: Sector 63
				 0001111111: Sector 127 (the last sector of 256KB/128KB main Flash memory)
				sLib instruction start sector 0000000000: Sector 0 0000000001: Sector 1 0000000010: Sector 2
Bit 21:11	SLIB_INST_SS	0x7FF	ro	 000001111111: Sector 63
				 00001111111: Sector 127 (the last sector of 256KB/128KB main Flash memory) 1111111111: None
				sLib start sector 0000000000: Sector 0 0000000001: Sector 1 0000000010: Sector 2
Bit 10:0	SLIB_SS	0x7FF	ro	 000001111111: Sector 63
				 00001111111: Sector 127 (the last sector of 256KB/128KB main Flash memory)

5.8.11 Security library password clear register (SLIB_PWD_CLR)

For Flash security library only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	SLIB_PCLR_VAL	0x0000 0000	wo	sLib password clear value This register is used to key in a correct sLib password in order to unlock sLib functions. The write status of this register is indicated by bit [0] and bit [1] of the SLIB_MISC_STS register.

2023.08.31 Page 94 Rev 2.00

5.8.12 Security library additional status register (SLIB_MISC_STS)

For Flash security library only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:3	Reserved	0x0000000	resd	Kept at its default value.
Bit 2	SLIB_ULKF	0	ro	sLib unlock flag When this bit is set, it indicates that sLib-related setting registers can be configured.
Bit 1	SLIB_PWD_OK	0	ro	sLib password ok This bit is set by hardware when the password is correct.
Bit 0	SLIB_PWD_ERR	0	ro	sLib password error This bit is set by hardware when the password is incorrect and the setting value of the password clear register is different from 0xFFFF FFFF. Note: When this bit is set, the hardware will no longer agree to re-program the password clear register until the next reset.

5.8.13 Flash CRC address register (FLASH_CRC_ADDR)

For the main Flash memory and its extension area.

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	CRC_ADDR	0x0000 0000	wo	CRC address The register is used to select the start address of a sector to be CRC checked. Note: The CRC address must align with the sector start address.

Note: All these bits are write-only, and return no response when being read.

5.8.14 Flash CRC check control register (FLASH_CRC_CTRL)

For the main Flash memory and its extension area.

Bit	Abbr.	Reset value	Type	Description
Bit 31:17	Reserved	0x0000	resd	Kept at its default value.
				CRC start
Bit 16	CRC STRT	0	wo	This bit is used to enable CRC check for user code or sLib code. It is automatically cleared after enabling CRC by hardware.
				Note: CRC data ranges from CRC_ADDR to CRC_ADDR+CRC_SN*1.
Bit 15:0	CRC_SN	0x0000	WO	CRC sector number This bit is used to set the number of sectors for CRC check.

5.8.15 Flash CRC check result register (FLASH_CRC_CHKR)

For the main Flash memory and its extension area.

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	CRC_CHKR	0x0000 0000	ro	CRC check result

Note: All these bits are read-only, and return no response when being written.

2023.08.31 Page 95 Rev 2.00

5.8.16 Security library password setting register (SLIB_SET_PWD)

For Flash security library password setting only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	SLIB_PSET_VAL	0x0000 0000	wo	sLib password setting value Note: This register can be written only after sLib is unlocked. It is used to set a password of sLib. Writing 0xFFFF_FFFF or 0x0000_0000 has no effect.

Note: All these bits are write-only, and return 0 when being read.

5.8.17 Security library address setting register (SLIB_SET_RANGE)

For Flash security library address setting only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:22	SLIB_ES_SET	0x000	wo	sLib end sector setting These bits are used to set the security library end sector. 0000000000: Sector 0 0000000001: Sector 1 0000000010: Sector 2 0000111111: Sector 63 0001111111: Sector 127 (the last sector of 256KB/128KB main Flash memory)
Bit 21:11	SLIB_ISS_SET	0x000	wo	sLib instruction start sector setting These bits are used to set the security library instruction start sector. 00000000000000: Sector 0 00000000001: Sector 1 00000000011: Sector 2 00000111111: Sector 63 00001111111: Sector 127 (the last sector of 256KB/128KB main Flash memory) 1111111111: None
Bit 10:0	SLIB_SS_SET	0x000	wo	sLib start sector setting These bits are used to set the security library start sector. 000000000000: Sector 0 00000000001: Sector 1 0000000010: Sector 2 00000111111: Sector 63 00001111111: Sector 127 (the last sector of 256KB/128KB main Flash memory)

Note:

All these bits are write-only, and return 0 when being read.

This register can be written only when security library is unlocked.

Being out of the Flash address range is an invalid setting.

2023.08.31 Page 96 Rev 2.00

5.8.18 Flash extension memory security library setting register (EM_SLIB_SET)

For Flash extension area only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:24	Reserved	0x00	resd	Kept at its default value.
				Extension memory sLib instruction start sector setting These bits are used to set the security library instruction area start sector. 00000000: Sector 0 00000001: Sector 1 00000010: Sector 2
Bit 23:16	EM_SLIB_ISS_SET	0x000	wo	 00001001: Sector 9 (the last sector of 256 KB main Flash memory)
				00010011: Sector 19 (the last sector of 128 KB main Flash memory) 11111111: None Others: Invalid Note: When it is set to 0xFF, it indicates that the extension area
				from sector 0 to sector 3 is the security library, read-only.
Bit 15:0	EM_SLIB_SET	0x000	wo	Extension memory sLib setting Writing 0x5AA5 can configure the Flash extension area to store the sLib code.

Note: All these bits are write-only, and return no response when being read.

5.8.19 Boot memory mode setting register (BTM_MODE_SET)

For boot memory only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	resd	Kept at its default value.
				Boot memory mode setting 0xFF: Boot memory serves as a system area that stores system boot code
Bit 7:0	BTM_MODE_SET	0x00	wo	Others: Boot memory serves a Flash extension area that stores application code Note: This register is set when the Flash access protection is disabled.

Note: All these bits are write-only, and return no response when being read.

5.8.20 Security library unlock register (SLIB_UNLOCK)

For security library register unlock only.

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	SLIB_UKVAL	0x0000 0000	wo	sLib unlock key value The fixed key value is 0xA35F_6D24, used for security library setting register unlock.

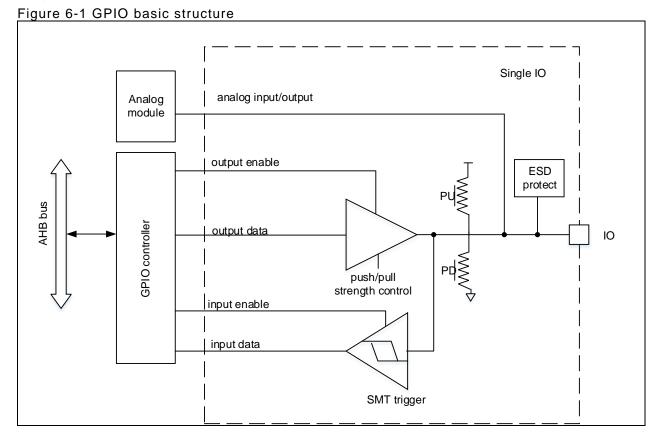
Note: All these bits are write-only, and return 0 when being read.

2023.08.31 Page 97 Rev 2.00

6 GPIOs and IOMUX

6.1 Introduction

AT32F402/405 series supports up to 56 bidirectional I/O pins, namely PA0-PA15, PB0-PB15, PC0-PC15, PD2, PF0-PF1, PF4-PF7, PF11. Each of these pins features communication, control and data collection. In addition, their main features also include:


- Supports general-purpose I/O (GPIO) or multiplexed function I/O (IOMUX);
- Each pin can be configured by software as floating input, pull-up/pull-down input, analog input/output, push-pull/open-drain output, multiplexed push-pull/open-drain output;
- Each pin with individual weak pull-up/pull-down capability;
- Each pin's output drive capability is configurable by software;
- Each pin can be configured as external interrupt input;
- Each pin can be locked.

6.2 Function overview

6.2.1 **GPIO** structure

Each of the GPIO pins can be configured by software as four input modes (floating, pull-up/pull-down and analog input) and four output modes (open-drain, push-pull, alternate function push-pull/open-drain output).

Each I/O port bit can be programmed freely. However, I/O port registers must be accessed by half-words or bytes.

6.2.2 **GPIO** reset status

After power-on or system reset, all pins are configured as floating input mode.

6.2.3 General-purpose input configuration

Mode	ЮМС	PUPD
Floating input		00
Pull-down input	00	10
Pull-up input		01

When I/O port is configured as input:

- Get I/O states by reading the input data register.
- Floating input, pull-up/pull-down input are configurable.
- Schmitt-trigger input is activated.
- Output is disabled.

Note: In floating input mode, it is recommended to set the unused pins as analog input mode in order to avoid leakage caused by intereferences from unused pins in a complex environment.

6.2.4 Analog input/output configuration

Mode	IOMC	PUPD
Mode	101110	1 01 5
Analog input/output	11	Unused

When I/O port is configured as analog input:

- Schmitt-trigger input is disabled.
- Digital input/output is disabled.

Without any pull-up/pull-down resistor.

6.2.5 General-purpose output configuration

Mode	IOMC	ОМ	HDRV ODRV[1:0]	PUPD
Push-pull without pull-	01	0	000: Output mode, normal sourcing/sinking strength	00 or 11
Push-pull with pull-up	01	0	001: Output mode, large sourcing/sinking strength 010: Output mode, normal sourcing/sinking strength	01
Push-pull with pull-down	01	0	011: Output mode, normal sourcing/sinking strength 1xx: Output mode, maximum sourcing/sinking strength	10
Open-drain without pull-up/pull-down	01	1	000: Output mode, normal sourcing/sinking strength	00 or 11
Open-drain with pull-up	01	1	001: Output mode, large sourcing/sinking strength 010: Output mode, normal sourcing/sinking strength 011: Output mode, normal sourcing/sinking strength	01
Open-drain with pull-down	01	1	1xx: Output mode, maximum sourcing/sinking strength	10

When I/O port is configured as output:

- Schmitt-trigger input is enabled;
- Output through output register;
- In open-drain mode, forced output 0, and use pull-up resistor to output 1;
- In push-pull mode, output register is used to output 0/1;

GPIO set/clear register is used to set/clear the corresponding GPIO output data registers.

Note: If both IOCB and IOSB bits are set in the GPIO set/clear register, the IOSB takes priority.

6.2.6 **I/O port protection**

Locking mechanism can freeze the I/O configuration for the purpose of protection. When LOCK is applied to a port bit, its configuration cannot be modified until the next reset or power-on.

6.2.7 **IOMUX structure**

Several peripheral functions can be mapped on each IO pin. Peripheral input/output corresponding to an I/O pin is selected through IOMUX input/output table. Each I/O pin has up to 16 IOMUX mapping options for flexible selection, configured through the GPIOx_MUXL (for pin0 to pin7) and GPIOx_MUXH (for pin8 to pin15) registers.

Each I/O pin is connected to only one peripheral's pin by setting the GPIOx_MUXL or GPIOx_MUXH register so that there can be no conflict between peripherals sharing the same pin.

While being used as multiplexed function input, the I/O port should be configured as input modes (floating, pull-up and pull-down input).

To enable multiplexed function output, the port is configured as multiplexed function mode push-pull or open-drain mode by setting GPIOx_CFGR or GPIOx_OMODE register. In this case, the pins are disconnected from GPIO controller, and controlled by IOMUX controller, instead.

To achieve bidirectional multiplexed function, the port needs to be configured as multiplexed function modes (push-pull or open-drain), controlled by IOMUX controller.

Figure 6-2 IOMXU Structure Single IO analog input/output Analog module output enable **ESD** protect OMUX control output data Ю push/pull strength control input enable Peripheral Module input data SMT trigger

6.2.8 Multiplexed function pull-up/pull-down configuration

Mode	IOMC	PUPD
Multiplexed function floating		00
Multiplexed function pull-down	10	10
Multiplexed function pull-up		01

When an I/O port is configured as input:

- Get an I/O pin state by reading input data register.
- Floating input, pull-up/pull-down input are configurable.
- Schmitt-trigger input is activated.
- GPIO pin output is disabled.

6.2.9 IOMUX input/output

The multiplexed function of each I/O port line is configured through the GPIOx_MUXL (from pin0 to pin7) or GPIOx_MUXH (from pin8 to pin15) register.

Table 6-1 Port A multiplexed function configuration with GPIOA_MUX* register

	1 4 5 1 0 1	1 OIL /\ III III II	iipicxca rain	ction comingu	Tation with Gi	IOA_WOA	register	
Pin name	MUX0	MUX1	MUX2	MUX3	MUX4	MUX5	MUX6	MUX7
PA0		TMR2_CH1 TMR2_EXT		TMR9_CH2C	I2C2_SCL		USART2_RX	USART2_CT S
PA1		TMR2_CH2		TMR9_CH1C	I2C2_SDA	I2C1_SMBA	I2SF5_SD	USART2_RT S_DE
PA2		TMR2_CH3		TMR9_CH1		I2SF5_CKIN		USART2_TX
PA3		TMR2_CH4		TMR9_CH2		I2S2_MCK		USART2_RX
PA4					I2C1_SCL	SPI1_CS/I2S 1_WS	SPI3_CS/I2S3_WS	USART2_CK
PA5		TMR2_CH1 TMR2_EXT				SPI1_SCK/I2 S1_CK	USART3_CK	USART3_RX
PA6		TMR1_BRK	TMR3_CH1			SPI1_MISO/I2 S1_MCK	I2S2_MCK	USART3_CT S
PA7		TMR1_CH1C	TMR3_CH2		I2C3_SCL	SPI1_MOSI/I2 S1_SD		USART3_TX
PA8	CLKOUT	TMR1_CH1		TMR9_BRK	I2C3_SCL			USART1_CK
PA9	CLKOUT	TMR1_CH2			I2C3_SMBA	SPI2_SCK/I2 S2_CK		USART1_TX
PA10	ERTC_REFI N	TMR1_CH3				SPI2_MOSI/I2 S2_SD	I2SF5_SD	USART1_RX
PA11		TMR1_CH4			I2C2_SCL	SPI2_CS/I2S 2_WS	I2C1_SMBA	USART1_CT S
PA12		TMR1_EXT			I2C2_SDA	SPI2_MISO/I2 S2_MCK	I2SF5_SDEXT	USART1_RT S_DE
PA13	SWDIO	IR_OUT			I2C1_SDA	I2S_SDEXT	SPI3_MISO/I2S3_M CK	
PA14	SWCLK				I2C1_SMBA		SPI3_MOSI/I2S3_S D	
PA15		TMR2_CH1 TMR2_EXT				SPI1_CS/I2S 1_WS	SPI3_CS/I2S3_WS	USART1_TX

Pin name	MUX8	MUX9	MUX10	MUX11	MUX12	MUX13	MUX14	MUX15
PA0	USART4_TX							EVENTOUT
PA1	USART4_RX			QSPI1_IO3				EVENTOUT
PA2				QSPI1_CS				EVENTOUT
PA3								EVENTOUT
PA4	USART6_TX	TMR14_CH1	OTGHS1_SOF					EVENTOUT
PA5	USART6_RX	TMR13_CH1						EVENTOUT
PA6	USART3 RX	TMR13_CH1		QSPI1_MOSI_I O0		QSPI1_IO2		EVENTOUT
PA7	-	TMR14_CH1		QSPI1_MISO_I O1				EVENTOUT
PA8	USART2_TX	UART7_TX	OTGFS1_SOF					EVENTOUT
PA9	I2C1_SCL	TMR14_BR K	OTGFS1_VBUS					EVENTOUT
PA10	I2C1_SDA		OTGFS1_ID				I2SF5_MCK	EVENTOUT
PA11	USART6_TX	CAN1_RX						EVENTOUT
PA12	USART6_RX	CAN1_TX						EVENTOUT
PA13			OTGFS1_OE					EVENTOUT
PA14	USART2_TX							EVENTOUT
PA15	USART2_RX	UART7_TX	USART4_RTS_D E	QSPI1_IO2				EVENTOUT

Table 6-2 Port B multiplexed function configuration with GPIOB_MUX* register

Pin name	MUX0	MUX1	MUX2	MUX3	MUX4	MUX5	MUX6	MUX7
PB0		TMR1_CH2C	TMR3_CH3			SPI1_MISO / I2S1_MCK	SPI3_MOSI/I2S3_S D	USART2_RX
PB1		TMR1_CH3C	TMR3_CH4			SPI1_MOSI / I2S1_SD	SPI2_SCK/I2S2_CK	USART2_CK
PB2		TMR2_CH4	TMR3_EXT		I2C3_SMBA		SPI3_MOSI/I2S3_S D	
PB3	swo	TMR2_CH2			I2C2_SDA	SPI1_SCK/I2 S1_CK	SPI3_SCK/I2S3_CK	USART1_RX
PB4			TMR3_CH1	TMR11_BRK	I2C3_SDA	SPI1_MISO/I2 S1_MCK	SPI3_MISO/I2S3_M CK	USART1_CT S
PB5			TMR3_CH2	TMR10_BRK	I2C3_SMBA	SPI1_MOSI/I2 S1_SD	SPI3_MOSI/I2S3_S D	USART1_CK
PB6			TMR4_CH1	TMR10_CH1C	I2C1_SCL	I2S1_MCK	I2SF5_WS	USART1_TX
PB7			TMR4_CH2	TMR11_CH1C	I2C1_SDA		I2SF5_CK	USART1_RX
PB8		TMR2_CH1 TMR2_EXT	TMR4_CH3	TMR10_CH1	I2C1_SCL		I2SF5_SDEXT	USART1_TX
PB9	IR_OUT	TMR2_CH2	TMR4_CH4	TMR11_CH1	I2C1_SDA	SPI2_CS/I2S 2_WS	I2SF5_SD	I2C2_SDA
PB10		TMR2_CH3			I2C2_SCL	SPI2_SCK/I2 S2_CK	12S3_MCK	USART3_TX
PB11		TMR2_CH4			I2C2_SDA	I2SF5_CKIN		USART3_RX
PB12		TMR1 BRK			I2C2 SMBA	SPI2_CS/I2S 2 WS	SPI3 SCK/I2S3 CK	
PB13	CLKOUT	TMR1 CH1C			I2C3 SMBA	SPI2_SCK/I2 S2 CK	I2SF5 CK	I2C3 SCL
PB14		TMR1_CH2N			I2C3_SDA	SPI2_MISO/I2 S2_MCK	I2S_SDEXT	USART3_RT S_DE
PB15	RTC_REFIN	TMR1_CH3N			I2C3_SCL	SPI2_MOSI/I2 S2_SD		

Pin name	MUX8	MUX9	MUX10	MUX11	MUX12	MUX13	MUX14	MUX15
PB0	USART3_CK			QSPI1_MOSI_I O0			I2SF5_CK	EVENTOUT
PB1	USART3_RT S_DE	TMR14_CH1		QSPI1_SCK			I2SF5_WS	EVENTOUT
PB2		TMR14_CH1C		QSPI1_SCK				EVENTOUT
PB3	USART1_RT S_DE	UART7_RX	USART5_TX	QSPI1_IO3				EVENTOUT
PB4		UART7_TX	USART5_RX	QSPI1_SCK			I2S_SDEXT	EVENTOUT
PB5	USART5_RX		USART5_CK_ RTS_DE	QSPI1_MOSI_I O0				EVENTOUT
PB6	USART5_TX		USART4_CK	QSPI1_CS				EVENTOUT
PB7	USART4_CT S			QSPI1_MISO_I O1				EVENTOUT
PB8	USART5_RX	CAN1_RX					I2SF5_SD	EVENTOUT
PB9	USART5_TX	CAN1_TX	I2S1_MCK	QSPI1_CS				EVENTOUT
PB10				QSPI1_MISO_I O1		QSPI1_CS		EVENTOUT
PB11		TMR13_BRK		QSPI1_MOSI_I O0				EVENTOUT
PB12	USART3 CK		OTGHS1_ID				I2SF5 WS	EVENTOUT
PB13	USART3_CT S		OTGHS1_VBU S				_	EVENTOUT
PB14								EVENTOUT
PB15								EVENTOUT

Table 6-3 Port C multiplexed function configuration with GPIOC_MUX* register

Pin name	MUX0	MUX1	MUX2	MUX3	MUX4	MUX5	MUX6	MUX7
PC0					I2C3_SCL			I2C1_SCL
PC1					I2C3_SDA	SPI3_MOSI/I2 S3_SD	SPI2_MOSI/I2S2_S D	I2C1_SDA
PC2						SPI2_MISO/I2 S2_MCK	I2S_SDEXT	
PC3						SPI2_MOSI/I2 S2_SD		
PC4				TMR9_CH1		12S1_MCK		USART3_TX
PC5				TMR9_CH2	I2C1_SMBA			USART3_RX
PC6		TMR1_CH1	TMR3_CH1		I2C1_SCL	12S2_MCK		
PC7		TMR1_CH2	TMR3_CH2		I2C1_SDA	SPI2_SCK/I2 S2_CK	12S3_MCK	
PC8		TMR1_CH3	TMR3_CH3				I2SF5_MCK	UART8_TX
PC9	CLKOUT	TMR1_CH4	TMR3_CH4		I2C3_SDA	I2SF5_CKIN		UART8_RX
PC10							SPI3_SCK/I2S3_CK	USART3_TX
PC11						I2S_SDEXT	SPI3_MISO/I2S3_M CK	USART3_RX
PC12				TMR11_CH1	I2C2_SDA		SPI3_MOSI/I2S3_S D	USART3_CK
PC13								
PC14								
PC15								

Pin name	MUX8	MUX9	MUX10	MUX11	MUX12	MUX13	MUX14	MUX15
PC0	USART6_T X	UART7_TX						EVENTOUT
PC1	USART6_R X	UART7_RX						EVENTOUT
PC2	UART8_TX							EVENTOUT
PC3	UART8_RX							EVENTOUT
PC4		TMR13_CH1		QSPI1_IO2				EVENTOUT
PC5		TMR13_CH1C		QSPI1_IO3				EVENTOUT
PC6	USART6_T X	UART7_TX						EVENTOUT
PC7	USART6_R X	UART7_RX						EVENTOUT
PC8	USART6_C K_RTS_DE			QSPI1_IO2				EVENTOUT
PC9	I2C1_SDA		OTGHS1_OE	QSPI1_MOSI_IO				EVENTOUT
PC10	USART4_T X			QSPI1_MISO_IO 1				EVENTOUT
PC11	USART4_R X			QSPI1_CS				EVENTOUT
PC12	USART4_C K		USART5_TX					EVENTOUT
PC13								EVENTOUT
PC14								EVENTOUT
PC15								EVENTOUT

	Table 6-4 l	Port D mu	ltiplexed func	tion configu	ation with G	PIOD_MUX*	register	
Pin name	MUX0	MUX1	MUX2	MUX3	MUX4	MUX5	MUX6	MUX7
PD2			TMR3_EXT					USART3_RT S_DE
Pin name	MUX8	MUX9	MUX10	MUX11	MUX12	MUX13	MUX14	MUX15

Table 6-5 Port F multiplexed function configuration with GPIOF_MUX* register

Pin name	MUX0	MUX1	MUX2	MUX3	MUX4	MUX5	MUX6	MUX7
PF0		TMR1_CH1			I2C1_SDA			
PF1		TMR1_CH2C			I2C1_SCL	SPI2_CS / I2S2_WS		
PF4		TMR2_CH1			I2C1_SDA			
PF5		TMR2_CH2			I2C1_SCL			
PF6					I2C2_SCL			
PF7					I2C2_SDA			
PF11								

Pin name	MUX8	MUX9	MUX10	MUX11	MUX12	MUX13	MUX14	MUX15
PF0								EVENTOUT
PF1								EVENTOUT
PF4								EVENTOUT
PF5								EVENTOUT
PF6		UART7_RX		QSPI1_MOSI_IO 0	TEST_OUT[14]			EVENTOUT
PF7		UART7_TX			TEST_OUT[15]			EVENTOUT
PF11								EVENTOUT

2023.08.31 Page 107 Rev 2.00

6.2.10 Peripheral MUX function configuration

IOMUX function configuration is as follows:

- To use a peripheral pin in MUX output, it is configured as multiplexed push-pull/open-drain output.
- To use a peripheral pin in MUX input, it is configured as floating input/pull-up/pull-down input.
- For ADC peripherals, the pins of analog channels should be configured as analog input/output mode.
- For I²C peripherals that intend to use pins as bidirectional functions, open-drain mode is required.
- For USB peripheral pins, configure the corresponding IOMUX and enable corresponding clocks in CRM; there is no need of GPIO status configuration.

6.2.11 **IOMUX mapping priority**

The unique peripheral multiplexed function can be configured through the GPIOx_MUXL/GPIOx_MUXH register, except individual pins that may be directly owned by hardware.

Some pins have been directly owned by specific hardware feature, whatever GPIO configuration.

Table 6-6 Pins owned by hardware

Pin	Enable bit	Description			
PA0	PWC_CTRLTS[8] =1	Once enabled, PA0 pin acts as WKUP1 of PWC.			
PC13	PWC_CTRLSTS[9] = 1	Once enabled, PA0 pin acts as WKUP2 of PWC.			
PA2	PWC_CTRLTS[11] =1	Once enabled, PA2 pin acts as WKUP4 of PWC.			
PC5	PWC_CTRLTS[12] =1	Once enabled, PC5 pin acts as WKUP5 of PWC.			
PB5	PWC_CTRLTS[13] =1	Once enabled, PB5 pin acts as WKUP6 of PWC.			
PB15	PWC_CTRLTS[14] =1	Once enabled, PB15 pin acts as WKUP7 of PWC.			
	(ERTC_CTRL[23]=1)				
	(ERTC_CTRL[22:21]!=00)				
PC13	(ERTC_CTRL[11]=1&	Once enabled, PC13 pin acts as RTC channel.			
FC13	ERTC_TAMP[17]=0)				
	(ERTC_TAMP[0]=1&				
	ERTC_TAMP[16]=0)				
	(ERTC_CTRL[11]=1& ERTC_TAMP[17]=1)				
PA0	(ERTC_TAMP[0]=1&	Once enabled, PA0 pin acts as TAMPER2_BPR.			
	ERTC_TAMP[16]=1)				
	(ERTC_TAMP[3]=1)				
PC14	CMR_BPDC[0]=1	Once enabled, PC14 acts as LEXT channel.			
DC15	CMR_BPDC[0]=1 &	Once enabled DC15 acts as LEVT sharped			
PC15	CMR_BPDC[2]=0	Once enabled, PC15 acts as LEXT channel.			
PF0	CMR_CTRL[16]=1	Once enabled, PF0 acts as HEXT channel.			
PF1	CMR_CTRL[16]=1& CMR_CTRL[18]=0	Once enabled, PF1 acts as HEXT channel.			

Note: PA0 or PC13 cannot be used as TAMPER_BPR function or WKUP of PWC simultaneously.

6.2.12 External interrupt/wake-up lines

Each pin can be used as an external interrupt input. The corresponding pin should be configured as input mode.

6.3 GPIO registers

The table below lists GPIO register map and their reset values. These peripheral registers can be accessed by bytes (8 bits), half-words (16 bits) or words (32 bits).

Table 6-7 GPIO register map and reset values

Register abbr.	Offset	Reset value
GPIOA_CFGR	0x00	0x2800 0000
GPIOx_CFGR(x =B,C,D,F)	0x00	0x0000 0080(B) 0x0000 0000
GPIOx_OMODER	0x04	0x0000 0000
GPIOx_ODRVR	0x08	0x0000 00C0(B) 0x0000 0000
GPIOA_PULL	0x0C	0x2400 0000(A)
$\overline{GPIOx_PULL(x = B,C,D,F)}$	0x0C	0x0000 0000 0x0080 0000(F)
GPIOx_IDT	0x10	0x0000 XXXX
GPIOx_ODT	0x14	0x0000 0000
GPIOx_SCR	0x18	0x0000 0000
GPIOx_WPR	0x1C	0x0000 0000
GPIOx_MUXL	0x20	0x0000 0000
GPIOx_MUXH	0x24	0x0000 0000
GPIOx_CLR	0x28	0x0000 0000
GPIOx_HDRV	0x3C	0x0000 0000

6.3.1 GPIO configuration register (GPIOx_CFGR) (x=A..F)

Address offset: 0x00

Reset value: 0x2800 0000 for port A, 0x0000_0080 for port B, and 0x00000000 for other ports.

Bit	Abbr.	Reset value	Туре	Description
Bit 2y+1	:2y IOMCy	0x2800 0000	rw	GPIOx mode configuration (y=0~15) This field is used to configure the GPIOx mode: 00: Input mode (reset state) 01: General-purpose output mode 10: Multiplexed function mode 11: Analog

6.3.2 **GPIO** output mode register (GPIOx_OMODE) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Always 0.
				GPIOx output mode configuration (y=015)
D:: 45 0	014	0.0000		This field is used to configure the output mode of GPIOx:
Bit 15:0	OM	0x0000	rw	0: Push-pull (reset state)
				1: Open-drain

6.3.3 **GPIO** drive capability register (GPIOx_ODRVR) (x=A..F)

Address offset: 0x08

Reset value: 0x0000_00C0 for port B, and 0x0000 0000 for other ports.

Bit	Abbr.	Reset value	Туре	Description
				GPIOx drive capability (y=015)
				This field is used to configure the I/O port drive capability
Bit 2y+1	2y ODRVy	0x0000 0000	rw	x0: Normal sourcing/sinking strength
				01: Large sourcing/sinking strength
				11: Normal sourcing/sinking strength

6.3.4 GPIO pull-up/pull-down register (GPIOx_PULL) (x=A..F)

Address offset: 0x0C

Reset value: 0x2400_0000 for port A, 0x0000_0000 for port B, and 0x0000_0000 for other ports.

Bit	Abbr.	Reset value	Туре	Description
Bit 2y+1:2y PULLy			GPIOx pull-up/pull-down configuration (y=015)	
			This field is used to configure the pull-up/pull-down of the I/O port.	
	0x2400 0000	rw	00: No pull-up/pull-down	
			01: Pull-up	
				10: Pull-down

6.3.5 **GPIO** input data register (GPIOx_IDT) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Always 0.
				GPIOx input data
Bit 15:0	IDT	0xXXXX	ro	It indicates the input status of I/O port. Each bit corresponds to an I/O.

6.3.6 **GPIO** output data register (GPIOx_ODT) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Always 0.
				GPIOx output data
				Each bit represents an I/O port.
Bit 15:0	ODT	0x0000	rw	It indicates the output status of I/O port.
				0: Low
				1: High

6.3.7 GPIO set/clear register (GPIOx_SCR) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
				GPIOx clear bit
Bit 31:16	IOCB	0x0000	wo	The corresponding ODT register bit is cleared by writing "1" to these bits. Otherwise, the corresponding ODT register bit remains unchanged, which acts as ODT register bit operations.
				0: No action to the corresponding ODT bits
				1: Clear the corresponding ODT bits
				GPIOx set bit
Bit 15:0	IOSB	0x0000	wo	The corresponding ODT register bit is set by writing "1" to these bits. Otherwise, the corresponding ODT register bit remains unchanged, which acts as ODT register bit operations

If both IOCB and IOSB bits are set to 1, the IOSB takes the priority.

0: No action to the corresponding ODT bits

1: Set the corresponding ODT bits

6.3.8 GPIO write protection register (GPIOx_WPR) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:17	Reserved	0x0000	resd	Kept at its default value.
				Write protect sequence
Bit 16	WPSEQ	0x0	rw	Write protect enable sequence bit and WPEN bit must be enabled at the same time to achieve write protection for some I/O bits.
	WPSEQ	0.00	I VV	Write protect enable bit is executed four times in the order below: write "1" -> write "0" -> write "1" -> read. Note that the value of WPEN bit cannot be modified during this period.
		0.0000		Write protect enable
Bit 15:0	WPFN			Each bit corresponds to an I/O port.
	WPEN	0x0000	rw	0: No effect
				1: Write protect

6.3.9 **GPIO** multiplexed function low register (**GPIO**x_MUXL) (x=A..F)

Address offset: 0x20 Reset value: 0x00000000

Bit	Abbr.	Reset value	Туре	Description
				Multiplexed function select for GPIOx pin y (y=07)
				This field is used to configure multiplexed function I/Os.
				0000: MUX0
				0001: MUX1
				0010: MUX2
				0011: MUX3
				0100: MUX4
				0101: MUX5
Dit Av. 2	MUNIC	0.40	rw	0110: MUX6
DIL 4y+3	:4y MUXLy	0x0		0111: MUX7
				1000: MUX8
				1001: MUX9
				1010: MUX10
				1011: MUX11
				1100: MUX12
				1101: MUX13
				1110: MUX14
				1111: MUX15

2023.08.31 Page 111 Rev 2.00

6.3.10 **GPIO** multiplexed function high register (**GPIO**x_MUXH) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
				Multiplexed function select for GPIOx pin y (y=815)
				This field is used to configure multiplexed function I/Os.
				0000: MUX0
				0001: MUX1
				0010: MUX2
				0011: MUX3
				0100: MUX4
		0x0	rw	0101: MUX5
Dit 4	D. A MALINEL.			0110: MUX6
Bit 4y+	3:4y MUXHy			0111: MUX7
				1000: MUX8
				1001: MUX9
				1010: MUX10
				1011: MUX11
				1100: MUX12
				1101: MUX13
				1110: MUX14
				1111: MUX15

6.3.11 GPIO port bit clear register (GPIOx_CLR) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
				GPIOx clear bit
Bit 15:0	IOCB	0x0000	wo	The corresponding ODT register bit is cleared by writing "1" to these bits. Otherwise, the corresponding ODT register bit remains unchanged, which acts as ODT register bit operations.
				0: No action to the corresponding ODT bits
				1: Clear the corresponding ODT bits

2023.08.31 Page 112 Rev 2.00

6.3.12 GPIO port bit toggle register (GPIOx_TOGR) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
				GPIOx toggle bit
Bit 15:0	t 15:0 IOTB 0x0000 wo	wo	The corresponding ODT register bit value is toggled by writing "1" to this bit, and remains unchanged when writing "0", which acts as ODT register bit operations.	
				0: No action to the corresponding ODT bits
				1: Toggle the corresponding ODT bits

6.3.13 GPIO huge current control register (GPIOx_HDRV) (x=A..F)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
		0x0000	rw	Huge sourcing/sinking strength control
Bit 15:0	HDRV			0: Not active
DIL 15.0	HURV			1: GPIO is configured as maximum sourcing/sinking strength

2023.08.31 Page 113 Rev 2.00

7 System configuration controller (SYSCFG)

7.1 Introduction

This device contains a set of system configuration registers. The system configuration controller is mainly set to:

- Manage the external interrupts connected to GPIOs
- Control the memory mapping mode
- Manage IRTMR GPIO configurations

7.2 SCFG registers

The table below shows SCFG register map and their reset values.

These peripheral registers must be accessed by words (32 bits).

Table 7-1 SCFG register map and reset value

Register abbr.	Offset	Reset value
SCFG_CFG1	0x00	0x0000 000X
SCFG_CFG2	0x04	0x0000 0000
SCFG_EXINTC1	80x0	0x0000 0000
SCFG_EXINTC2	0x0C	0x0000 0000
SCFG_EXINTC3	0x10	0x0000 0000
SCFG_EXINTC4	0x14	0x0000 0000
SCFG_UHDRV	0x2C	0x0000 0000

7.2.1 SCFG configuration register 1 (SCFG CFG1)

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x00000 00	resd	Kept at its default value.
Bit 7:6	IR_SRC_SEL	0x0	rw	Infrared modulation envelope signal source selection This field is used to select the infrared modulation envelope signal source. 00: TMR10 01: USART1 10: USART2 11: Reserved
Bit 5	IR_POL	0x0	rw	Infrared output polarity selection 0: Infrared output (IR_OUT) is not inversed 1: Infrared output (IR_OUT) is inversed
Bit 4:2	Reserved	0x0	resd	Kept at its default value.
Bit 1:0	MEM_MAP_SEL	0xX	ro	Boot mode status bit This bit is read-only, indicating the boot mode after reset. X0: Boot from main Flash memory 01: Boot from system memory 11: Boot from internal SRAM

7.2.2 SCFG configuration register 2 (SCFG_CFG2)

Bit	Abbr.	Reset value	Type	Description
Bit 31:30	12S_FD	0x0	rw	I ² Sfull duplex configuration bit It is used to configure I ² S full duplex mode. This bit must remain 00 if there is no need for I ² S full duplex configuration. Refer to Section 13.3.2 for details. 00: SPI/I ² S1~3 operates separately 01: I ² S1 and I ² S3 are configured as full-duplex mode 10: I ² S2 and I ² S3 are configured as full-duplex mode 11: I ² S1 and I ² S2 are configured as full-duplex mode
Bit 29:9	Reserved	0x0000 000	resd	Kept at its default value.
Bit 8	SRAM_OPERR_STS	0	rc_w1	SRAM odd parity error status This bit is cleared by writing "1".

				0: No SRAM odd parity error
				1: SRAM odd parity error
Bit 7:3	Reserved	0x0000 000	resd	Kept at its default value.
				PVM lock enable
				0: Disconnect the PVM interrupt with TIM1/TIM9
				/TIM10/11/12/13/14 break input. The PVMSEL and PVMEN
Bit 2	PVM_LK	0x0	rw	bits can be modified by software.
				1: Connect the PVM interrupt with TIM1/TIM9/
				TIM10/11/12/13/14 break input. The PVMSEL and PVMEN
				bits are read-only, and cannot be modified by software.
				SRAM odd parity error lock enable
				0: Disconnect SRAM odd parity error with TIM1/TIM9
Bit 1	SRAM OPERR LK	0	rw	/TIM10/11/13/14 break input.
				1: Connect SRAM odd parity error with TIM1/TIM9
				/TIM10/11/13/14 break input.
Bit 0	LOCKUP LK	0x0	rw	CM4F LOCKUP bit enable

7.2.3 SCFG external interrupt configuration register 1 (SCFG EXINTC1)

Bit	Abbr.	Reset value	Type	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
				EXINT3 input source configuration
				These bits are used to select the input source for the
				EXINT3 external interrupt.
Bit 15:12	EXINT3	0x0	rw	0000: GPIOA pin 3
				0001: GPIOB pin 3
				0010: GPIOC pin 3
				Others: Reserved
				EXINT2 input source configuration
				These bits are used to select the input source for the
				EXINT2 external interrupt.
Bit 11:8	EXINT2	0x0	rw	0000: GPIOA pin 2
DIL 11.0	EAINIZ		I VV	0001: GPIOB pin 2
				0010: GPIOC pin 2
				0011: GPIOD pin 2
				Others: Reserved
	EXINT1			EXINT1 input source configuration
		0x0		These bits are used to select the input source for the
				EXINT1 external interrupt.
Bit 7:4			rw	0000: GPIOA pin 1
D.C 7			1 VV	0001: GPIOB pin 1
				0010: GPIOC pin 1
				0101: GPIOF pin 1
				Others: Reserved
				EXINT0 input source configuration
				These bits are used to select the input source for the
				EXINT0 external interrupt.
Bit 3:0	EXINT0	0x0	rw	0000: GPIOA pin 0
2 5.0		55		0001: GPIOB pin 0
				0010: GPIOC pin 0
				0101: GPIOF pin 0
				Others: Reserved

2023.08.31 Page 115 Rev 2.00

7.2.4 SCFG external interrupt configuration register 2 (SCFG_EXINTC2)

Bit	Abbr.	Reset value	Type	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
Bit 15:12	EXINT7	0x0	rw	EXINT7 input source configuration These bits are used to select the input source for the EXINT7 external interrupt. 0000: GPIOA pin 7 0001: GPIOB pin 7 0010: GPIOC pin 7 0101: GPIOF pin 7 Others: Reserved
Bit 11:8	EXINT6	0x0	rw	EXINT6 input source configuration These bits are used to select the input source for the EXINT6 external interrupt 0000: GPIOA pin 6 0001: GPIOB pin 6 0010: GPIOC pin 6 0101: GPIOF pin 6 Others: Reserved
Bit 7:4	EXINT5	0x0	rw	EXINT5 input source configuration These bits are used to select the input source for the EXINT5 external interrupt. 0000: GPIOA pin 5 0001: GPIOB pin 5 0010: GPIOC pin 5 0101: GPIOF pin 5 Others: Reserved
Bit 3:0	EXINT4	0x0	rw	EXINT4 input source configuration These bits are used to select the input source for the EXINT4 external interrupt. 0000: GPIOA pin 4 0001: GPIOB pin 4 0010: GPIOC pin 4 0101: GPIOF pin 4 Others: Reserved

7.2.5 SCFG external interrupt configuration register 3 (SCFG_EXINTC3)

Bit	Abbr.	Reset value	Type	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
Bit 15:12	EXINT11	0x0	rw	EXINT11 input source configuration These bits are used to select the input source for the EXINT11 external interrupt. 0000: GPIOA pin 11 0001: GPIOB pin 11 0010: GPIOC pin 11 0101: GPIOF pin 11
Bit 11:8	EXINT10	0x0	rw	Others: Reserved EXINT10 input source configuration These bits are used to select the input source for the EXINT10 external interrupt. 0000: GPIOA pin 10 0001: GPIOB pin 10 0010: GPIOC pin 10 Others: Reserved
Bit 7:4	EXINT9	0x0	rw	EXINT9 input source configuration These bits are used to select the input source for the EXINT9 external interrupt. 0000: GPIOA pin 9 0001: GPIOB pin 9 0010: GPIOC pin 9 Others: Reserved
Bit 3:0	EXINT8	0x0	rw	EXINT8 input source configuration

These bits are used to select the input source for the EXINT8 external interrupt.
0000: GPIOA pin 8
0001: GPIOB pin 8
0010: GPIOC pin 8
Others: Reserved

7.2.6 SCFG external interrupt configuration register 4 (SCFG_EXINTC4)

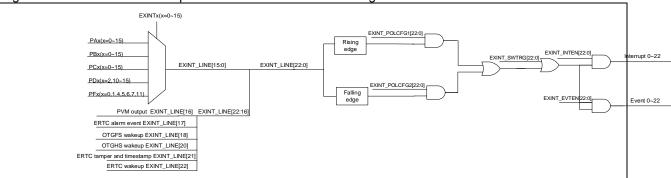
Bit	Abbr.	Reset value	Type	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
				EXINT15 input source configuration
				These bits are used to select the input source for the
				EXINT15 external interrupt.
Bit 15:12	EXINT15	0x0	rw	0000: GPIOA pin 15
				0001: GPIOB pin 15
				0010: GPIOC pin 15
				Others: Reserved
				EXINT14 input source configuration
				These bits are used to select the input source for the
				EXINT14 external interrupt.
Bit 11:8	EXINT14	0x0	rw	0000: GPIOA pin 14
				0001: GPIOB pin 14
				0010: GPIOC pin 14
				Others: Reserved
				EXINT13 input source configuration
				These bits are used to select the input source for the
				EXINT13 external interrupt.
Bit 7:4	EXINT13	0x0	rw	0000: GPIOA pin 13
				0001: GPIOB pin 13
				0010: GPIOC pin 13
				Others: Reserved
				EXINT12 input source configuration
				These bits are used to select the input source for the
				EXINT12 external interrupt.
Bit 3:0	EXINT12	0x0	rw	0000: GPIOA pin 12
				0001: GPIOB pin 12
				0010: GPIOC pin 12
				Others: Reserved

2023.08.31 Page 117 Rev 2.00

7.2.7 SCFG ultra high sourcing/sinking strength register (SCFG_UHDRV)

Bit	Abbr.	Reset value	Type	Description
Bit 31:3	Reserved	0x0000 0000	resd	Kept at its default value.
Bit 2	PB10_UH	0x0	rw	PB10 Ultra high sourcing/sinking strength This bit is written by software to control PB10 PAD sourcing/sinking strength. 0: Not active 1: Corresponding GPIO is switched to ultra high sourcing/sinking strength When this bit is set, the control bits of GPIOx_ODRVR&GPIOx_HDRV become invalid.
Bit 1	PB9_UH	0x0	rw	PB9 Ultra high sourcing/sinking strength This bit is written by software to control PB9 PAD sourcing/sinking strength. 0: Not active 1: Corresponding GPIO is switched to ultra high sourcing/sinking strength When this bit is set, the control bits of GPIOx ODRVR&GPIOx HDRV becomes invalid.
Bit 0	PB3_UH	0x0	rw	PB3 Ultra high sourcing/sinking strength This bit is written by software to control PB3 PAD sourcing/sinking strength. 0: Not active 1: Corresponding GPIO is switched to ultra high sourcing/sinking strength When this bit is set, the control bits of GPIOx_ODRVR&GPIOx_HDRV becomes invalid.

2023.08.31 Page 118 Rev 2.00



8 External interrupt/event controller (EXINT)

8.1 EXINT introduction

EXINT consists of 22 interrupt lines EXINT_LINE[22:0] (in which bit [19] is reserved), each of which can generate an interrupt or event by edge detection trigger or software trigger. EXINT can enable or disable an interrupt or event independently through software configuration, and utilizes different edge detection modes (rising edge, falling edge or both edges) as well as trigger modes (edge detection, software trigger or both triggers) to respond to trigger source in order to generate an interrupt or event.

Figure 8-1 External interrupt/event controller block diagram

Main features:

- EXINT interrupt lines 0~15 mapping I/O can be configured independently
- Independent trigger selection on each interrupt line
- Independent enable bit for each interrupt
- Independent enable bit for each event
- Up to 22 software triggers that can be generated and cleared independently
- Independent status bit for each interrupt
- Each interrupt can be cleared independently

8.2 Function overview and configuration procedure

With up to 22 interrupt lines EXINT_LINE[22:0] (in which bit [19] is reserved), EXINT can detect not only GPIO external interrupt sources but also six internal sources such as PVM output, ERTC alarm events, ERTC tamper and timestamp events, ERTC wakeup events, OTGFS wakeup events and OTGHS wakeup events through edge detection mechanism, where, GPIO interrupt sources can be selected with the SCFG_EXINTCx register. It should be noted that these input sources are mutually exclusive. For example, EXINT_LINE0 is allowed to select one of PAO/PBO/PCO/PD0 pins, instead of taking both PAO and PB0 as the input sources at the same time.

EXINT supports multiple edge detection modes, including rising edge, falling edge or both edges, selected by EXINT_POLCFG1 and EXINT_POLCFG2 registers. Active edge trigger detected on the interrupt line can be used to generate an event or interrupt.

In addition, EXINT supports s independent software trigger for the generation of an event or interrupt. This is achieved by setting the corresponding bits in the EXINT SWTRG register.

EXINT can enable or disable an interrupt or event individually through software configuration such as EXINT_INTEN and EXINT_EVTEN registers, indicating that t the corresponding interrupt or event must be enabled prior to either edge detection or software trigger.

EXINT also features an independent interrupt status bit. Reading access to EXINT_INTSTS register can obtain the corresponding interrupt status. The status flag is cleared by writing "1" to this register.

Interrupt initialization procedure

- Select an interrupt source by setting the SCFG_EXINTCx register (this is required when GPIO is used as an interrupt source);
- Select a trigger mode by setting the EXINT POLCFG1 and EXINT POLCFG2 registers;
- Enable interrupt or event by setting the EXINT INTEN or EXINT EVTEN register;
- Generate software trigger by setting the EXINT_SWTRG register (this is applied to only software trigger interrupt).

Note: To modify the interrupt source configuration, disable the EXINT_INTEN and EXINT_EVTEN registers and then restart interrupt initialization.

Interrupt clear procedure

 Writing "1" to the EXINT_INTSTS register to clear the interrupts generated, and the corresponding bits in the EXINT_SWTRG register will be cleared at the same time.

8.3 EXINT registers

The table below shows EXINT register map and their reset value.

These peripheral registers must be accessed by words (32 bits).

Table 8-1 External interrupt/event controller register map and reset value

Register abbr.	Offset	Reset value
EXINT_INTEN	0x00	0x0000 0000
EXINT_EVTEN	0x04	0x0000 0000
EXINT_POLCFG1	0x08	0x0000 0000
EXINT_POLCFG2	0x0C	0x0000 0000
EXINT_SWTRG	0x10	0x0000 0000
EXINT_INTSTS	0x14	0x0000 0000

8.3.1 Interrupt enable register (EXINT_INTEN)

Bit	Abbr.	Reset value	Type	Description
Bit 31:23	Reserved	0x000	resd	Forced to 0 by hardware
Bit 22:0	INTENx	0x000000	rw	Interrupt enable or disable on line x 0: Interrupt request is disabled 1: Interrupt request is enabled Note: Bit [19] is reserved. Unused.

8.3.2 Event enable register (EXINT_EVTEN)

Bit	Abbr.	Reset value	Type	Description
Bit 31:23	Reserved	0x000	resd	Forced to 0 by hardware
Bit 22:0	EVTENx	0x000000	rw	Event enable or disable on line x 0: Event request is disabled 1: Event request is enabled Note: Bit [19] is reserved. Unused.

8.3.3 Polarity configuration register 1 (EXINT POLCFG1)

Bit	Abbr.	Reset value	Type	Description
Bit 31:23	Reserved	0x000	resd	Forced to 0 by hardware
Bit 22:0	RPx	0x000000	rw	Rising polarity configuration bit of line x These bits are used to select a rising edge to trigger an interrupt and event on line x. 0: Rising edge trigger on line x is disabled 1: Rising edge trigger on line x is enabled Note: Bit [19] is reserved. Unused.

8.3.4 Polarity configuration register 2 (EXINT_POLCFG2)

Bit	Abbr.	Reset value	Type	Description
Bit 31:23	Reserved	0x000	resd	Forced to 0 by hardware
Bit 22:0	FRx	0x000000	rw	Falling polarity event configuration bit of line x These bits are used to select a falling edge to trigger an interrupt and event on line x. 0: Falling edge trigger on line x is disabled 1: Falling edge trigger on line x is enabled Note: Bit [19] is reserved. Unused.

8.3.5 Software trigger register (EXINT_SWTRG)

Bit	Abbr.	Reset value	Type	Description
Bit 31:23	Reserved	0x000	resd	Forced to 0 by hardware
Bit 22:0	SWTx	0x000000	rw	Software trigger on line x If the corresponding bit in the EXINT_INTEN register is 1, the software writes this bit, and the hardware sets the corresponding bit in the EXINT_INTSTS register automatically to generate an interrupt. If the corresponding bit in the EXINT_EVTEN register is 1, the software writes this bit, and the hardware generates an event on the corresponding interrupt line automatically. 0: Default value 1: Software trigger generated Note: This bit is cleared by writing "1" to the corresponding bit in the EXINT_INTSTS register. Note: Bit [19] is reserved. Unused.

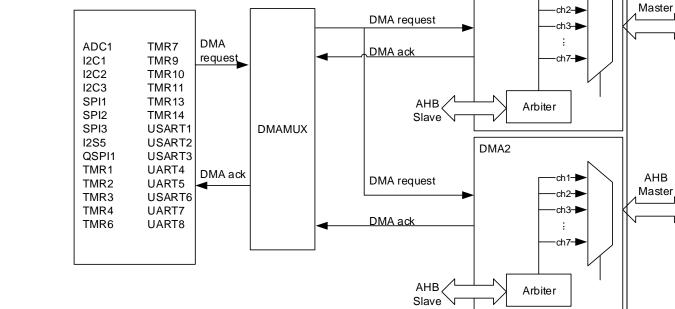
8.3.6 Interrupt status register (EXINT_INTSTS)

Bit	Abbr.	Reset value	Type	Description
Bit 31:23	Reserved	0x000	resd	Forced to 0 by hardware
				Line x status bit
				0: No interrupt occurred
Bit 22:0	LINEx	0x000000	rw1c	1: Interrupt occurred
				Note: This bit is cleared by writing "1".
				Note: Bit [19] is reserved. Unused.

2023.08.31 Page 121 Rev 2.00

DMA controller (DMA)

Introduction 9.1


Direct memory access (DMA) controller is designed for high-speed data transmission between peripherals and memory or between memories. The data can be transmitted through DMA at a high speed without CPU interference, which saves CPU capacity.

There are two DMA controllers in the microcontroller. Each controller contains seven DMA channels that manage memory access requests from one or more peripherals. An arbiter is available for coordinating the priority of each DMA request.

Main features 9.2

- AMBA compliant (Rev. 2.0)
- Only support AHB OKAY and ERROR responses
- HBUSREQ and HGRANT of AHB master interface are not supported
- Support 7 channels
- Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfers
- Support hardware handshake
- Support 8-bit, 16-bit and 32-bit data transfers
- Programmable amount of data to be transferred: up to 65535
- Support multiplexing

Figure 9-1 DMA block diagram DMA1 AHB Master ch2-DMA request -ch3-DMA ADC1 TMR7 DMA ack request ch7 I2C1 TMR9

Note: The number of DMA peripherals may be different for different models.

9.3 Function overview

9.3.1 DMA configuration

1. Set the peripheral address in the DMA_CPBAx register

The initial peripheral address for data transfer remains unchanged during transmission.

2. Set the memory address in the DMA CMBAx register

The initial memory address for data transfer remains unchanged during transmission.

3. Configure the amount of the data to be transferred in the DMA_DTCNTx register

Programmable data transfer size is up to 65535. This value is decremented after each data transfer.

4. Configure the channel setting in the DMA_CHCTRLx register

Including channel priority, data transfer direction/width, address incremented mode, circular mode and interrupt mode

Channel priority (CHPL)

there are four levels, including very high priority, high priority, medium priority and low priority. If the two channels have the same priority level, then the channel with lower number will get priority over the one with higher number. For example, channel 1 has priority over channel 2.

Data transfer direction (DTD)

Memory-to-peripheral (M2P) and peripheral-to-memory (P2M)

Address incremented mode (PINCM/MINCM)

In incremented mode, the subsequent transfer address is the previous address plus transfer width (PWIDTH/MWIDTH).

Circular mode (LM)

In circular mode, the contents in the DMA_DTCNTx register is automatically reloaded with the initially programmed value after the completion of the last transfer

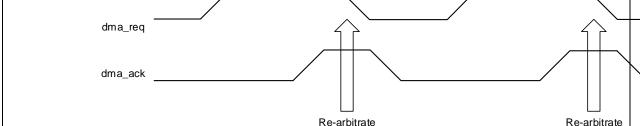
Memory-to-memory mode (M2M)

This mode indicates that DMA channels perform data transfer without requests from peripherals. Circular mode and memory-to-memory mode cannot be used at the same time.

5. Enable DMA transfer by setting the CHEN bit in the DMA CHCTRLx register

9.3.2 Handshake mechanism

In P2M and M2P mode, the peripherals need to send a request signal to the DMA controller. The DMA channel will send the peripheral transfer request (single) until the signal is acknowledged. After the completion of peripheral transmission, the DMA controller sends the acknowledge signal to the peripheral. The peripheral then releases its request as soon as it receives the acknowledge signal. At the same time, the DMA controller releases the acknowledge signal as well.


9.3.3 Arbiter

When several channels are enabled simultaneously, the arbiter will restart arbitration after full data transfer by the master controller. The channel with very high priority waits until the channel of the master controller has completed data transfers before taking control of it. The master controller will re-arbitrate to serve other channels as long as the channel completes a single transfer based on the master controller priority.

Figure 9-2 Re-arbitrate after request/acknowledge

One single transfer

Antother single transfer

9.3.4 Programmable data transfer width

Transfer width of the source data and destination data is programmable through the PWIDTH and MWIDTH bits in the DMA_CHCTRLx register. When PWIDTH is not equal to MWIDTH, it can be aligned according to the settings of PWIDTH/ MWIDTH.

Figure 9-3 PWIDTH: byte, MWIDTH: half-word

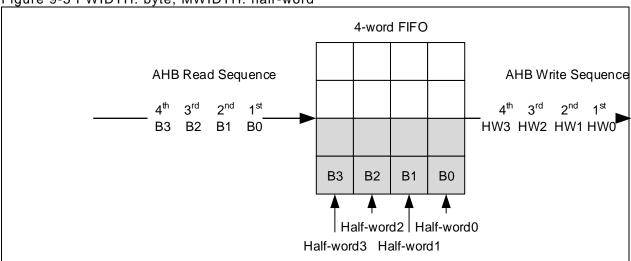
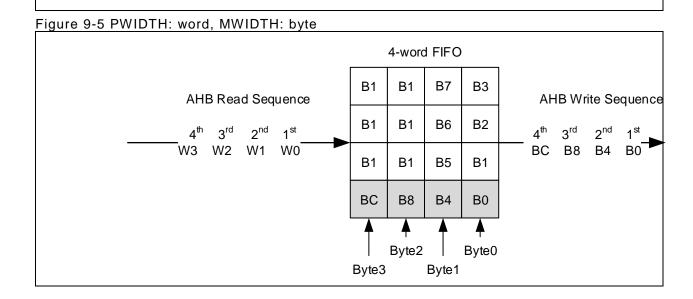



Figure 9-4 PWIDTH: half-word, MWIDTH: word 4-word FIFO AHB Read Sequence AHB Write Sequence 3rd 4th 3rd 2nd 1st HW3 HW2 HW1 HW0 W3 W2 W1 WO В7 **B**5 **B**3 **B1** B6 **B4** B2 B0 word2 word0

word3

word1

9.3.5 Errors

Table 9-1 DMA error event

Error event	Description
Transfer error	AHB response error occurred during DMA read/write access

9.3.6 Interrupts

An interrupt can be generated on a DMA half-transfer, transfer complete and transfer error. Each channel has its specific interrupt flag, clear and enable bits, as shown in the table below.

Table 9-2 DMA interrupts

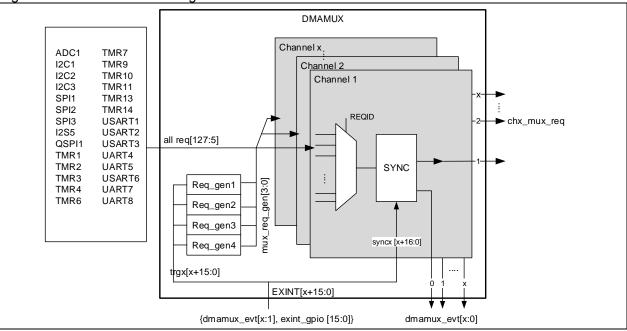
Interrupt event	Event flag bit	Clear control bit	Enable control bit
Half-transfer	HDTF	HDTFC	HDTIEN
Transfer completed	FDTF	FDTFC	FDTIEN
Transfer error	DTERRF	DTERRFC	DTERRIEN

9.4 DMA multiplexer (DMAMUX)

DMAMUX manages DMA requests/acknowledge between peripherals and DMA controller.

The DMA controller selects the DMA mapping table with the TBL_SEL bit in the DMA_MUXSEL register. Each DMA controller stream selects only one DMA request from the flexible mapping table. In flexible mapping mode, each channel can bypass or synchronize 127 possible channel requests from peripherals or generators through the REQSEL [6:0] bit in the DMA_MUXCxCTRL register.

9.4.1 DMAMUX function overview


The DMAMUX consists of a request generator and a request multiplexer.

Each of the DMAMUX generator channel x has a GEN enable bit in the DMA_MUXGxCTRL register. The SIGSEL bit is used to select the trigger input of the DMAMUX generator. Typically, the number of DMA requests equals GREQCNT + 1. The GPOL bit in the DMA_MUXGxCTRL register is used to select a trigger event that can be on a rising edge, falling edge or either of them.

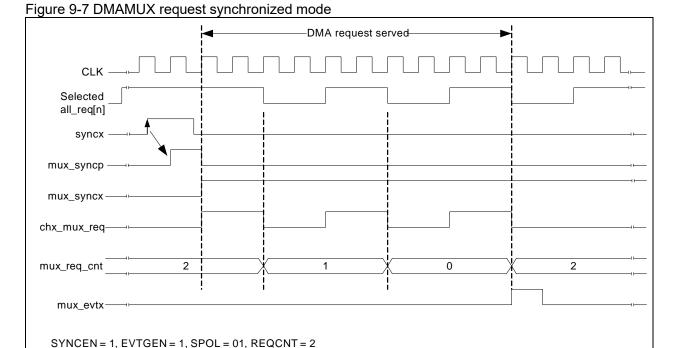
Each of the DMAMUX stream x comes from all reg [127:1].

In flexible mapping mode, the SYNCEN bit in the DMA_MUXSxCTRL register is used to synchronize the selected DMA request input. In synchronous mode, the SYNCSEL bit in the DMA_MUXSxCTRL register is used to select synchronized input. The selected DMA request input will be transferred to chx_mux_req [7:0] as soon as a valid edge of the synchronized input is detected by the SYNCPOL [1:0] in the DMA_MUXSxCTRL register. In addition, when the EVTGEN bit in the DMA_MUXCxCTRL register is set, the programmable request counter (REQCNT) is used to generate a request output and event output.

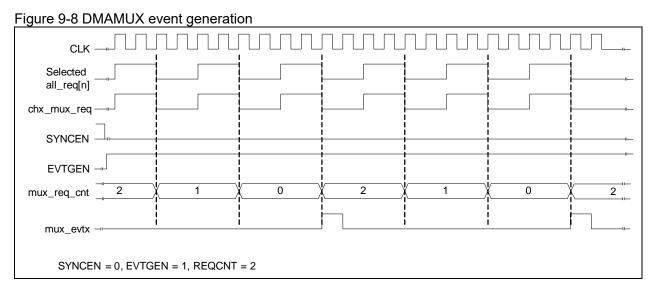
Figure 9-6 DMAMUX block diagram

Table 9-3	Flexible	DMA1	/ DMA2	request	mapping

CHx_ SRC	Request source						
1	DMA_MUXREQG1	33	USART5_TX	65	TMR3_OVERFLOW	97	reserved
2	DMA_MUXREQG2	34	reserved	66	TMR3_TRIG	98	reserved
3	DMA_MUXREQG3	35	reserved	67	TMR4_CH1	99	reserved
4	DMA_MUXREQG4	36	reserved	68	TMR4_CH2	100	reserved
5	ADC1	37	reserved	69	TMR4_CH3	101	reserved
6	reserved	38	reserved	70	TMR4_CH4	102	reserved
7	reserved	39	reserved	71	TMR4_OVERFLOW	103	reserved
8	TMR6_OVERFLOW	40	QSPI1	72	reserved	104	reserved
9	TMR7_OVERFLOW	41	reserved	73	reserved	105	reserved
10	SPI1_RX	42	TMR1_CH1	74	reserved	106	reserved
11	SPI1_TX	43	TMR1_CH2	75	reserved	107	reserved
12	SPI2_RX	44	TMR1_CH3	76	reserved	108	I2SF5_RX
13	SPI2_TX	45	TMR1_CH4	77	reserved	109	I2S_TX
14	SPI3_RX	46	TMR1_OVERFLOW	78	TMR9_CH1	110	reserved
15	SPI3_TX	47	TMR1_TRIG	79	TMR9_OVERFLOW	111	reserved
16	I2C1_RX	48	TMR1_HALL	80	TMR9_TRIG	112	reserved
17	I2C1_TX	49	reserved	81	TMR9_HALL	113	reserved
18	I2C2_RX	50	reserved	82	TMR10_CH1	114	USART6_RX
19	I2C2_TX	51	reserved	83	TMR10_OVERFLOW	115	USART6_TX
20	I2C3_RX	52	reserved	84	TMR11_CH1	116	USART7_RX
21	I2C3_TX	53	reserved	85	TMR11_OVERFLOW	117	USART7_TX
22	reserved	54	reserved	86	reserved	118	USART8_RX
23	reserved	55	reserved	87	reserved	119	USART8_TX
24	USART1_RX	56	TMR2_CH1	88	reserved	120	TMR13_CH1
25	USART1_TX	57	TMR2_CH2	89	reserved	121	TMR13_OVERFLOW
26	USART2_RX	58	TMR2_CH3	90	reserved	122	TMR14_CH1
27	USART2_TX	59	TMR2_CH4	91	reserved	123	TMR14_OVERFLOW
28	USART3_RX	60	TMR2_OVERFLOW	92	reserved	124	TMR9_CH2
29	USART3_TX	61	TMR3_CH1	93	reserved	125	reserved
30	USART4_RX	62	TMR3_CH2	94	reserved	126	TMR2_TRIG
31	USART4_TX	63	TMR3_CH3	95	reserved	127	TMR4_TRIG
32	USART5_RX	64	TMR3_CH4	96	reserved		


Table 9-4 DMAMUX EXINT LINE for trigger input and synchronized input

EXINT LINE	Source	EXINT LINE	Source	EXINT LINE	Source	EXINT LINE	Source
0	exint_gpio[0]	8	exint_gpio[8]	16	DMA_MUXevt1	24	reserved
1	exint_gpio[1]	9	exint_gpio[9]	17	DMA_MUXevt2	25	reserved
2	exint_gpio[2]	10	exint_gpio[10]	18	DMA_MUXevt3	26	reserved
3	exint_gpio[3]	11	exint_gpio[11]	19	DMA_MUXevt4	27	reserved
4	exint_gpio[4]	12	exint_gpio[12]	20	DMA_MUXevt5	28	reserved
5	exint_gpio[5]	13	exint_gpio[13]	21	DMA_MUXevt6	39	reserved
6	exint_gpio[6]	14	exint_gpio[14]	22	DMA_MUXevt7	30	reserved
7	exint_gpio[7]	15	exint_gpio[15]	23	reserved	31	reserved


9.4.2 DMAMUX overflow interrupts

During DMAMUX request generation, when a new trigger input occurs before the GREQCNT underflows, the TRGOVFx bit will be set in the DMA_MUXGSTS register. It is cleared by setting TRGOVFCx=1 in the DMA_MUXGCLR register. An interrupt will be generated if the interrupt enable bit TRGOVIEN is set in the DMA_MUXGxCTRL register.

In DMAMUX synchronous mode, when a new synchronized input occurs before the REQCNT underflows, the SYNCOVFx bit will be set in the DMA_MUXSYNCSTS register. It is cleared by setting SYNCOVFCx=1 in the DMA_MUXSYNCCLR register. An interrupt will be generated if the interrupt enable bit in SYNCOVIEN is set in the DMA MUXSxCTRL register.

2023.08.31 Page 127 Rev 2.00

9.5 DMA registers

The table below lists DMA register map and their reset values. These peripheral registers can be accessed by bytes (8 bits), half-words (16 bits) or words (32 bits).

Table 9-5 DMA register map and reset value

Register abbr.	Offset	Reset value
DMA_STS	0x00	0x0000 0000
DMA_CLR	0x04	0x0000 0000
DMA_C1CTRL	0x08	0x0000 0000
DMA_C1DTCNT	0x0c	0x0000 0000
DMA_C1PADDR	0x10	0x0000 0000
DMA_C1MADDR	0x14	0x0000 0000
DMA_C2CTRL	0x1c	0x0000 0000
DMA_C2DTCNT	0x20	0x0000 0000
DMA_C2PADDR	0x24	0x0000 0000
DMA_C2MADDR	0x28	0x0000 0000
DMA_C3CTRL	0x30	0x0000 0000
DMA_C3DTCNT	0x34	0x0000 0000
DMA_C3PADDR	0x38	0x0000 0000
DMA_C3MADDR	0x3c	0x0000 0000
DMA_C4CTRL	0x44	0x0000 0000
DMA_C4DTCNT	0x48	0x0000 0000
DMA_C4PADDR	0x4c	0x0000 0000
DMA_C4MADDR	0x50	0x0000 0000
DMA_C5CTRL	0x58	0x0000 0000
DMA_C5DTCNT	0x5c	0x0000 0000
DMA_C5PADDR	0x60	0x0000 0000
DMA_C5MADDR	0x64	0x0000 0000
DMA_C6CTRL	0x6c	0x0000 0000
DMA_C6DTCNT	0x70	0x0000 0000

-		
DMA_C6PADDR	0x74	0x0000 0000
DMA_C6MADDR	0x78	0x0000 0000
DMA_C7CTRL	0x80	0x0000 0000
DMA_C7DTCNT	0x84	0x0000 0000
DMA_C7PADDR	0x88	0x0000 0000
DMA_C7MADDR	0x8c	0x0000 0000
DMA_MUXSEL	0x100	0x0000 0000
DMA_MUXC1CTRL	0x104	0x0000 0000
DMA_MUXC2CTRL	0x108	0x0000 0000
DMA_MUXC3CTRL	0x10c	0x0000 0000
DMA_MUXC4CTRL	0x110	0x0000 0000
DMA_MUXC5CTRL	0x114	0x0000 0000
DMA_MUXC6CTRL	0x118	0x0000 0000
DMA_MUXC7CTRL	0x11c	0x0000 0000
DMA_MUXG1CTRL	0x120	0x0000 0000
DMA_MUXG2CTRL	0x124	0x0000 0000
DMA_MUXG3CTRL	0x128	0x0000 0000
DMA_MUXG4CTRL	0x12c	0x0000 0000
DMA_MUXSYNCSTS	0x130	0x0000 0000
DMA_MUXSYNCCLR	0x134	0x0000 0000
DMA_MUXGSTS	0x138	0x0000 0000
DMA_MUXGCLR	0x13c	0x0000 0000

9.5.1 DMA interrupt status register (DMA_STS)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:28	Reserved	0x0	resd	Kept at its default value.
Bit 27	DTERRF7	0x0	ro	Channel 7 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred
Bit 26	HDTF7	0x0	ro	Channel 7 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 25	FDTF7	0x0	ro	Channel 7 transfer complete event flag 0: No transfer complete event occurred 1: Transfer complete event occurred
Bit 24	GF7	0x0	ro	Channel 7 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
Bit 23	DTERRF6	0x0	ro	Channel 6 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred
Bit 22	HDTF6	0x0	ro	Channel 6 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 21	FDTF6	0x0	ro	Channel 6 transfer complete event flag 0: No transfer complete event occurred 1: Transfer complete event occurred
Bit 20	GF6	0x0	ro	Channel 6 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
Bit 19	DTERRF5	0x0	ro	Channel 5 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred
Bit 18	HDTF5	0x0	ro	Channel 5 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 17	FDTF5	0x0	ro	Channel 5 transfer complete event flag 0:No transfer complete event occurred 1:Transfer complete event occurred
Bit 16	GF5	0x0	ro	Channel 5 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
Bit 15	DTERRF4	0x0	ro	Channel 4 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred

Bit 14	HDTF4	0x0	ro	Channel 4 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 13	FDTF4	0x0	ro	Channel 4 transfer complete event flag 0:No transfer complete event occurred 1:Transfer complete event occurred
Bit 12	GF4	0x0	ro	Channel 4 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
Bit 11	DTERRF3	0x0	ro	Channel 3 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred
Bit 10	HDTF3	0x0	ro	Channel 3 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 9	FDTF3	0x0	ro	Channel 3 transfer complete event flag 0:No transfer complete event occurred 1:Transfer complete event occurred
Bit 8	GF3	0x0	ro	Channel 3 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
Bit 7	DTERRF2	0x0	ro	Channel 2 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred
Bit 6	HDTF2	0x0	ro	Channel 2 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 5	FDTF2	0x0	ro	Channel 2 transfer complete event flag 0:No transfer complete event occurred 1:Transfer complete event occurred
Bit 4	GF2	0x0	ro	Channel 2 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
Bit 3	DTERRF1	0x0	ro	Channel 1 data transfer error event flag 0: No transfer error occurred 1: Transfer error occurred
Bit 2	HDTF1	0x0	ro	Channel 1 half transfer event flag 0: No half-transfer event occurred 1: Half-transfer event occurred
Bit 1	FDTF1	0x0	ro	Channel 1 transfer complete event flag 0:No transfer complete event occurred 1:Transfer complete event occurred

2023.08.31 Page 131 Rev 2.00

1: Transfer error, naif-transfer or transfer complete	Bit 0	GF1	0x0	ro	Channel 1 global event flag 0: No transfer error, half-transfer or transfer complete 1: Transfer error, half-transfer or transfer complete
---	-------	-----	-----	----	--

9.5.2 DMA interrupt flag clear register (DMA_CLR)

Bit	Abbr.	Reset value	Type	Description
Bit 31:28	Reserved	0x0	resd	Kept at its default value.
Bit 27	DTERRFC7	0x0	rw1c	Channel 7 data transfer error flag clear 0: No effect 1: Clear the DTERRF7 flag in the DMA_STS register
Bit 26	HDTFC7	0x0	rw1c	Channel 7 half transfer flag clear 0: No effect 1: Clear the HDTF7 flag DMA_STS register
Bit 25	FDTFC7	0x0	rw1c	Channel 7 transfer complete flag clear 0: No effect 1: Clear the FDTF7 flag in the DMA_STS register
Bit 24	GFC7	0x0	rw1c	Channel 7 global flag clear 0: No effect 1: Clear DTERRF7, HDTF7, FDTF7 and GF7 flags in the DMA_STS register
Bit 23	DTERRFC6	0x0	rw1c	Channel 6 data transfer error flag clear 0: No effect 1: Clear the DTERRF6 flag in the DMA_STS register
Bit 22	HDTFC6	0x0	rw1c	Channel 6 half transfer flag clear 0: No effect 1: Clear the HDTF6 flag in the DMA_STS register
Bit 21	FDTFC6	0x0	rw1c	Channel 6 transfer complete flag clear 0: No effect 1: Clear the FDTF6 flag in the DMA_STS register
Bit 20	GFC6	0x0	rw1c	Channel 6 global flag clear 0: No effect 1: Clear DTERRF6, HDTF6, FDTF6 and GF6 flags in the DMA_STS register
Bit 19	DTERRFC5	0x0	rw1c	Channel 5 data transfer error flag clear 0: No effect 1: Clear the DTERRF5 flag in the DMA_STS register
Bit 18	HDTFC5	0x0	rw1c	Channel 5 half transfer flag clear 0: No effect 1: Clear the HDTF5 flag in the DMA_STS register
Bit 17	FDTFC5	0x0	rw1c	Channel 5 transfer complete flag clear 0: No effect 1: Clear the FDTF5 flag in the DMA_STS register
Bit 16	GFC5	0x0	rw1c	Channel 5 global flag clear 0: No effect 1: Clear DTERRF5, HDTF5, FDTF5 and GF5 flags in the DMA_STS register

Bit 15	DTERRFC4	0x0	rw1c	Channel 4 data transfer error flag clear 0: No effect 1: Clear the DTERRF4 flag in the DMA_STS register
Bit 14	HDTFC4	0x0	rw1c	Channel 4 half transfer flag clear 0: No effect 1: Clear the HDTF4 flag in the DMA_STS register
Bit 13	FDTFC4	0x0	rw1c	Channel 4 transfer complete flag clear 0: No effect 1: Clear the FDTF4 flag in the DMA_STS register
Bit 12	GFC4	0x0	rw1c	Channel 4 global flag clear 0: No effect 1: Clear DTERRF4, HDTF4, FDTF4 and GF4 flags in the DMA_STS register
Bit 11	DTERRFC3	0x0	rw1c	Channel 3 data transfer error flag clear 0: No effect 1: Clear the DTERRF3 flag in the DMA_STS register
Bit 10	HDTFC3	0x0	rw1c	Channel 3 half transfer flag clear 0: No effect 1: Clear the HDTF3 flag in the DMA_STS register
Bit 9	FDTFC3	0x0	rw1c	Channel 3 transfer complete flag clear 0: No effect 1: Clear the FDTF3 flag in the DMA_STS register
Bit 8	GFC3	0x0	rw1c	Channel 3 global flag clear 0: No effect 1: Clear DTERRF3, HDTF3, FDTF3 and GF3 flags in the DMA_STS register
Bit 7	DTERRFC2	0x0	rw1c	Channel 2 data transfer error flag clear 0: No effect 1: Clear the DTERRF2 flag in the DMA_STS register
Bit 6	HDTFC2	0x0	rw1c	Channel 2 half transfer flag clear 0: No effect 1: Clear the HDTF2 flag in the DMA_STS register
Bit 5	FDTFC2	0x0	rw1c	Channel 2 transfer complete flag clear 0: No effect 1: Clear the FDTF2 flag in the DMA_STS register
Bit 4	GFC2	0x0	rw1c	Channel 2 global flag clear 0: No effect 1: Clear DTERRF2 and HDTF2, FDTF2 and GF2 flags in the DMA_STS register
Bit 3	DTERRFC1	0x0	rw1c	Channel 1 data transfer error flag clear 0: No effect 1: Clear the DTERRF1 flag in the DMA_STS register
Bit 2	HDTFC1	0x0	rw1c	Channel 1 half transfer flag clear 0: No effect 1: Clear the HDTF1 flag in the DMA_STS register

Bit 1	FDTFC1	0x0	rw1c	Channel 1 transfer complete flag clear 0: No effect 1: Clear the FDTF1 flag in the DMA_STS register
Bit 0	GFC1	0x0	rw1c	Channel 1 global flag clear 0: No effect 1: Clear DTERRF1, HDTF1, FDTF1 and GF1 flags in the DMA_ISTS register

9.5.3 DMA channel-x configuration register (DMA_CxCTRL) (x=1...7)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Type	Description
Bit 31:15	Reserved	0x00000	resd	Kept at its default value.
				Memory-to-memory mode
Bit 14	M2M	0x0	rw	0: Disabled
				1: Enabled
				Channel priority level
				00: Low
Bit 13:12	CHPL	0x0	rw	01: Medium
				10: High
				11: Very high
				Memory data bit width
				00: 8 bits
Bit 11:10	MWIDTH	0x0	rw	01: 16 bits
				10: 32 bits
				11: Reserved
				Peripheral data bit width
				00: 8 bits
Bit 9:8	PWIDTH	0x0	rw	01: 16 bits
				10: 32 bits
				11: Reserved
				Memory address increment mode
Bit 7	MINCM	0x0	rw	0: Disabled
				1: Enabled
				Peripheral address increment mode
Bit 6	PINCM	0x0	rw	0: Disabled
				1: Enabled
				Circular mode
Bit 5	LM	0x0	rw	0: Disabled
				1: Enabled
				Data transfer direction
Bit 4	DTD	0x0	rw	0: Read from peripherals
				1: Read from memory
				Data transfer error interrupt enable
Bit 3	DTERRIEN	0x0	rw	0: Disabled
				1: Enabled
				Half transfer interrupt enable
Bit 2	HDTIEN	0x0	rw	0: Disabled
				1: Enabled
-				Transfer complete interrupt enable
Bit 1	FDTIEN	0x0	rw	0: Disabled
				1: Enabled
5 11.6				Channel enable
Bit 0	CHEN	0x0	rw	0: Disabled
				1: Enabled

2023.08.31 Page 134 Rev 2.00

9.5.4 DMA channel-x number of data register (DMA_CxDTCNT) (x=1...7)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Kept at its default value.
Bit 15:0	CNT	0x0000	rw	Number of data to transfer The number of data to transfer is from 0x0 to 0xFFFF. This register can only be written when CHEN=0 in the corresponding channel register. The value is decremented after each DMA transfer. Note: This register holds the number of data to transfer instead of transfer size. The transfer size is calculated by data width.

9.5.5 DMA channel-x peripheral address register (DMA_CxPADDR) (x=1...7)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31:0	PADDR	0x0000 0000	rw	Peripheral base address Base address of peripheral data register is the source or destination of data transfer. Note: The register can only be written when the CHEN=0 bit in the corresponding channel register.

9.5.6 DMA channel-x memory address register (DMA_CxMADDR) (x=1...7)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31:0	MADDR	0x0000 0000	rw	Memory base address Memory address is the source or destination of data transfer. Note: The register can only be written when the CHEN=0 bit in the corresponding channel register.

9.5.7 DMAMUX select register (DMA_MUXSEL)

Bit	Abbr.	Reset value	Type	Description
31:1	Reserved	0x0000 0000	resd	Kept at its default value.
Bit 0	TBL_SEL	0x0	rw	Multiplexer table select 0x1: Flexible mapping table

9.5.8 DMAMUX channel-x control register (DMA_MUXCxCTRL) (x=1...7)

Bit	Abbr.	Reset value	Type	Description
Bit 31:25	Reserved	0x00	resd	Kept at its default value.
Bit 28:24	SYNCSEL	0x00	rw	Synchronization select
Bit 23:19	REQCNT	0x00	rw	DMA request count These bits indicate the number of DMA requests sent to the DMA controller after synchronization is enabled, and/or DMA request count before event output is generated. These bits are reserved when both SYNCEN and EVTGEN bits are LOW.
Bit 18:17	SYNCPOL	0x0	rw	Synchronization polarity It is used to define the polarity of the selected synchronization input. 0x0: No event 0x1: Rising edge 0x2: Falling edge 0x3: Rising edge and falling edge
Bit 16	SYNCEN	0x0	rw	Synchronization enable 0: Disabled 1: Enabled
Bit 15:10	Reserved	0x00	resd	Kept at its default value.
Bit 9	EVTGEN	0x0		Event generate enable 0: Disabled 1: Enabled
Bit 8	SYNCOVIEN	0x0		Synchronization overrun interrupt enable 0: Interrupt disabled 1: Interrupt enabled
Bit 7	Reserved	0x0	resd	Kept at its default value.
Bit 6:0	REQSEL	0x00		DMA request select It is used to select the input DMA request. Refer to the DMAMUX table for the configuration of multiplexer input.

9.5.9 DMAMUX generator-x control register (DMA_MUXGxCTRL) (x=1...4)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Type	Description
Bit 31:24	Reserved	0x00	resd	Kept at its default value.
Bit 23:19	GREQCNT	0x00	rw	DMA request generation count It is used to define the number of DMA request (GNBREQ + 1) to be generated after trigger event. This field is reserved only when the GEN bit is disabled.
Bit 18:17	GPOL	0x0	rw	DMA request generation polarity This field defines the polarity of the selected trigger input. 0x0: No event 0x1: Rising edge 0x2: Falling edge 0x3: Rising edge and falling edge
Bit 16	GEN	0x0	rw	DMA request generation enable 0: Disabled 1: Enabled
Bit 15:9	Reserved	0x00	resd	Kept at its default value.
Bit 8	TRGOVIEN	0x0	rw	Trigger overrun interrupt enable 0: Interrupt disabled 1: Interrupt enabled
Bit 7:5	Reserved	0x0	resd	Kept at its default value.
Bit 4:0	SIGSEL	0x00	rw	Signal select It is used to select the DMA trigger input for DMA request generator.

9.5.10 DMAMUX channel synchronization status register (DMA_MUXSYNCSTS)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31:8	Reserved	0x0000 00	resd	Kept at its default value.
Bit 7:0	SYNCOVF	0x00	ro	Synchronization overrun interrupt flag The synchronization overrun interrupt occurs when the DMA request counter is below REQCNT. This flag is set when a new synchronization event occurs.

9.5.11 DMAMUX channel interrupt flag clear register (DMA MUXSYNCCLR)

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x0000 00	resd	Kept at its default value.
Bit 7:0	SYNCOVFC	0x00	rw1c	Synchronization overrun interrupt flag clear Writing 1 to the corresponding bit can clear the SYNCOVF flag in the MUXSYNCSTS register.

9.5.12 DMAMUX generator interrupt status register (DMA_MUXGSTS)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Type	Description
Bit 31:4	Reserved	0x0000 000	resd	Kept at its default value.
Bit 3:0	TRGOVF	0x00	ro	Trigger overrun interrupt flag When the DMA request count is lower than GREQCNT, this field is set while a new trigger event occurs.

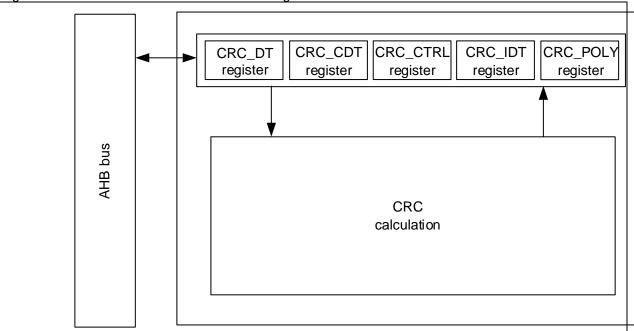
9.5.13 DMAMUX generator interrupt flag clear register (DMA_MUXGCLR)

Access: 0 wait state, accessible by bytes, half-words or words.

Bit	Abbr.	Reset value	Type	Description
Bit 31:4	Reserved	0x0000 000	resd	Kept at its default value.
Bit 3:0	TRGOVFC	0x00	rw1c	Trigger overrun interrupt flag clear Writing 1 to the corresponding bit can clear the TRGOVF flag in the DMA_MUXGSTS register.

2023.08.31 Page 138 Rev 2.00

10 CRC calculation unit (CRC)


10.1 CRC introduction

The Cyclic Redundancy Check (CRC) is an independent peripheral with CRC check feature. It follows CRC-32/MPEG-2 standard.

The CRC_CTRL register is used to select output data toggle (word, REVOD=1) or input data toggle (byte, REVID=01; half-word, REVID=10; word, REVID=11). The CRC calculation unit also has initialization function. After each CRC reset, the value in the CRC_IDT register is written into the CRC_DT register by CRC. The CRC_POLY register can be used to program the polynomial coefficient, and the polynomial size can be set to 7-bit, 8-bit, 16-bit or 32-bit by setting the POLY_SIZE bit in the CRC_CTRL register.

Users can write the data to go through CRC check and read the calculated result through CRC_DT register. Note that the calculation result is the combination of the previous result and the current value to be calculated.

Figure 10-1 CRC calculation unit block diagram

Main features:

- Use CRC-32 code
- Programmable polynomial
- 4 x HCLK cycles for each CRC calculation
- Support input/output data format toggle
- Perform write/read operation through CRC DT register
- Set an initialization value with the CRC_IDT register. The value is loaded into CRC_DT register
 after each CRC reset.

10.2CRC function description

In CRC calculation, the input data is used as the dividend and the generating polynomial as the divisor for Modulo-2 Division, and the remainder obtained is the CRC value.

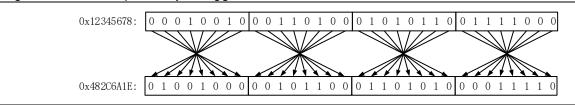
CRC calculation procedure

- Toggle input, that is, toggle the input data according to the REVID value in the CRC_CTRL register.
- Initialize: perform XOR with the initial value set in the CRC_IDT for the first time of calculation (if
 it is not the first time, the initial value should be the previously calculated result).
- CRC calculation: perform Modulo-2 Division with the generating polynomial (0x4C11DB7), and the remainder obtained is the CRC value.

- Toggle output: determine whether to perform toggle (word) according to the REVOD value in the CRC CTRL register before output.
- Perform XOR calculation for the result, and the XOR-ed value is fixed to 0x0000 0000.

CRC-32/MPEG-2 parameters

Generating polynomial:0x4C11DB7,


$$X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$$

- Initial value is 0xFFFF FFFF to avoid obtaining the same calculation result for 1-byte 0x00 and multibyte 0x00.
- XOR-ed value: 0x0000 0000, indicating the CRC result does not require an additional XOR calculation.

Toggle function

- Select byte toggle: 8 bits as a group and in reverse order. As shown in the figure below, if the original data is 0x12345678, the toggled data is 0x482C6A1E.
- Select half-word toggle: 16 bits as a group and in reverse order.
- Select word toggle: 32 bits as a group and in reverse order.

Figure 10-2 Example of byte toggle

10.3CRC registers

Table 10-1 CRC register map and reset value

- and the state of great map and the state of the state o					
Register abbr.	Offset	Reset value			
CRC_DT	0x00	0xFFFF FFFF			
CRC_CDT	0x04	0x0000 0000			
CRC_CTRL	0x08	0x0000 0000			
CRC_IDT	0x10	0xFFFF FFFF			
CRC_POLY	0x14	0x04C1 1DB7			

10.3.1 Data register (CRC_DT)

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	DT	0xFFFF FFFF	rw	Data value It is used as input register when writing new data into the CRC calculator. It returns CRC calculation results when it is read.

10.3.2 Common data register (CRC_CDT)

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	resd	Kept at its default value.
Bit 7:0	CDT	0x00	rw	Common 8-bit data value This field is used to store one byte data temporarily. This register is not affected by the CRC reset generated by the RST bit in the CRC_CTRL register.

2023.08.31 Page 140 Rev 2.00

10.3.3 Control register (CRC_CTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	resd	Kept at its default value.
				Reverse output data
				It is set and cleared by software. This bit is used to control
Bit 7	REVOD	0x0	resd	whether or not to reverse output data.
				0: No effect
				1: Word reverse
				Reverse input data
				It is set and cleared by software. This bit is used to control
				how to reverse input data.
Bit 6:5	REVID	0x0	rw	00: No effect
				01: Byte reverse
				10: Half-word reverse
				11: Word reverse
				Polynomial size
				This bit is used to set the polynomial size. It works with the
				CRC_POLY register.
Bit 4:3	POLY_SIZE	0x0	rw	00: 32-bit
				01: 16-bit
				10: 8-bit
				11: 7-bit
Bit 2:1	Reserved	0x0	resd	Kept at its default value.
				Reset CRC calculation unit
				It is set by software and cleared by hardware. To reset
Bit 0	RST	0x0	wo	CRC calculation unit, the data register is set as 0xFFFF
Dit	1.01	OXO	WO	FFFF.
				0: No effect
				1: Reset

10.3.4 Initialization register (CRC_IDT)

				= /
Bit	Abbr.	Reset value	Type	Description
Bit 31:0	IDT	0xFFFF FFFF	rw	Initialization data value When CRC reset is triggered by the RST bit in the CRC_CTRL register, the value in the initialization register is written into the CRC_DT register as an initial value.

10.3.5 Polynomial register (CRC_POLY)

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	POLY	0x04C1 1DB7	rw	Polynomial coefficient The generating polynomial is used as the division in CRC calculation. In CRC32 algorithm, the polynomial coefficient is set to 0x4C11DB7. The polynomial can also be programmed by users.

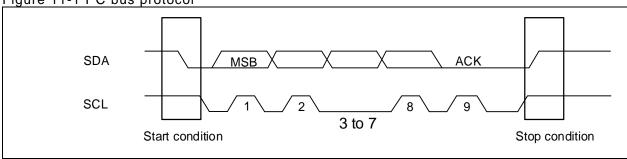
2023.08.31 Page 141 Rev 2.00

11 I²C interface

11.1 I²C Introduction

I²C (inter-integrated circuit) bus interface manages the communication between the microcontroller and serial I²C bus. It supports master and slave modes, with up to 1 Mbit/s of communication speed (enhanced edition).

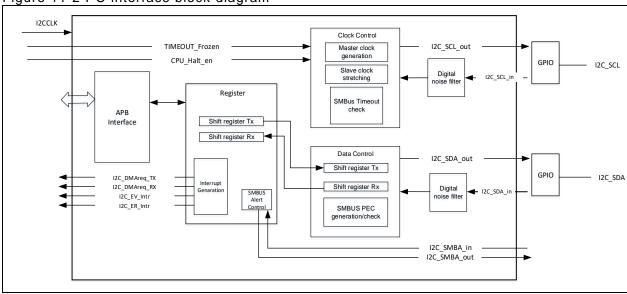
11.2 I²C main features


- I²C bus
 - Master and slave modes
 - Multimaster capability
 - Standard mode (100 KHz), fast mode (400 KHz) and enhanced fast mode (1 MHz)
 - 7-bit and 10-bit address modes
 - Two 7-bit slave addresses (2 addresses, one of them can be masked)
 - Broadcast call mode
 - Programmable data setup and hold time
 - Clock stretching capability
- Support DMA transfer
- Programmable digital noise filter
- Support SMBus 2.0 protocol
 - PEC generation and verification
 - Acknowledgement control for command and data
 - ARP ((address resolution protocol)
 - Master capability
 - Device capability
 - SMBus reminder capability
 - Timeout detection
 - Idle detection
- PMBus

11.3 I²C function overview

I²C bus consists of a data line (SDA) and clock line (SCL). It can achieve a maximum of 100 KHz speed in standard mode, up to 400 KHz in fast mode. A frame of data transmission begins with a Start condition and ends with a Stop condition. The bus is kept in busy state after receiving the Start condition, and becomes idle as long as it receives the Stop condition.

Start condition: SDA switches from high to low when SCL is set high Stop condition: SDA switches from low to high when SCL is set high



11.4 I²C Interface

The figure below shows the block diagram of I²C interface.

Figure 11-2 I²C interface block diagram

1. Operating mode

I²C bus interface can operate both in master mode and slave mode. Switching from master mode to slave mode, vice versa, is supported as well. By default, the interface operates in slave mode. When the Start condition is activated, the I²C bus interface switches from slave mode to master mode, and returns to slave mode automatically at the end of data transfer (Stop condition is triggered).

2. Communication process

- Master mode communication:
 - 1. Start condition generation
 - 2. Address transmission
 - 3. Data Tx or Rx
 - 4. Stop condition generation
 - 5. End of communication
- Slave mode communication:
 - 1. Wait until the address is matched
 - 2. Data Tx or Rx
 - 3. Wait for the generation of Stop condition
 - 4. End of communication

3. Digital filter capability

The digital filter is available on both SCL and SDA lines. It is enabled by setting the DFLT[3:0] bit (0~15) in the I2C_CTRL1 register to reduce noise on bus on a large scale. The filter time is DLFT x t_{I2C_CLK} . The digital filter is not allowed to be altered when the I²C is enabled.

4. Address control

Both master and slave support 7-bit and 10-bit addressing modes.

Slave address mode:

- In 7-bit mode (ADDR1MODE=0)
 - ADDR1EN=1, ADDR2EN=0 stands for a single address mode: only matches OADDR1
 - ADDR1EN=1, ADDR2EN=1 stands for dual address mode: matches OADDR1 and OADDR2
- In 10-bit mode (ADDR1MODE=1)
 - Only supports a single address mode (ADDR1EN=1, ADDR2EN=0), matches OADDR1

Slave address masking capability

The Slave address 2 (OADDR2) is maskable, which is done by setting the ADDR2MASK[2:0].

- 0: Address bit [7:1]
- 1: Address bit [7:2]

- 2: Address bit [7:3]
- 3: Address bit [7:4]
- 4: Address bit [7:5]
- 5: Address bit [7:6]
- 6: Address bit [7]
- 7: All addresses, excluding those reserved by I²C

Support special slave address:

- Broadcast call address (0b0000000x): This address is enabled when GCAEN=1
- SMBus device default address (0b1100001x): This address is enabled for SMBus address resolution protocol in SMBus device mode (DEVADDREN = 1)
- SMBus master default address (0b0001000x): This address is enabled for SMBus master notification protocol in SMBus master mode (HADDREN = 1)
- SMBus alert address (0b0001100x): This address is enabled for SMBus alert response address protocol in SMBus master mode when SMBALERT = 1

Refer to SMBus2.0 protocol for more information.

Slave address matching procedure:

- Receive a Start condition
- Address matching
- The slave sends an ACK if address is matched
- ADDRF=1, with SDIR indicating the transmission direction
 - When SDIR=0, slave enters receiver mode, starting receiving data.
 - When SDIR=1, slave enters transmitter mode, starting transmitting data.

5. Clock stretching capability

Clock stretching is enabled by default (STRETCH=0 in the I2C_CTRL1 register). The slave can hold the SCL line low for software operation. If the clock stretching capability is not supported by master, then the STRETCH must be set to 1 in the I2C_CTRL1 register.

It should be noted that the clock stretching capability of I²C slave must be configured before the I²C peripherals are enabled.

Clock stretching capability enabled

I²C slave stretches the SCL clock in one of the following conditions:

- Address reception: When the address received by slave matches the local address enabled, the SCL line is pulled down until the ADDRF is cleared by setting the ADDRC in the I2C CLR.
- Data transmission: If no data is written when the ADDRF is cleared, and TDBE= 1 in the I2C STS register, then the SCL line will be pulled low until data is written to the I2C TXDT.
- Data transmission: If no data is written to the I2C_TXDT after the completion of the previous data transfer, the SCL line will be pulled low until data is written to the I2C_TXDT.
- Data reception: When the shift register has received another new byte before the data in the I2C_RXDT register is read, the SCL line will be pulled low until the data in I2C_RXDT register is read.
- When slave byte control mode is selected (SCTRL=1 in the I2C_CTRL1 register) and RLDEN=1 in the I2C_CTRL2 register, if TCRLD = 1, indicating the completion of the last data transfer, then the TCRLD will be cleared by hardware so as to release the SCL line after a non-zero value is written to the CNT bit of I2C_CTRL2 register.

Clock stretching capability disabled

The SCL clock is disabled when STRETCH=1 in the I2C_CTRL1 register, with the following conditions worth notice:

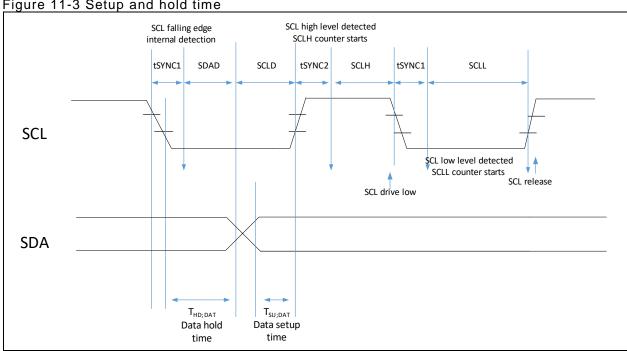
- The SCL clock is not stretched when the address received by slave matches the local address enabled
- Data transmission: If no data is written to the I2C_TXDT register after the completion of the previous data transfer, an underflow will occur, and the OUF bit in the I2C_STS register will also be set to 1.

Note: If the STOPF bit of the previous transfer is cleared after the next data (to be transferred) is written, users need to check the OUF bit status first. Users also need to check the OUF bit status while transmitting the first data.

• Data reception: If no data is read from the I2C_RXDT register before the next ACK signal, an overflow will occur, and the OUF bit in the I2C_STS register will also be set to 1.

When the OUF bit is set, if the ERRIE=1 in the I2C CTRL1 register, an interrupt will occur.

I²C timing control 11.4.1


I²C core is clocked by I2C CLK, whereas the I2C CLK is clocked by PCLK1. The PCLK1 should be set to be less than 4/3 SCL cycles.

The corresponding bits in the I2C CLKCTRL register are used for timing configuration.

- DIV[7:0]: I2C clock divider
- SDAD[3:0]: data hold time (the contract the contract that the cont
- SCLD[3:0]: Data setup time (t_{SU:DAT})
- SCLH[7:0]: SCL high
- SCLL[7:0]: SCL low

Note: Timing configuration cannot be modified once the I²C is enabled.

Figure 11-3 Setup and hold time

It is possible to configure data hold time (thd;dat) and data setup time (tsu;dat) freely by setting the DIV[7:0], SDAD[3:0] and SCLD[3:0] bits in the I2C CLKCTRL register.

Data hold time (t_{HD:DAT}): refers to the duration from SCL falling edge to SDA output

$$t_{HD;DAT} = t_{SDAD} + t_{SYNC}$$

 $t_{SDAD} = SDAD \times (DIV + 1) \times t_{I2C_CLK}$
 $t_{SYNC} = (DLFT + 3) \times t_{I2C_CLK} - t_f$

t_{SYNC} consists of three parts:

- SCL falling edge time (t_f)
- Digital filter input latency (DLFT x t_{I2C CLK})
- Synchronization delay between SCL and I2C_CLK (2~3 I2C_CLK cycles)
- Data setup time (tsu;DAT): refers to the duration from SDA output to SCL rising edge $t_{SU;DAT} = SCLD x (DIV+1) x t_{I2C CLK} - t_r$

In master mode, the width of SCL signals (high and low) can be configured freely by setting the DIV[7:0], SCLH[7:0] and SCLL[7:0] bits in the I2C CLKCTRL register.

SCL low: When the SCL low signal is detected, the internal SCLL counter starts counting until it reaches the SCLL value. At this point, the SCL line is released and become high.

SCL high: When the SCL high signal is detected, the internal SCLH counter starts counting. When the

counter value reaches the SCLH value, the SCL line is pulled low. In the process of SCL remaining high, if it is pulled low by external bus, the internal SCLH counter will stop counting and start counting in SCL low mode, laying the foundation for clock synchronization.

• SCL high signal width:

 $t_{HIGH} = (SCLH + 1) x (DIV + 1) x t_{I2C CLK}$

SCL low signal width:

 $T_{Low} = (SCLL + 1) x (DIV + 1) x t_{I2C CLK}$

Table 11-1 I²C timing specifications

D	Parameter -		Standard mode		Fast mode		Fast mode plus		SMBus	
Par			Max.	Min.	Max.	Min.	Max.	Min.	Max.	
f _{SCL} (kHz)	SCL clock frequency		100		400		1000		100	
t _{LOW} (us)	SCL clock low	4.7		1.3		0.5	İ	4.7		
tніgн (us)	SCL clock high	4.0		0.6		0.26		4.0	50	
tHD;DAT (us)	Data hold time	0		0	0.9	0	0.45	300		
tSU;DAT (ns)	Data setup time	250		100		50		250		
tr (ns)	SCL/SDA rising edge		1000		300		120		1000	
tf (ns)	SCL/SDA falling edge		300		300		120		300	

11.4.2 Data transfer management

Data transfer counter is available in the I²C interface to control communication flow. It is mainly used for:

- NACK transmission: master reception mode
- STOP transmission: master reception/transmission modes
- RESTART generation: master reception/transmission modes
- ACK control: slave mode (SMBus)
- PEC transmission/reception: master/slave modes

Generally, the data transfer management counter (by setting the CNT[7:0] bit in the I2C_CTRL2 register) is applicable to master mode, and it is disabled in slave mode. This counter is used only in SMBus mode for the ACK control and PEC reception of each byte by the slave. In SMBus mode, the slave enables data counter with the SCTRL bit in the I2C_CTRL2 register.

Byte control through master

The CNT[7:0] bit in the I2C_CTRL2 register is used to configure the number of bytes to be transferred, ranging from 1 to 255. If the number of data to be transferred is greater than 255, then the RLDEN bit in the I2C_CTRL2 register has to be set to 1 to enable reload mode. The following configuration processes are described in two aspects:

- ≤255 bytes, for example, the number of data to be transferred is 100 bytes
 - Step 1: Disable reload mode by setting RLDEN=0;
 - Step 2: Set CNT[7:0]=100.
- >255 bytes, for example, the number of data to be transferred is 600 bytes
 - Step 1: Enable reload mode by setting RLDEN=1;
 - Step 2: Set CNT[7:0]=255, then the remaining bytes are 600-255=345;
 - Step 3: After the completion of 255-byte data transfer, the TCRLD=1 in the I2C_STS register, and then set CNT[7:0]=255 for continuous transfer, and the remaining bytes are 345-255=90;
 - Step 4: After the completion of the second 255-byte data transfer, the TCRLD=1 in the I2C_STS register, and then set RLDEN=0 to disable reload mode before setting CNT[7:0]=90 for continuous transfer.

There are two ways to stop the last data transfer (RLDEN=0, reload mode disabled):

- Stop data transfer automatically (ASTOPEN=1 in the I2C_CTRL2 register)
 - When the number of data programmed in the CNT[7:0] bit has been fully transferred, the master will automatically send a STOP condition.

- Stop data transfer by software (ASTOPEN=0 in the I2C_CTRL2 register)
 - When the number of data programmed in the CNT[7:0] has been fully transferred, the TDC=1 in the I2C_STS register, the SCL will be pulled low at this point, and an interrupt is generated if the TDCIEN is generated. In this case, it is possible to send a STOP condition by setting GENSTOP=1 in the I2C_CTRL2 register, or send a RESTART condition by setting GENSTART=1 in the I2C_CTRL2 register, before clearing TDC flag by software.

Byte control through slave

This feature is enabled by setting the SCTRL bit in the I2C_CTRL2 register so that the slave is able to control ACK/NACK of each byte independently.

- Proceed as below:
 - Set SCTRL=1 to enable Byte Control Through Slave;
 - After the slave address is matched (ADDRF=1), enable reload mode by setting RLDEN=1, and then set CNT[7:0]=1;
 - When a byte is received, the TCRLD=1 in the I2C_STS register, and the slave will pull the SCL bus low between the 8th and 9th clock edges. At this point, the user can read the RXDT register and generate an ACK or NACK signal through the NACKEN bit in the I2C_CTRL2 register.
 - When an NACK signal is generated, it indicates the end of communication.
 - When an ACK signal is generated, the communication flow keeps going on. At this point, set CNT[7:0]=1, the TCRLD flag is cleared automatically by hardware, and the SCL bus is released for the reception of the next byte.

As we know, the value in the CNT[7:0] bit is not limited to 1. If you want to receive 8 data, for example, but just want to control the ACK/NACK signals of the 8th data, proceed as below: set CNT[7:0]=8, the slave will receive 7 consecutive data, with ACK signals sent. Once the 8th data reception is completed, the SCL bus is pulled low, and then proceed as above to select whether to send an ACK or NACK

It should be noted that the clock stretching capability must be enabled (STRETCH=0 in the I2C_CTRL1 register) before selecting Byte Control Mode Through Slave.

Table 11-2 I²C configuration

Description	RLDEN bit	ASTOPEN bit	SCTRL bit
Master transmit/receive CNT+STOP	0	1	×
Master transmit/receive CNT+RESTART	0	0	×
Slave transmit/receive (ACK response to all bytes)	×	×	0
Slave receive (control ACK/NACK of each byte)	1	×	1

11.4.3 I²C master communication flow

1. I²C clock initialization (by setting the I2C_CLKCTRL register)

I²C clock divider: DIV[7:0]

Data hold time (t_{HD;DAT}): SDAD[3:0]

Data setup time (t_{SU:DAT}): SCLD[3:0]

SCL high duration: SCLH[7:0]

SCL low duration: SCLL[7:0]

The register can be configured by means of Artery_I2C_Timing_Configuration tool.

2. Set the number of bytes to be transferred

— ≤255 bytes

Set RLDEN=0 in the I2C_CTRL2 register to disable reload mode;

Set CNT[7:0]=N in the I2C_CTRL2 register.

>255 bytes

Set RLDEN=1 in the I2C_CTRL2 register to enable reload mode;

Set CNT[7:0]=255 in the I2C CTRL2 register;

Remaining bytes N=N-255.

3. End of data transfer

- ASTOPEN=0: stop data transfer by software. After the completion of data transfer, the TDC is set in the I2C_STS register, and GENSTOP=1 or GENSTART=1 is written by software to send a STOP or START condition.
- ASTOPEN=1: data transfer is stopped automatically. A STOP condition is sent at the end of data transfer.

4. Set slave address

- Set slave address value (by setting the SADDR bit in the I2C CTRL2 register);
- Set slave address mode (by setting the ADDR10 bit in the I2C_CTRL2 register):

ADDR10=0: 7-bit address mode

ADDR10=1: 10-bit address mode

5. Set transfer direction (by setting the DIR bit in the I2C_CTRL2 register)

DIR=0: Master reception

DIR=1: Master transmission

6. Start data transfer

When GENSTART=1 in the I2C_CTRL2 register, the master starts sending a START condition and slave address. After receiving the ACK from the slave, ADDRF=1 is asserted in the I2C_STS register. The ADDRF flag can be cleared by setting ADDRC=1 in the I2C_CLR register, and then data transfer starts.

7. Master transmit

- 1. I2C_TXDT data register is empty, the shift register is empty, and TDIS=1 in I2C_STS register;
- 2. Write 1 to the TXDT register, and data is immediately moved to the shift register;
- 3. TXDT register becomes empty, and TDIS=1 again;
- 4. Write 2 to the TXDT register, and TDIS is cleared;
- 5. Repeat step 2 and 3 until the data in the CNT[7:0] is sent;
- 6. If TCRLD=1 (reload mode) in the I2C_STS register, the following two circumstances should be noted:

Remaining bytes N>255: Writing 255 to the CNT bit, N=N-255, TCRLD is cleared, and data transfer continues;

Remaining bytes N≤255: Disable reload mode (RLDEN=0), write N to the CNT bit, TCRLD is cleared, and data transfer continues.

8. Master receive

- 1. After the slave address is matched, ADDRF=1 in the I2C_STS register, clear the ADDRF flag by setting ADDRC=1 in the I2C_CLR register, and then it starts sending data;
- 2. After the reception of data, RDBF=1; read the RXDT register will clear the RDBF automatically;
- 3. Repeat step 2 until the reception of data programmed in the CNT[7:0];
- 4. If TCRLD=1 (reload mode) in the I2C_STS register, the following two circumstances should be noted:

Remaining bytes N>255: Writing 255 to the CNT bit, N=N-255, TCRLD is cleared, and data transfer continues;

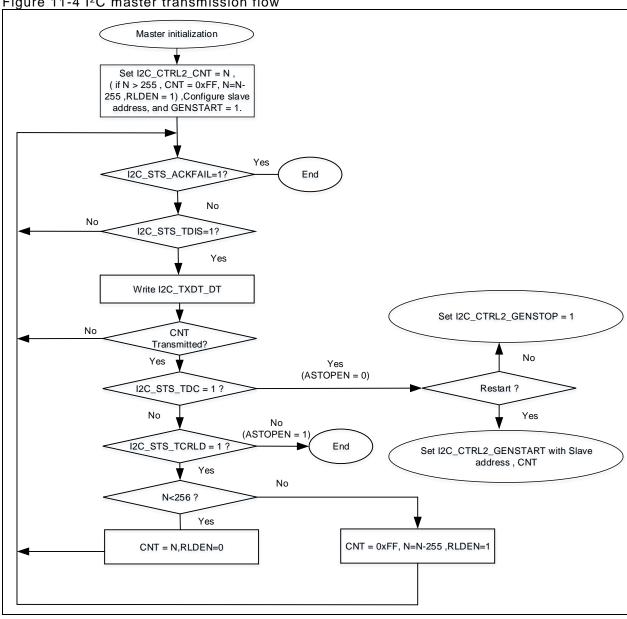
Remaining bytes N≤255: Disable reload mode (RLDEN=0), write N to the CNT bit, TCRLD is cleared, and data transfer continues.

5. After the reception of the last data, an NACK signal will be sent by master.

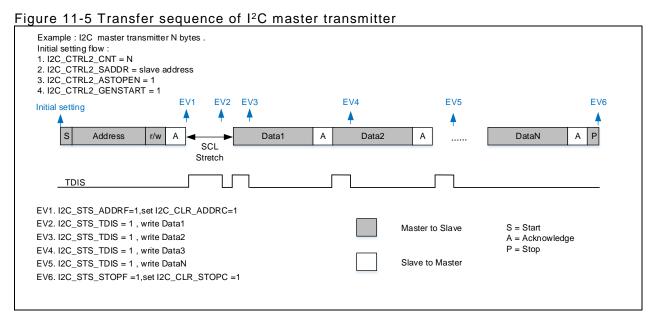
9. Stop condition

STOP condition generation:

ASTOPEN=0: TDC=1 in the I2C_STS register, set GENSTOP=1 to generate a STOP condition ASTOPEN=1: A STOP condition is generated automatically

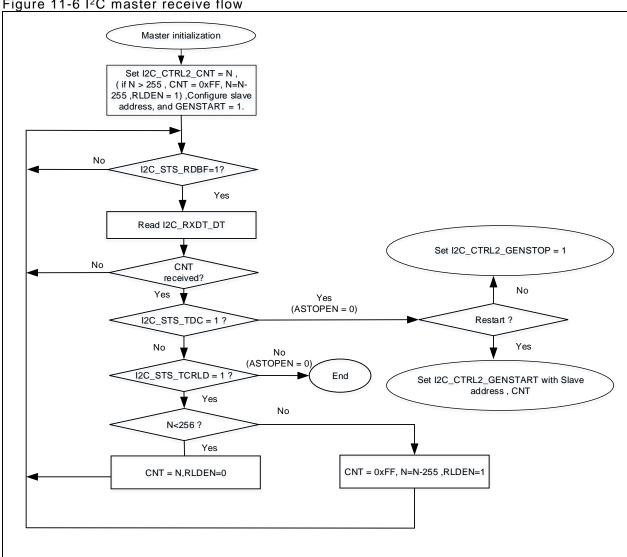

Wait for the generation of a STOP condition. When a STOP condition is generated, STOPF=1 is asserted in the I2C_STS register. The STOPF flag can be cleared by setting STOPC=1 in the I2C_CLR register, and then transfer stops.

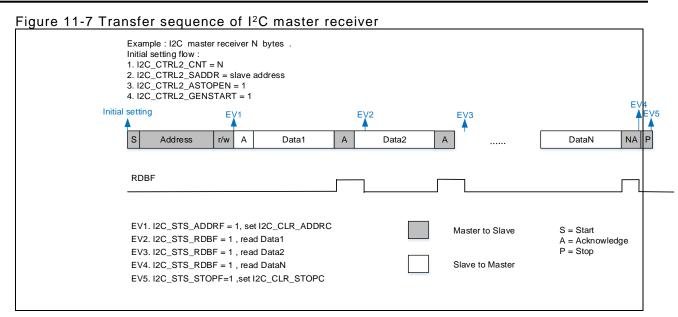
When the master receives an NACK signal during transmission, then ACKFAIL is set in the I2C_STS register, and a STOP condition is sent to stop communication, whatever mode (either ASTOPEN=0 or ASTOPEN=1).



Master transmitter

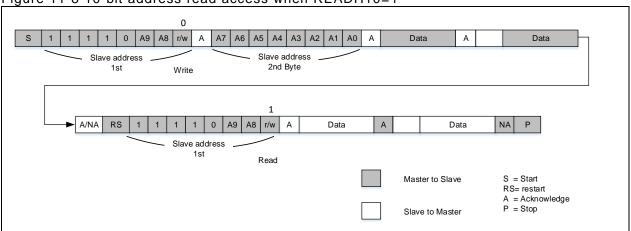
Figure 11-4 I²C master transmission flow

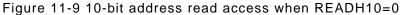


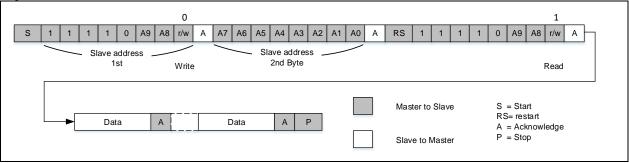


Master receiver

Figure 11-6 I²C master receive flow


Master special transfer sequence


In 10-bit addressing mode, the READH10 bit in the I2C_CTRL2 register is used to generate a special timing. When READH10=1, the master sends data to the slave before read access to the slave, as shown in the figure below:


Operating method:

When ASTOPEN=0, data is transferred from the master to the slave. At the end of data transfer, READH10=0 is asserted, and then the master starts receiving data from the slave.

Figure 11-8 10-bit address read access when READH10=1

11.4.4 I²C slave communication flow

1. Set local address 1

— Set address mode:

7-bit address: by setting ADDR1MODE=0 in the I2C_OADDR1 register

- 10-bit address: by setting ADDR1MODE=1 in the I2C_OADDR1 register
- Set address 1: by setting the ADDR1 bit in the I2C_OADDR1 register
- Enable address 1: by setting ADDR1EN=1 in the I2C_OADDR1 register

2. Set local address 2

- Set address 2: by setting the ADDR2 bit in the I2C_OADDR2 register
- Set address 2 mask bit: by setting the ADDR2MASK bit in the I2C OADDR2 register
- Enable address 2: by setting ADDR2EN=1 in the I2C_OADDR2 register

Note: Only 7-bit address mode is available in the address 2 mode. The ADDR2MASK bit is used to mask some address bits freely so that the slave can respond to some specific addresses. Refer to Section 14.2 for more information about the ADDR2MASK bit.

In the case of using only one address, only address 1 needs to be configured, without the need of address 2 mode.

3. Wait for address matching

When the local address is received, the ADDRF bit is set in the I2C_STS register. The data transfer direction can be obtained by read access to the SDIR bit in the I2C_STS register. When SDIR=0, it indicates that the slave is receiving data, whereas SDIR=1 indicates that the slave is sending data. The ADDR[6:0] bit in the I2C_STS register indicates what kind of address has been received, which is particularly helpful in the case when the dual address mode is used and the address 2 mode mask bit is set.

Data transfer starts when the ADDRF flag is cleared by setting ADDRC=1 in the I2C_CLR register.

4. Data transfer (slave transmission, clock stretching enabled, STRETCH=0)

After address matching:

- I2C_TXDTdata register becomes empty, the shift register becomes empty, and TDIS=1 in the I2C_STS register;
- 2. Write 1 to the TXDT register, and data is immediately moved to the shift register;
- 3. TXDT register becomes empty, and TDIS=1 again;
- 4. Write 2 to the TXDT register, and the TDIS is cleared;
- 5. Repeat step 3 and 4 until the end of data transfer;
- Wait for the generation of an NACK signal. Once received, the ACKFAILF is set in the I2C_STS register. The ACKFAILF flag is cleared by setting ACKFAILC=1 in the I2C_CLR register;
- 7. Wait for the generation of a STOP condition. Once received, the STOPF bit is set in the I2C_STS register. The STOPF flag is cleared by setting STOPC=1 in the I2C_CLR register, and transmission ends.

Note: In the case of the clock stretching being disabled (STRETCH=1), if data has not yet been written to the TXDT register before the transmission of the first bit of the to-be-transferred data (that is, before the generation of SDA edge), an underrun error may occur, and the OUF bit is set in the I2C STS register, sending 0xFF to the bus.

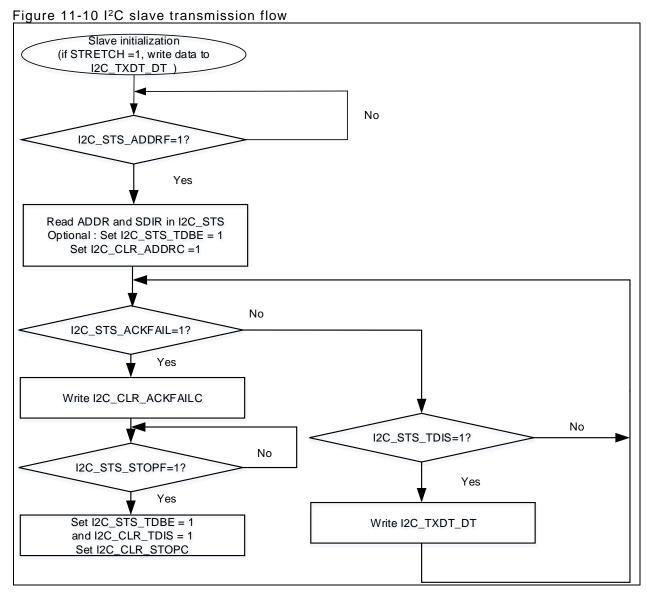
In order to write data in time, data must be written to the DT register first before communication, in two different ways:

- Write operation through software: Clear the TXDT register by setting TDBE=1 through software; then write the first data to the TXDT register, and the TDBE bit is cleared.
- Write operation through interrupts or DMA: Clear the TXDT register by setting TDBE=1 through software; then set TDIS=1 to generate a TDIS event, which generates an interrupt or DMA request. At this point, data is written to the TXDT register using DMA or interrupt functions.

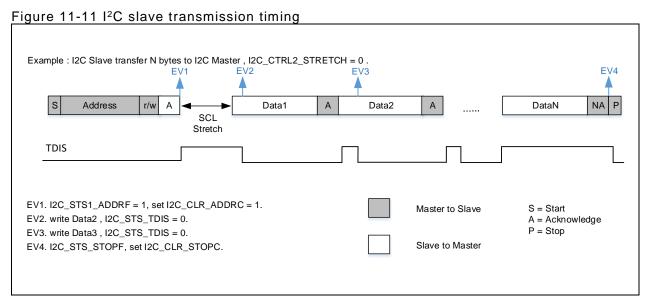
5. Data transfer (slave receive, clock stretching enabled, STRETCH=0)

After address matching:

1. I2C_RXDTregister becomes empty, the shift register becomes empty, and RDBF=0 in the I2C_STS register;

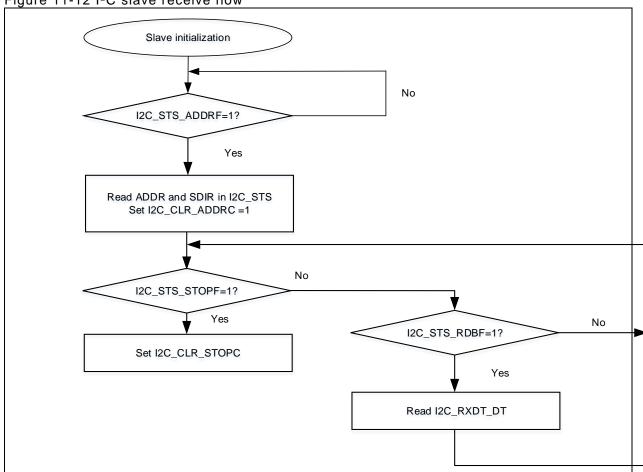

- 2. After the reception of data, RDBF=1; read the RXDT register will clear the RDBF automatically;
- 3. Repeat step 2 until the completion of all data transfer;
- 4. Wait for the generation of a STOP condition. Once received, the STOPF bit in the I2C_STS register is set. The STOPF flag is cleared by setting STOPC=1 in the I2C_CLR register, and transmission ends.

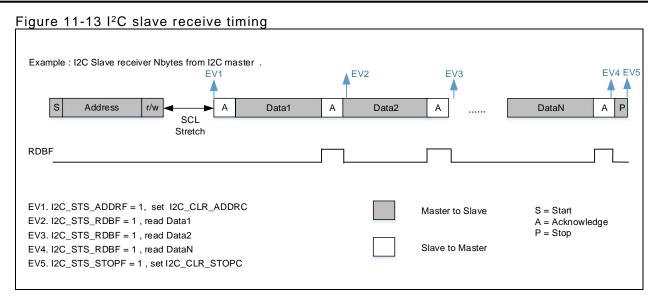
In slave receive mode, the slave byte control mode (SCTRL=1) can be used for data reception. This mode allows to control ACK/NACK signals of each byte received. This mode is typically available in SMBus protocol. Refer to 11.4.2 Data transfer management for more information about this mode.


Note that the slave must read the received data in the case of the clock stretching being disabled (STRETCH=1). If one-byte data has been received and data is not read yet before the end of the next data reception, an overrun error occurs, setting the OUF bit in the I2C_STS register and sending NCAK.

An interrupt will be generated if the corresponding interrupt enable bit is enabled. For more information about interrupt generation, refer to the interrupt chapter.

Slave transmitter





Slave receiver

Figure 11-12 I2C slave receive flow

11.4.5 SMBus

The System Management Bus (SMBus) is a two-wire interface through which various devices can communicate with each other. It is based on I²C. With SMBus, the device can provide manufacturer information, tell the system its model/part number, report different types of errors and accept control parameters and so on. For more information, refer to SMBus 2.0 protocol.

The SMBus specification defines three types of devices.

Difference between SMBus and I²C

- 1. SMBus requires a minimum speed of 10 KHz z for the purpose of management and monitor. It is quite easy to know whether the bus is in Idle state or not as long as a parameter is input while running on a certain transmission speed, without the need of detecting the STOP signals one after another, or even keeping STOP and other parameter monitor. There is no limit for I²C.
- 2. SMBus transmission speed ranges from 10 KHz to 100 KHz. In contrast, I²C has no minimum requirement, and its maximum speed varies from one mode to another, namely, 100 KHz in standard mode and 400 KHz in fast mode.
- 3. After reset, SMBus needs timeout, but there is no limit for I²C in this regard.

SMBus address resolution protocol (ARP)

SMBus address conflicts can be resolved by dynamically assigning a new unique address to each device. Refer to SMBus 2.0 protocol for more information about ARP.

Setting the DEVADDREN bit in the I2C_CTRL1 register can enable the I^2 C interface to recognize the default device address (0b1100001x). However, unique device identifier (UDID) and the detailed protocol implementation should be handled by software.

SMBus host notify protocol

The slave device can send data to the master device through SMBus host notify protocol. For example, the slave can notify the host to implement ARP with this protocol. Refer to SMBus 2.0 protocol for details on SMBus host notify protocol.

In host mode (HADDREN =1), the I^2C interface e is enabled to recognize the default host address (0b0001000x).

SMBus Alert

SMBALERT is an optional signal that connects the ALERT pin between the host and the salve. With this signal, the slave notifies the host to access the slave. SMBALERT is a wired-AND signal. For more information about SMBus Alert, refer to SMBus2.0 protocol.

The detailed sequences are as follows:

SMBus host

- 1. Enable SMBus Alert mode by setting SMBALERT=1;
- 2. Enable ALERT interrupt if necessary;
- 3. When an alert event occurs on the ALERT pin (ALERT pin changes from high to low);
- 4. The host will generate ALERT interrupt if enabled;

- The host then processes the interrupt and accesses to all devices through ARA (Alert Response Address 0001100x) so as to get the slave addresses. Only the devices with pulled-down SMBALERT can acknowledge ARA.
- 6. The host then continues to operate based on the slave addresses available.

SMBus slave

- 1. When an alert event occurs and the ALERT pin changes from high to low (SMBALERT=1), the slave responses to ARA (Alert Response Address, 0001100x);
- 2. Wait until the host gets the slave addresses through ARA;
- 3. Report its own address, but it continues to wait if the arbitration is lost;
- 4. Address is reported properly, and the ALERT pin is released (SMBALERT=0).

Packet error checking (PEC)

Packet error checking (PEC) is used to guarantee the correctness and integrity of data transfer. This is done by using CRC-8 polynomial:

$$C(x) = x^8 + x^2 + x + 1$$

PEC calculation is enabled when PECEN=1 in the I2C_CTRL1 register to check address and data.

PEC transfer:

- Host: PEC transfer is enabled by setting PECTEN=1 in the I2C_CTRL2 register. The host sends a PEC as soon as the number of data transfer reaches N-1 (CNT=N).
- Slave: PEC transfer is enabled by setting PECTEN=1 in the I2C_CTRL2 register. When the number of data transfer reaches N-1 (CNT=N), the slave will consider the Nth data as a PEC and check it. A NACK will be sent if the PEC checking result is not correct, setting the PECERR lag in the I2C_STS register. In case of slave transmission mode, a NACK must follow the PEC whatever the checking result.

SMBus timeout

The SMBus protocol specifies three timeout detection modes:

- Low level timeout (t_{TIMEOUT}): The time duration when the SCL is kept low in a single mode (taking into account master/slave device, however actively or passively pulled low).
- Cumulative timeout for a slave device at low level (t_{LOW:SEXT}): The cumulative time duration when the SCL is pulled low by a slave device during the period from a START condition to a STOP condition.
- Cumulative timeout for a master device at low level (t_{LOW:MEXT}): The cumulative time duration when the SCL is pulled low by a master device during the period from the ACK of the last byte to the 8th bit of the next byte (a single byte).

It should be noted that both $t_{\text{LOW:SEXT}}$ and $t_{\text{LOW:MEXT}}$ only deal with the time when they set themselves low level, excluding the time when they are pulled low by external sources. In contrast, both of these cases are considered in the calculation of t_{TIMEOUT} .

Table 11-3 SMBus timeout specification

Type of timeout	Min.	Max.	Unit
t _{TIMEOUT}	25	35	ms
tlow:sext	-	25	ms
tlow:mext	-	10	ms

The I²C peripherals embeds two counters for timeout detection, which can be configured through the I2C_TIMEOUT register. When a timeout event occurs, the TMOUT is set in the I2C_STS register. TMOUT bit can be cleared by writing 1 to the TMOUTC bit in the I2C_CLR register.

- EXTTIME: This is used to the cumulative timeout detection for master/slave devices at low level.
 Timeout duration = (EXTTIME + 1) x 2048 x T_{I2C CLK}
- TOTIME: This is used for clock level timeout detection, selected through the TOMODE bit.
 TOMODE=0: Low level timeout detection, timeout duration=(TOTIME + 1) x 2048 x T_{I2C_CLK}
 TOMODE=1: High level timeout detection, timeout duration=(TOTIME + 1) x 4 x T_{I2C_CLK}

Table 11-4 SMBus timeout detection configuration

Type of timeout	Other configuratio	n Enable bit	Timeout calculation
t _{TIMEOUT}	TOMODE=0	TOEN=1	(TOTIME + 1) x 2048 x TI2C_CLK
t _{LOW:SEXT}	-	EXTEN=1	(EXTTIME + 1) x 2048 x TI2C_CLK
tlow:mext	-	EXTEN=1	(EXTTIME + 1) x 2048 x TI2C_CLK

Slave receive byte control

In slave receive mode, the slave receive byte control mode (SCTRL=1) can be used to control ACK/NACK signals of each received byte. Refer to the 11.4.2 Data transfer management for more information.

Table 11-5 SMBus mode configuration

Transfer mode	PECTEN	RLDEN	ASTOPEN	SCTRL
Master transmit/receive +STOP	1	0	1	-
Master transmit/receive +RESTART	1	0	0	-
Slave receive	1	1	-	1
Slave transmit	1	0	-	-

How to use the interface in SMBus mode

1. Set SMBus default address acknowledgement:

HADDREN=1: Master default address acknowledged (0b0001000x)

DEVADDREN=1: Device default address acknowledged (0b1100001x)

- 2. Configure PEC
- Slave receive byte control mode can be enabled (with SCTRL bit in the I2C_CTRL1) in slave mode, if necessary
- 4. Other configurations follow the I²C

However, the detailed SMBus protocol implementation should be handled by software, since the I²C interface is only enabled to recognize the addresses of SMBus protocols.

11.4.6 SMBus master communication flow

The SMBus is similar to the I²C in terms of master communication flow.

- 1. I²Cclock initialization (by setting the I2C_CLKCTRL register)
 - I²C clock divider: DIV[7:0]
 - Data hold time (t_{HD;DAT}): SDAD[3:0]
 - Data setup time (t_{SU;DAT}): SCLD[3:0]
 - SCL high duration: SCLH[7:0]
 - SCL low duration: SCLL[7:0]

The register can be configured by means of Artery_I2C_Timing_Configuration tool.

2. SMBus-related initialization

- Select SMBus host: host default address acknowledged (0b0001000x) by setting HADDREN=1
- Enable PEC calculation: set PECEN=1 in the I2C_CTRL1 register
- Enable PEC transfer: set PECTEN=1 in the I2C_CTRL2 register

3. Set the number of bytes to be transferred

- Disable reload mode by setting RLDEN=0 in the I2C_CTRL2 register
- Set CNT[7:0]=N in the I2C_CTRL2 register

The number of bytes to be transferred is <255 in SMBus mode at one time.

4. End of data transfer

 ASTOPEN=0: stop data transfer by software. After the completion of data transfer, the TDC is set in the I2C_STS register, and GENSTOP=1 or GENSTART=1 s written by software to send

- a STOP or START condition
- ASTOPEN=1: data transfer is stopped automatically. A STOP condition is sent at the end of data transfer

5. Set slave address

- Set slave address value (by setting the SADDR bit in the I2C_CTRL2 register)
- Set 7-bit slave address mode (by setting ADDR10=0 in the I2C_CTRL2 register)

6. Set transfer direction (by setting the DIR bit in the I2C_CTRL2 register)

- DIR=0: Master reception
- DIR=1: Master transmission

7. Start data transfer

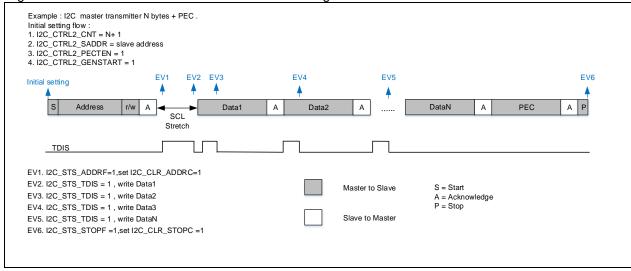
In case of GENSTART=1 in the I2C_CTRL2 register, the master starts sending a START condition and slave address. After receiving the ACK from the slave, ADDRF=1 is asserted in the I2C_STS register. The ADDRF flag can be cleared by setting ADDRC=1 in the I2C_CLR register, and then data transfer starts.

8. Master transmit

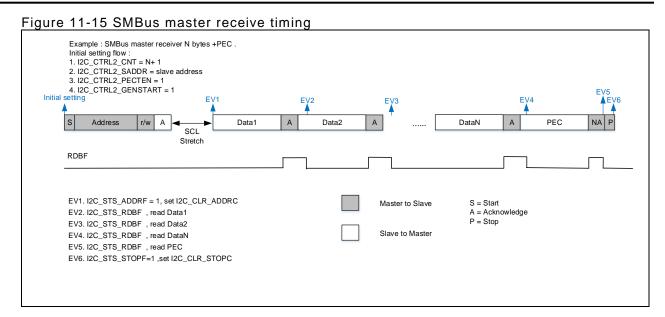
- 1. I2C_TXDT data register is empty, the shift register is empty, and TDIS=1 in I2C_STS register;
- 2. Write 1 to the TXDT register, and data is immediately moved to the shift register;
- 3. TXDT register becomes empty, TDIS=1 again;
- 4. Write 2 to the TXDT register, and TDIS is cleared;
- 5. Repeat step 2 and 3 until the specified data (N-1) is sent;
- 6. The master will automatically transmit the Nth data, that is, PEC.

9. Master receive

- After the reception of data, RDBF=1; read the RXDT register will clear the RDBF automatically;
- 2. Repeat step 1 until the reception of the specified data (N). The Nth data is set as PEC. A NACK is automatically sent after the reception of the Nth data (PEC) whatever the PEC result.


10. STOP condition

STOP condition generation:


ASTOPEN=0: TDC=1 in the I2C_STS register, set GENSTOP=1 to generate a STOP condition; ASTOPEN=1: A STOP condition is generated automatically

Wait for the generation of a STOP condition. When a STOP condition is generated, STOPF=1 is asserted in the I2C_STS register. The STOPF flag can be cleared by setting STOPC=1 in the I2C_CLR register, and then transfer stops

Figure 11-14 SMBus master transmission timing

11.4.7 SMBus slave communication flow

The SMBus is similar to the I²C in terms of slave communication flow.

1. Set local address

- Set 7-bit address mode: by setting ADDR1MODE=0 in the I2C_OADDR1 register
- Set address 1: by setting the ADDR1 bit in the I2C_OADDR1 register
- Enable address 1: by setting ADDR1EN=1 in the I2C_OADDR1 register

2. SMBus-related initialization

- Select SMBus device: device default address acknowledged (0b1100001x) by setting DEVADDREN=1
- Enable PEC calculation: by setting PECEN=1 in the I2C_CTRL1 register
- Set slave byte control mode:

Slave transmit: disable byte control mode by setting SCTRL=0 in the I2C_CTRL1 register Slave receive: enable byte control mode by setting SCTRL=1 in the I2C_CTRL1 register

3. Wait for address matching

When the local address is received, the ADDRF bit is set in the I2C_STS register. The data transfer direction can be obtained by read access to the SDIR bit in the I2C_STS register. When SDIR=0, it indicates that the slave is receiving data, whereas SDIR=1 indicates that the slave is sending data. The ADDR[6:0] bit in the I2C_STS register indicates what kind of address has been received,

Enable PEC transfer: by setting PECTEN=1 in the I2C CTRL2 register

Set the number of data to be transferred:

- Slave transmit: by setting CNT=N in the I2C_CTRL2 register
- Slave receive: by setting CNT=1 in the I2C_CTRL2 register

Set reload mode:

- Slave transmit: by setting RLDEN=0 in the I2C_CTRL2 register
- Slave receive: by setting RLDEN=1 in the I2C_CTRL2 register

The ADDRF flag can be cleared by setting ADDRC=1 in the I2C_CLR register, and then data transfer starts.

4. Data transfer (slave transmission, clock stretching enabled, STRETCH=0)

After address matching:

- I2C_TXDT data register becomes empty, the shift register becomes empty, and TDIS=1 in the I2C_STS register;
- 2. Write 1 to the TXDT register, and data is immediately moved the shift register;
- TXDT register is empty, and TDIS=1 again;
- 4. Write 2 to the TXDT register, and TDIS is cleared;

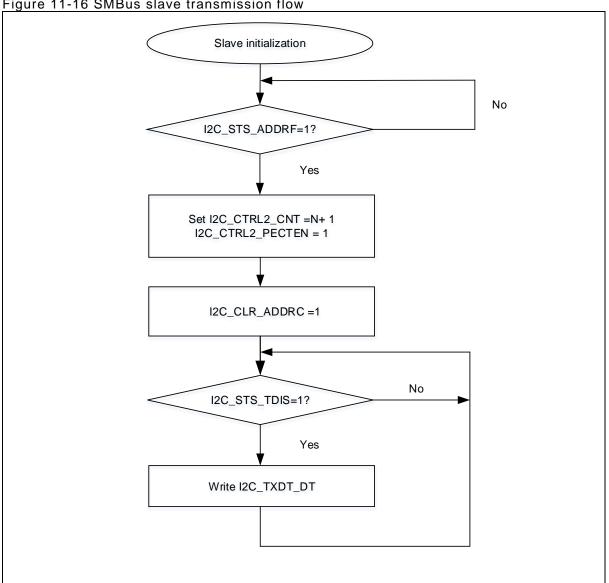
- 5. Repeat step 3 and 4 until data (N-1) is sent;
- 6. The slave will automatically transmit the Nth data, that is, PEC
- 7. Wait for the generation of a NACK signal. Once received, the ACKFAILF is set in the I2C_STS register. The ACKFAILF flag is cleared by writing 1 to the ACKFAILC bit;
- 8. Wait for the generation of a STOP condition. Once received, the STOPF is set in the I2C_STS register. The STOPF is cleared by writing 1 to the STOPC bit in the I2C_CLR register, and transmission ends.

5. Data transfer (slave receive, clock stretching enabled, STRETCH=0)

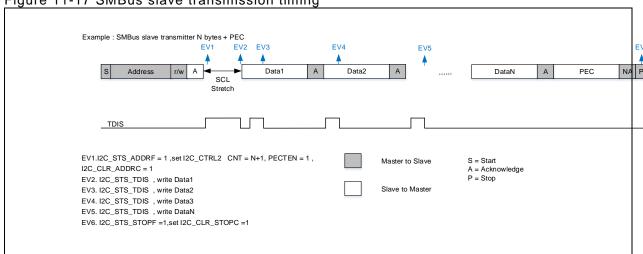
After address matching:

- I2C_RXDT register becomes empty, the shift register becomes empty, and RDBF=0 in the I2C STS register;
- Upon the receipt of one-byte data, RDBF=1 and TCRLD=1, then the SCL is pulled low by the slave:
- 3. Read the RXDT register, and the RDBF is cleared automatically;
- The NACKEN bit in the I2C_CTRL2 register can be configured to generate an ACK or NACK, if needed

If a NACK is detected, it indicates the completion of communication;

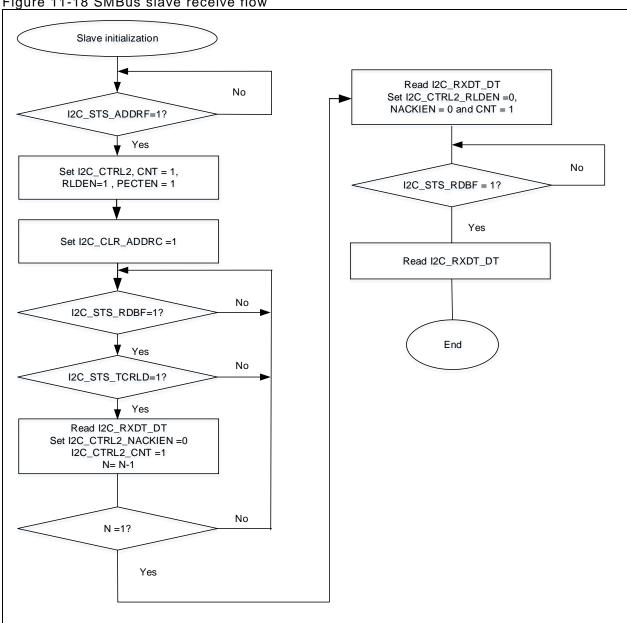

If an ACK is detected, communication continues. Writing CNT=1 will automatically clear the TCRLD flag by hardware, and the SCL is released by the slave for the reception of the next data.

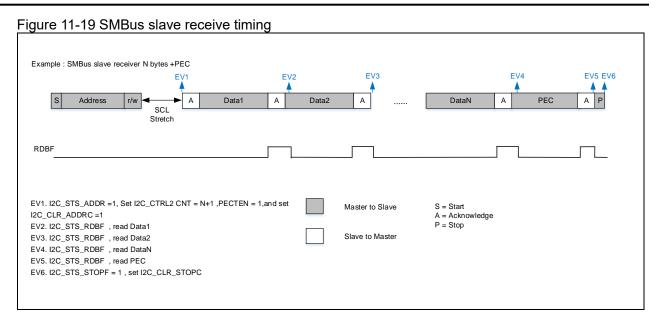
- 5. Repeat step 2/3/4 until the completion of data reception (N-1);
- 6. Set RLDEN=0 in the I2C_CTRL2 register to disable reload mode. Set CNT=1 and repeat step 2/3 to receive a PEC. The PECERR bit will be set if a PEC error occurs.
- 7. Wait for the generation of a STOP condition. Once received, the STOPF is set in the I2C_STS register. The STOPF can be cleared by writing 1 to the STOPC bit in the I2C_CLR register, and transfer ends.


2023.08.31 Page 160 Rev 2.00

SMBus slave transmitter

Figure 11-16 SMBus slave transmission flow





SMBus slave receive

Figure 11-18 SMBus slave receive flow

11.4.8 Data transfer using DMA

I²C data transfer can be done using DMA controller so as to reduce the burden on the CPU. The TDIEN and RDIEN must be set 0 when using DMA for data transfer.

Transmission using DMA (DMATEN=1)

- Set the peripheral address (DMA_CxPADDR=I2C_TXDT address);
- Set the memory address (DMA_CxMADDR=data memory address);
- The transmission direction is set from memory to peripheral (DTD=1 in the DMA_CHCTRL register);
- 4. Configure the total number of bytes to be transferred in the DMA_CxDTCNT register;
- Configure other parameters (such as priority, memory data width, peripheral data width, interrupts, etc.) in the DMA_CHCTRL register;
- 6. Enable the DMA channel by setting CHEN=1 in the DMA CxCTRL register;
- 7. Enable I²C DMA request by setting DMAEN=1 in the I2C_CTRL2 register. Once the TDIS bit in the I2C_STS1 register is set, the data is loaded from the programmed memory to the I2C TXDT register through DMA;
- 8. When the number of data transfers, programmed in the DMA controller, is reached (DMA_CxDTCNT), the data transfer is complete (An interrupt is generated if enabled);
- 9. Master transmitter: refer to the I²C master communication flow section for STOP condition Slave transmitter: refer to the I²C slave communication flow section for STOP condition

Reception using DMA (DMAREN=1)

- Set the peripheral address (DMA_CxPADDR= I2C_RXDT address);
- 2. Set the memory address (DMA_CxMADDR= data memory address);
- The transmission direction is set from peripheral to memory (DTD=0 in the DMA_CHCTRL register);
- 4. Configure the total number of bytes to be transferred in the DMA_CxDTCNT register;
- 5. Configure other parameters (such as priority, memory data width, peripheral data width, interrupts, etc.) in the DMA_CHCTRL register;
- 6. Enable the DMA channel by setting CHEN=1 in the DMA_CxCTRL register;
- 7. Enable I²C DMA request by setting DMAEN=1 in the I2C_CTRL2 register. Once the RDBF bit is set in the I2C_STS1 register, the data is loaded from the I2C_DT register to the programmed memory through DMA;
- 8. When the number of data transfers, programmed in the DMA controller, is reached (DMA_TCNTx=0), the data transfer is complete (An interrupt is generated if enabled).
- 9. Master receiver: refer to the I²C master communication flow section for STOP condition Slave receiver: refer to the I²C slave communication flow section for STOP condition

11.4.9 Error management

The error management feature included in the I^2C provides a guarantee for the reliability of communication. The manageable error events are listed below:

Table 11-6 I²C error events

Error event	Event flag	Enable control bit	Clear bit
SMBus Alert	ALERTF	ERRIEN	ALERTC
Timeout error	TMOUT	ERRIEN	TMOUTC
PEC error	PECERR	ERRIEN	PECERRC
Overrun/underrun	OUF	ERRIEN	OUFC
Arbitration lost	ARLOST	ERRIEN	ARLOSTC
Bus error	BUSERR	ERRIEN	BUSERRC

Overrun/Underrun (OUF)

In slave mode, an underrun/overrun may appear if the clock stretching feature is disabled (STRETCH=1 in the I2C_CTRL1 register).

In slave transmit mode: if data has not yet been written to the TXDT register before the transmission of the first bit of the to-be-transferred data (that is, before the generation of SDA edge), an underrun error may occur, and the OUF bit is set in the I2C_STS register, sending 0xFF to the bus.

In slave receive mode: The slave must read the received data as soon as it receives the data. If one-byte data has been received and data is not read yet before the end of the next data reception, an overrun error occurs, setting OUF=1 in the I2C STS register, and sending NCAK.

Arbitration lost (ARLOST)

An arbitration lost may occur when the device controls the SDA line to output high level but the actual bus output is low

- Master transmit: An arbitration may occur during an address transfer and a data transfer
- Master receive: An arbitration may occur during an address transfer and an ACK response
- Slave transmit: An arbitration may occur during a data transfer
- Slave receive: An arbitration may occur during an ACK response

Once an arbitration lost is detected, the ARLOST is set by hardware in the I2C_STS register. The SCL and SDA buses will be released and go automatically back to slave mode.

Bus error (BUSERR)

The SDA line, during a data transfer, must be kept in a stable state when the SCL is in high level. The SDA can be changed only when the SCL signal becomes low; otherwise, a bus error may appear.

- SDA changes from 1 to 0: a misplaced START condition
- SDA changes from 0 to 1: a misplaced STOP condition

Both of these conditions above may trigger a bus error. Once it occurs, the BUSERR is set by hardware in the I2C_STS register.

PEC error (PECERR)

The PEC is available only in SMBus mode. In master receive and slave receive modes, a PEC error may appear if the received PEC is not equal to the internally calculated PEC. In this case, the PECERR bit is set by hardware in the I2C_STS register.

In slave receive mode, an NACK is sent when a PEC error is detected.

In master receive mode, an NACK is always sent, whatever the PEC check result.

SMBus alert (ALERTF)

The SMBus alert feature is present when HADDREN=1 (SMBus master mode) and SMBALERT=1 (SMBus alert mode). Once an alert event is detected on the ALERT pin (ALERT pin changes from high to low), the ALERTF bit is set by hardware in the I2C_STS register.

Timeout error (TMOUT)

SMBus defines a timeout mechanism for the improvement of the system stability, preventing the bus from being pulled down in the case of a master or slave failure. Once a timeout event (defined in SMBus chapter) is detected, the TMOUT is set by hardware in the I2C_STS register. If a timeout error occurs in slave mode, the SCL and SDA buses are immediately released; if a timeout error occurs in master mode, a STOP condition is automatically by host to abort the communication.

11.5 I²C interrupt requests

The following table lists all the I²C interrupt requests.

Table 11-7 I²C interrupt requests

Interrupt event	Event flag	Enable control bit
Address matched	ADDRF	ADDRIEN
Acknowledge failure	ACKFAIL	ACKFAILIEN
Stop condition received	STOPF	STOPIEN
Transmit interrupt state	TDIS	TDIEN
Receive data buffer full	RDBF	RDIEN
Transfer complete, wait for loading data	TCRLD	TDOIFN
Data transfer complete	TDC	TDCIEN
SMBus alert	ALERTF	
Timeout error	TMOUT	
PEC error	PECERR	EDDIEN
Overrun/underrun	OUF	ERRIEN
Arbitration lost	ARLOST	
Bus error	BUSERR	

11.6 I²C debug mode

When the microcontroller enters debug mode (Cortex®-M4F halted), the SMBUS timeout either continues to work or stops, depending on the I2Cx_SMBUS_TIMEOUT configuration bit in the DEBUG module.

11.7 I²C registers

These peripheral registers must be accessed by words (32 bits).

Table 11-8 I²C register map and reset value

Register abbr.	Offset	Reset value	
I2C_CTRL1	0x00	0x00000000	
I2C_CTRL2	0x04	0x00000000	
I2C_OADDR1	0x08	0x00000000	
I2C_OADDR2	0x0C	0x00000000	
I2C_CLKCTRL	0x10	0x00000000	
I2C_TIMEOUT	0x14	0x00000000	
I2C_STS	0x18	0x00000000	
2C_CLR 0x1C		0x00000000	
I2C_PEC	0x20	0x00000000	

I2C_RXDT	0x24	0x00000000
I2C_TXDT	0x28	0x00000000

11.7.1 Control register 1 (I2C_CTRL1)

Bit	Abbr.	Reset value	Type	Description
Bit 31:24	Reserved	0x00	res	Kept at its default value.
				PEC calculation enable
Bit 23	PECEN	0x0	rw	0: Disabled
				1: Enabled
				SMBus alert enable / pin set
				To enable SMBus master alert feature:
				0: SMBus alert disabled
Bit 22	SMBALERT	0x0	rw	1: SMBus alert enabled
				To enable SMBus slave alert address:
				0: Pin high
				1: Pin low, response address 0001100x
				SMBus device default address enable
Bit 21	DEVADDREN	0x0	rw	0: Disabled
				1: Enabled, response device default address 1100001x
				SMBus host address enable
Bit 20	HADDREN	0x0	rw	0: Disabled
				1: Enabled, response host address 0001000x
				General call address enable
Bit 19	GCAEN	0x0	rw	0: Disabled
				1: Enabled, response address 0000000x
Bit 18	Reserved	0x0	res	Kept at its default value.
				Clock stretching mode
Bit 17	STRETCH	0x0	rw	0: Enabled
				1: Disabled
				Slave receiving data control
Bit 16	SCTRL	0x0	rw	0: Disabled
				1: Enabled
				DMA receive data request enable
Bit 15	DMAREN	0x0	rw	0: Disabled
				1: Enabled
				DMA transmit data request enable
Bit 14	DMATEN	0x0	rw	0: Disabled
				1: Enabled
Bit 13:12	Reserved	0x0	res	Kept at its default value.
				Digital filter value
Bit 11:8	DFLT	0x0	rw	The glitches less than the filter time on the SCL bus will
				filtered; filter time = DFLT x T _{I2C_CLK} .
				Error interrupt enable
Bit 7	ERRIEN	0x0	rw	0: Disabled
				1: Enabled
				Data transfer complete interrupt enable
Bit 6	TDCIEN	0x0	rw	0: Disabled
				1: Enabled
				Stop generation complete interrupt enable
Bit 5	STOPIEN	0x0	rw	0: Disabled
				1: Enabled
				Acknowledge fail interrupt enable
Bit 4	ACKFAILIEN	0x0	rw	0: Disabled
				1: Enabled
				Address match interrupt enable
Bit 3	ADDRIEN	0x0	rw	0: Disabled
				1: Enabled
				Data receive interrupt enable
Bit 2	RDIEN	0x0	rw	0: Disabled
				1: Enabled
				Data transmit data interrupt enable
Bit 1	TDIEN	0x0	rw	0: Disabled
				1: Enabled
				I ² C peripheral enable
Bit 0	I2CEN	0x0	rw	0: Disabled
				1: Enabled
•				

11.7.2 Control register 2 (I2C_CTRL2)

Bit	Abbr.	Reset value	Type	Description
Bit 31:27	Reserved	0x00	res	Kept at its default value.
				Request PEC transmission enable
Bit 26	PECTEN	0x0	rw	0: Transmission disabled
				1: Transmission enabled
				Automatically send stop condition enable
Bit 25	ASTOPEN	0x0	rw	0: Disabled (Software sends STOP condition)
				1: Enabled (Automatically send STOP condition)
				Send data reload mode enable
Bit 24	RLDEN	0x0	rw	0: Disabled
				1: Enabled
Bit 23:16	CNT[7:0]	0x00	rw	Transmit data counter
				Not acknowledge enable
Bit 15	NACKEN	0x0	rw	0: Acknowledge enabled
				1: Acknowledge disabled
				Generate stop condition
Bit 14	GENSTOP	0x0	rw	0: No stop generation
				1: Stop generation
				Generate start condition
Bit 13	GENSTART	0x0	rw	0: No start generation
				1: Start generation
				10-bit address header read enable
Bit 12	READH10	0x0	rw	0: 10-bit address header read disabled
				1: 10-bit address header read enabled
				Host sends 10-bit address mode enable
Bit 11	ADDR10	0x0	rw	0: 7-bit address mode
				1: 10-bit address mode
				Master data transmission direction
Bit 10	DIR	0x0	rw	0: Receive
				1: Transmit
Bit 9:0	SVDDB[0:0]	0x000	r)A/	Slave address sent by the master
טונ ש.ט	SADDR[9:0]	UXUUU	rw	In 7-bit address mode, BIT0 and BIT[9:8] don't care.

11.7.3 Address register 1 (I2C_OADDR1)

Bit	Abbr.	Reset value	Type	Description
Bit 31:16	Reserved	0x0000	res	Kept at its default value.
				Own Address 1 enable
Bit 15	ADDR1EN	0x0	rw	0: Own Address 1 disabled
				1: Own Address 1 enabled
Bit 14:11	Reserved	0x0	res	Kept at its default value.
				Own Address 1 mode
Bit 10	ADDR1MODE	0x0	rw	0: 7-bit address
				1: 10-bit address
Dit O.O	ADDD4[0.0]	0,000	mar	Own address 1
Bit 9:0	ADDR1[9:0]	0x000	rw	In 7-bit address mode, BIT0 and BIT[9:8] don't care.

11.7.4 Address register 2 (I2C_OADDR2)

				, , , , , , , , , , , , , , , , , , ,
Bit	Abbr.	Reset value	Type	Description
Bit 31:16	Reserved	0x0000	res	Kept at its default value.
				Own address 2 enable
Bit 15	ADDR2EN	0x0	rw	0: Own address 2 disabled
				1: Own address 2 enabled
Bit 14:11	Reserved	0x0	res	Kept at its default value.
				Own address 2-bit mask
				000: Match Address bit [7:1]
				001: Match Address bit [7:2]
				010: Match Address bit [7:3]
Bit 10:8	ADDR2MASK[2:0]	0x0	rw	011: Match Address bit [7:4]
Dit 10.0	ADDINZIVIAON[2.0]	UXU	I VV	100: Match Address bit [7:5]
				101: Match Address bit [7:6]
				110: Match Address bit [7]
				111: Response all addresses other than those reserved for
				I ² C
Bit 7:1	ADDR2[7:1]	0x00	rw	Own address 2

				7-bit address mode	
Bit 0	Reserved	0x0	res	Kept at its default value.	

11.7.5 Timing register (I2C_CLKCTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 31:28	DIVL[3:0]	0x0	rw	Low 4 bits of clock divider value
Bit 27:24	DIVH[7:4]	0x0	rw	High 4 bits of clock divider value DIV = (DIVH << 4) + DIVL
Bit 23:20	SCLD[3:0]	0x0	rw	SCL output delay T _{SCLD} = (SCLD + 1) x (DIV + 1) x T _{I2C_CLK}
Bit 19:16	SDAD[3:0]	0x0	rw	SDA output delay T _{SDAD} = (SDAD + 1) x (DIV + 1) x T _{I2C_CLK}
Bit 15:8	SCLH[7:0]	0x00	rw	SCL high level T _{SCLH} = (SCLH + 1) x (DIV + 1) x T _{I2C_CLK}
Bit 7:0	SCLL[7:0]	0x00	rw	SCL low level T _{SCLL} = (SCLL + 1) x (DIV + 1) x T _{I2C_CLK}

11.7.6 Timeout register (I2C_TIMEOUT)

Bit	Abbr.	Reset value	Type	Description
Bit 31	EXTEN	0x0	rw	Cumulative clock low extend timeout enable 0: Disabled 1: Enabled Corresponds to TLOW:SEXT / TLOW:MEXT in SMBus
Bit 30:28	Reserved	0x0	res	Kept at its default value.
Bit 27:16	EXTTIME[11:0]	0x000	rw	Cumulative clock low extend timeout value Timeout duration = (EXTTIME + 1) x 2048 x T _{I2C_CLK}
Bit 15	TOEN	0x0	rw	Detect clock low/high timeout enable 0: Disabled 1: Enabled Corresponds to T _{TIMEOUT} in SMBus
Bit 14:13	Reserved	0x0	res	Kept at its default value.
Bit 12	TOMODE	0x0	rw	Clock timeout detection mode 0: Clock low level detection 1: Clock high level detection
Bit 11:0	TOTIME[11:0]	0x000	rw	Clock timeout detection time For clock low level detection (TOMODE = 0): Timeout duration = (EXTTIME + 1) x 2048 x T _{I2C_CLK} For clock high level detection (TOMODE = 1): Timeout duration = (EXTTIME + 1) x 4 x T _{I2C_CLK}

11.7.7 Status register (I2C_STS)

Bit	Abbr.	Reset value	Type	Description
Bit 31:24	Reserved	0x00	res	Kept at its default value.
Bit 23:17	ADDR[6:0]	0x00	r	Slave address matching value In 7-bit address mode: Slave address received In 10-bit address mode: 10-bit slave address header received
Bit 16	SDIR	0x0	r	Slave data transmit direction 0: Receive data 1: Transmit data
Bit 15	BUSYF	0x0	r	Bus busy flag transmission mode 0: Bus idle 1: Bus busy Once a START condition is detected, this bit is set. Once a STOP condition is detected, this bit is automatically cleared.
Bit 14	Reserved	0x00	res	Kept at its default value.
Bit 13	ALERTF	0x0	r	SMBus alert flag SMBus host: This bit indicates the reception of an alert signal (ALERT pin changes from high to low) 0: No alert signal received 1: Alert signal received SMBus slave: This bit indicates the device default address reception (0001100x) 0: No alert signal received 1: Alert signal received

Bit 12	TMOUT	0x0	r	SMBus timeout flag 0: No timeout 1: Timeout
Bit 11	PECERR	0x0	r	PEC receive error flag 0: No PEC error 1: PEC error
Bit 10	OUF	0x0	r	Overflow or underflow flag In transmission mode: 0: No overflow or underflow 1: Underrun In reception mode: 0: No overflow or underflow 1: Overrun
Bit 9	ARLOST	0x0	r	Arbitration lost flag 0: No arbitration lost detected 1: Arbitration lost detected
Bit 8	BUSERR	0x0	r	Bus error flag 0: No bus error occurred 1: Bus error occurred
Bit 7	TCRLD	0x0	r	Transmission is complete, waiting to load data 0: Data transfer is not complete yet 1: Data transfer is complete This bit is set when data transfer is complete (CNT = 1) and reload mode is enabled (RLDEN=1) It is automatically cleared when writing a CNT value. This bit is applicable in master mode or when SCTRL=1 in slave mode.
Bit 6	TDC	0x0	r	Data transfer complete flag 0: Data transfer is not completed yet (the shift register still holds data) 1: Data transfer is completed (shift register become empty) This bit is set when ASTOPEN = 0, RLDEN = 0 and CNT = 0. It is automatically cleared after a START or a STOP condition is received.
Bit 5	STOPF	0x0	r	Stop condition generation complete flag 0: No Stop condition detected. 1: Stop condition detected.
Bit 4	ACKFAILF	0x0	r	Acknowledge failure flag 0: No acknowledge failure 1: Acknowledge failure
Bit 3	ADDRF	0x0	r	0~7 bit address match flag 0: 0~7 bit address mismatch 1: 0~7 bit address match
Bit 2	RDBF	0x0	r	Receive data buffer full flag 0: Data register has not received data yet 1: Data register has received data
Bit 1	TDIS	0x0	rw1s	Transmit data interrupt status 0: Data has been written to the I2C_TXDT 1: Data has been sent from the I2C_TXDT to the shift register. I2C_TXDT become empty, and thus the to-be transferred data must be written to the I2C_TXDT. When the clock stretching mode is disabled, a TDIS event is generated by writing 1 so that data is written to the I2C_TXDT register in advance.
Bit 0	TDBE	0x0	rw1s	Transmit data buffer empty flag 0: I2C_TXDT holds data 1: I2C_TXDT is empty This bit is only used to indicate the current status of the I2C_TXDT register. The I2C_TXDT register can be refreshed by writing 1 through software.

2023.08.31 Page 169 Rev 2.00

11.7.8 Status clear flag (I2C_CLR)

Δhhr	Reset value	Type	Description
			Kept at its default value.
Neserveu	000000	169	
ALERTC	0x0	W	Clear SMBus alert flag
			SMBus alert flag is cleared by writing 1.
TMOUTC	0x0	w	Clear SMBus timeout flag
11110010		••	SMBus timeout flag is cleared by writing 1.
DECEDDO	0v0	14/	Clear PEC receive error flag
FEGERNO	UXU	vv	PEC receive error flag is cleared by writing 1.
OUEO	00		Clear overload / underload flag
OUFC	UXU	W	The overload / underload flag is cleared by writing 1.
ARLOGEO	0.0		Clear arbitration lost flag
ARLOSTC	UXU	W	The arbitration lost flag is cleared by writing 1.
BUOEBBO	0.0		Clear bus error flag
BUSERRC	UXU	W	The bus error flag is cleared by writing 1.
Reserved	0x0	res	Kept at its default value.
			Clear stop condition generation complete flag
STOPC	0x0	W	The stop condition generation complete flag is cleared by
			writing 1.
4 OKEA II O	2.2		Clear acknowledge failure flag
ACKFAILC	UXU	W	The acknowledge failure flag is cleared by writing 1.
ADDDO	00		Clear 0~7 bit address match flag
ADDRC	UXU	W	The 0~7 bit address match flag is cleared by writing 1.
Reserved	0x0	res	Kept at its default value.
	TMOUTC PECERRC OUFC ARLOSTC BUSERRC Reserved STOPC ACKFAILC ADDRC	Reserved 0x00000 ALERTC 0x0 TMOUTC 0x0 PECERRC 0x0 OUFC 0x0 ARLOSTC 0x0 BUSERRC 0x0 Reserved 0x0 STOPC 0x0 ACKFAILC 0x0 ADDRC 0x0	Reserved 0x000000 res ALERTC 0x0 w TMOUTC 0x0 w PECERRC 0x0 w OUFC 0x0 w ARLOSTC 0x0 w BUSERRC 0x0 w Reserved 0x0 res STOPC 0x0 w ACKFAILC 0x0 w ADDRC 0x0 w

11.7.9 PEC register (I2C_PEC)

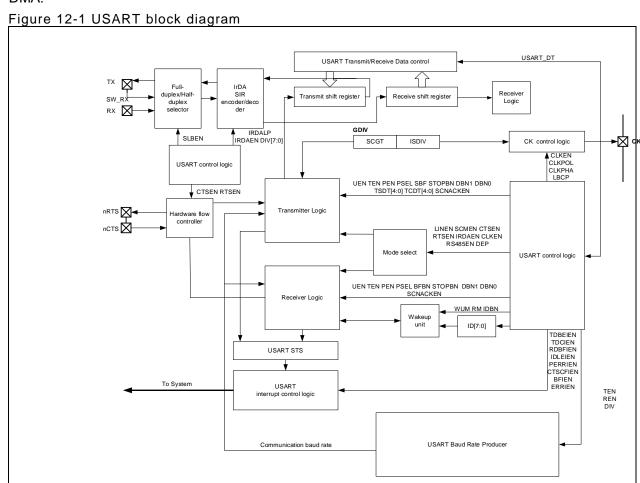
Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	res	Kept at its default value.
Bit 7:0	PECVAL[7:0]	0x00	r	PEC value

11.7.10 Receive data register (I2C_RXDT)

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	res	Kept at its default value.
Bit 7:0	DT[7:0]	0x00	r	Receive data register

11.7.11 Transmit data register (I2C_TXDT)

Bit	Abbr.	Reset value	Type	Description
Bit 31:8	Reserved	0x000000	res	Kept at its default value.
Bit 7:0	DT[7:0]	0x00	rw	Transmit data register


12 Universal synchronous/asynchronous receiver/transmitter (USART)

12.1USART introduction

The universal synchronous/asynchronous receiver/transmitter (USART) serves an interface for communication by means of various configurations and peripherals with different data formats. It supports asynchronous full-duplex and half-duplex as well as synchronous transfer. With a programmable baud rate generator, USART offers up to 13.5 Mbits/s of baud rate by setting the system frequency and frequency divider, which is also convenient for users to configure the required communication frequency.

In addition to standard NRZ asynchronous and synchronous receiver/transmitter communication protocols, USART also supports widely-used serial communication protocols such as LIN (Local Interconnection Network), IrDA (Infrared Data Association) SIRENDEC specification, Asynchronous SmartCard protocol defined in ISO7816-3 standard, CTS/RTS (Clear To Send/Request To Send) hardware flow operation, RS485 and Modbus.

It also allows multi-processor communication, and supports silent mode waken up by idle frames or ID matching to build up a USART network. Meanwhile, high-speed communication is possible by using DMA.

USART main features:

- Programmable full-duplex or half-duplex communication
 - Full-duplex, asynchronous communication
 - Half-duplex, single-wire communication

- Programmable communication modes
 - NRZ standard format (Mark/Space)
 - LIN (Local Interconnection Network)
 - IrDA SIR (SIR Serial Infrared)
 - Asynchronous SmartCard protocol defined in ISO7816-3 standard: support 0.5 or 1.5 stop bits in Smartcard mode
 - RS-232 CTS/RTS(Clear To Send/Request To Send) hardware flow operation
 - Multi-processor communication with silent mode (waken up by configuring ID match and bus idle frame)
 - Synchronous mode
- Programmable baud rate generator
 - Shared by transmission and reception, up to 13.5 Mbits/s
- Programmable frame format
 - Programmable data word length (7 bits, 8 bits or 9 bits)
 - Programmable stop bits: support 1 or 2 stop bits
 - Programmable parity control: transmitter with parity bit transmission capability, and receiver with received data parity check capability
 - Programmable data transmission order (MSB/LSB)
 - Programmable Tx/Rx pi polarity
 - Programmable DT polarity
- Programmable DMA multi-processor communication
- Programmable separate enable bits for transmitter and receiver
- Programmable output CLK phase, polarity and frequency
- Detection flags
 - Receive buffer full
 - Transmit buffer empty
 - Transfer complete flag
- Four error detection flags
 - Overrun error
 - Noise error
 - Framing error
 - Parity error
- Programmable 12 interrupt sources with flags
 - CTSF changes
 - LIN break detection
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle bus detected
 - Overrun error
 - Framing error
 - Noise error
 - Parity error
 - Receiver timeout detection
 - Byte match detection

12.2Full-duplex/half-duplex selector

The full-duplex and half-duplex selector enables USART to perform data exchanges with peripherals in full-duplex or half-duplex mode, which is achieved by setting the corresponding registers.

In two-wire unidirectional full-duplex mode (by default), TX pin is used for data output, while the RX pin is used for data input. Since the transmitter and receiver are independent of each other, USART is allowed to send/receive data at the same time so as to achieve full-duplex communication.

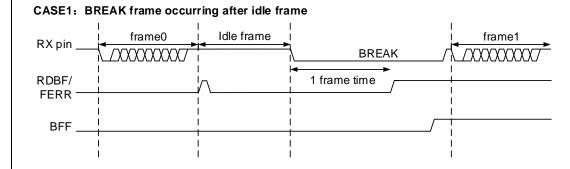
When the HALFSEL is set to 1, the single-wire bidirectional half-duplex mode is selected for communication. In this case, the LINEN, CLKEN, SCMEN and IRDAEN bits must be set to 0. RX pin is inactive, while TX and SW_RX are interconnected inside the USART. For the USART part, TX pins is used for data output, and SW_RX for data input. For the peripheral part, bidirectional data transfer is executed through IO mapped by TX pin.

12.3 Mode selector

12.3.1 Introduction

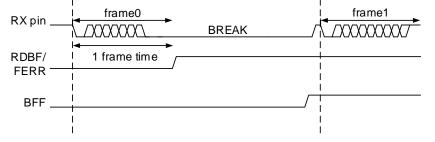
USART mode selector allows USART to work in different operation modes through software configuration so as to enable data exchanges between USART and peripherals with different communication protocols.

USART supports NRZ standard format (Mark/Space), by default. It also supports LIN (Local Interconnection Network), IrDA SIR (Serial Infrared), Asynchronous Smartcard protocol in ISO7816-3 standard, RS-232 CTS/RTS (Clear To Send/Request To Send) hardware flow operation, silent mode and synchronous mode, depending on USART mode selection configuration.


12.3.2 Configuration procedure

Selection of operation mode is done by following the configuration process listed below. In addition, such configuration method, along with those of receiver and transmitter described in the subsequent sections, are used to make USART initialization configuration.

1. LIN mode

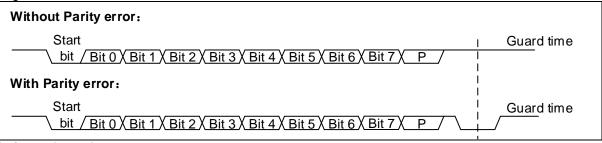

Set LINEN=1, CLKEN=0, STOPBN[1:0]=0, SCMEN=0, SLHDEN=0, IRDAEN=0, DBN[1:0]=00.

LIN master has break generation capability, and can transmit 13-bit low-level LIN synchronous break frame by setting SBF=1. The LIN slave has break detection capability, and can select 11-bit or 10-bit break detection by setting BFBN=1 or BFBN=0.

CASE2: BREAK frame occurring while a frame is being received

Figure 12-2 BFF and FERR detection in LIN mode

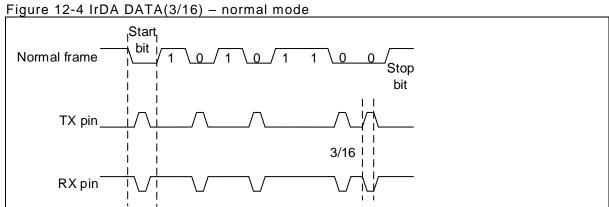
2. Smartcard mode


Set SCMEN=1, LINEN=0, SLHDEN=0, IRDAEN=0, CLKEN=1, DBN[1:0]=01, PEN=1 and STOPBN[1:0]=11.

The polarity, phase and pulse number of the clock can be configured by setting the CLKPOL, CLKPHA and LBCP bits (Refer to Synchronous mode for details).

The assertion of the TDC flag can be delayed by setting the SCGT[7:0] bit (guard time bit). The TDF bit can be asserted high after the guard time counter reaches the value programmed in the SCGT[7:0] bit.

The Smartcard is a single-wire half-duplex communication protocol. The SCNACKEN bit is used to select whether to send NACK when a parity error occurs. This is to indicate to the Smartcard that the data has not been correctly received.


Figure 12-3 Smartcard frame format

3. Infrared mode

Set IRDAEN=1, CLKEN=0, STOPBN[1:0]=0, SCMEN=0 and SLHDEN=0.

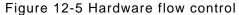
The infrared low-power mode can be enabled by setting IRDALP=1. In normal mode, the transmitted pulse width is specified as 3/16 bits. In infrared low-power mode, the pulse width is configurable, and the ISDIV[7:0] bit can be used to achieve the desired low-power frequency.

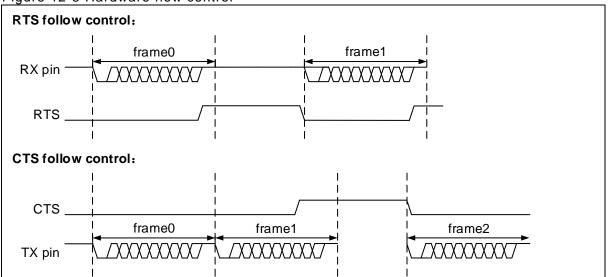
4. Modbus

USART only supports basic hardware required by Modbus/RTU and Modbus/ASCII implementation, which means that the control must be done by software and USART provides EOB (end of block) detection only.

In Modbus/RTU, the EOB detection is implemented by the programmable timeout recognizing the receive line idle time being larger than 2 bytes. Users can configure the RTOV register to set the required timeout value (unit: 1-bit width), and enable timeout detection by setting RTODEN=1. When the receive line idle time detected by USART receiver is equal to the programmed timeout value, the USART will set RTODF. An interrupt is generated when RTODIE=1, and RTODF bit can be cleared by writing 1 to the RTODCF bit.

In Modbus/ASCII, the EOB detection is implemented by the byte match feature recognizing the special byte sequence (CR/LF). Write LF ASCII code to the ID[7:0], and set CMDIE=1 to enable byte match feature. When the data received by USART matches ID[7:0], the USART will set CMDF. An interrupt is generated when CMDIE=1, and the CMDF bit can be cleared by writing 1 to the CMDCF bit.




5. Hardware flow control mode

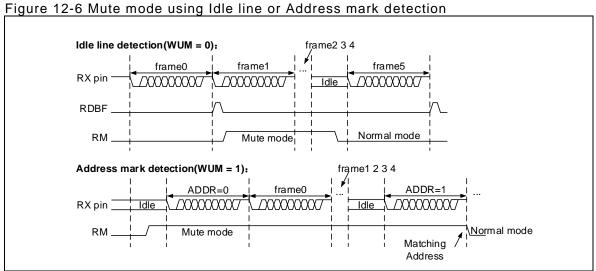
Setting RTSEN=1 and CTSEN=1 will enable RTS and CTS flow control, respectively.

RTS flow control: When the USART receiver is ready to receive new data, the RTS becomes effective (pull down low). When the data is received in the receiver (at the beginning of each stop bit), the RTS bit is set, indicating that the data transmission is to be stopped at the end of the current frame.

CTS flow control: USART transmitter checks CTS input before transmitting the next frame. If CTS is effective (that is, CTS is low), the next data is to be transmitted. If CTS becomes invalid (CTS is high) during transmission, the data transmission will stop after the completion of the current transmission.

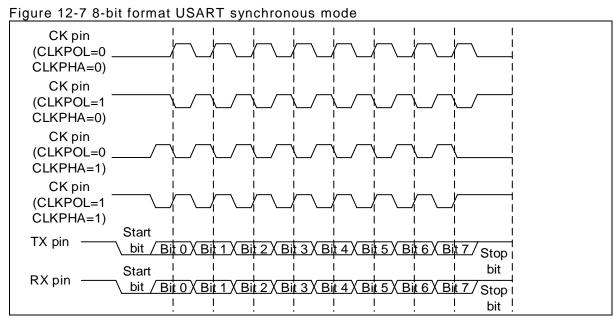
6. RS485 mode

This mode is enabled by setting RS485EN=1. The enable signal is output on the RTS pin. The DEP bit is used to select polarity of the DE signal. The TSDT[4:0] bit is used to define the latency before the transmission of the start bit on the transmitter side, and the TCDT[4:0] bit is used to define the latency before the TC flag is set following the stop bit at the end of the last data.


7. Silent mode

This mode is enabled by setting RM=1. When the WUM bit is set to 1 or 0, it wakes up from silent mode through ID match or idle bus, respectively. The ID[7:0] is configurable. The ID[7:0] or ID[3:0] can be selected by setting the IDBN bit. When ID match is selected, if the MSB of data bit is set, it indicates that the current data stands for ID.

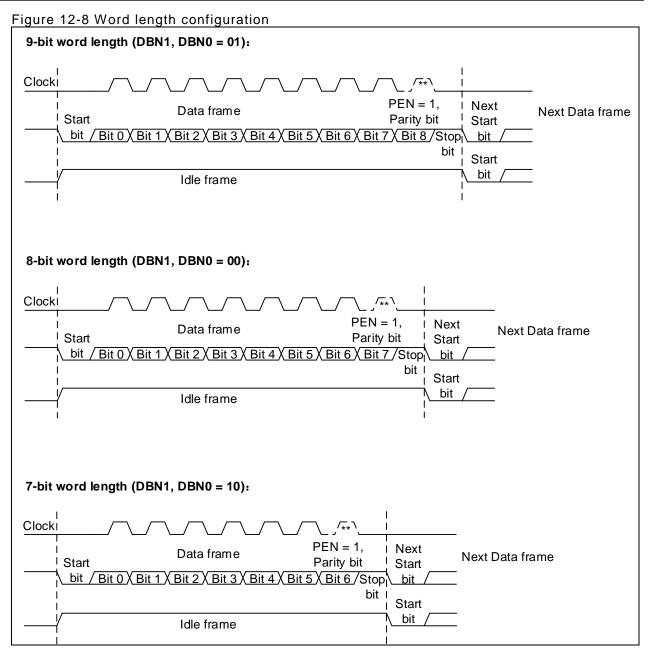
When the parity check is disabled, if DBN[1:0]=10, MSB is USART_DT[6]; if DBN[1:0]=00, MSB is USART_DT[7]; if DBN[1:0]=01, MSB is USART_DT[8].


When the parity check is enabled, if DBN[1:0]=10, MSB is USART_DT[5]; if DBN[1:0]=00, MSB is USART_DT[6]; if DBN[1:0]=01, MSB is USART_DT[7].

When ID[3:0] is selected, the four LSB bits indicate the ID value. When ID[7:0] is selected, all LSB bits indicate the ID value except for the parity check bit and MSB bit.

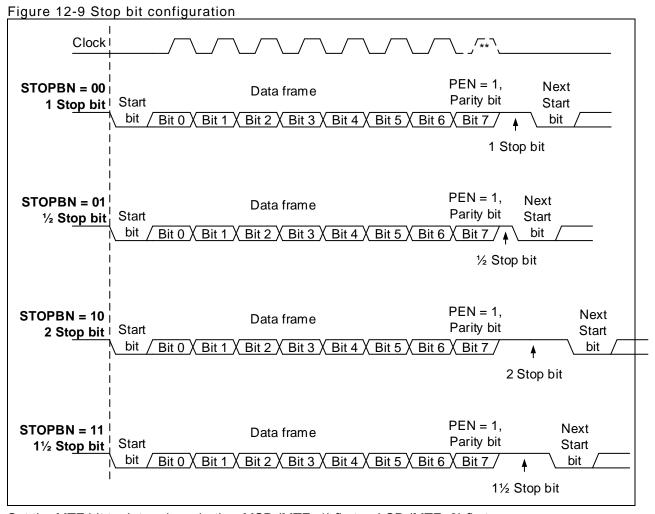
8. Synchronous mode

Setting CLKEN=1 enables the synchronous mode and clock pin output. Select CK pin high or low in idle mode by setting the CLKPOL bit (1 or 0), and select to sample data on the second or first edge of the clock by setting the CLKPHA bit (1 or 0). The LBCP bit (1 or 0) is used to select whether to output clock on the last data bit, and the ISDIV[4:0] bit is used to select the required clock output frequency.


12.4USART frame format and configuration

USART data frame consists of start bit, data bit and stop bit, with the last data bit being as a parity bit.

USART idle frame size is equal to that of the data frame under current configuration, but all bits are 1.


USART break frame size is the current data frame size plus its stop bit. All bits before the stop bit are 0. In non-LIN mode, a break frame transmission and detection must be in line with this rule. For instance, if DBN[1:0]=00, the break frame size for transmission and detection should be 10-bit low level plus its stop bit. In LIN mode, refer to Mode selector and configuration process for more details.

The DBN1 and DBN0 bits are used to program 7-bit (DBN[1:0]=10), 8-bit (DBN[1:0]=00) or 9-bit (DBN[1:0]=01) data bits.

The STOPBN bit is used to program 1-bit (STOPBN=00), 0.5-bit (STOPBN=01), 2-bit (STOPBN=10) and 1.5-bit (STOPBN=11) stop bits.

Setting PEN=1 will enable the parity control. PSEL=1 indicates odd parity, while PSEL=0 for even parity. Once the parity control bit is enabled, the MSB of the data bit will be replaced with parity bit, that is, the significant bits is reduced by one bit.

Set the MTF bit to determine whether MSB (MTF=1) first or LSB (MTF=0) first.

Set USART_DT as 1=L,0=H (DTREV=1) or 0=L,1=H (DTREV=0) for transmission and reception by setting the DTREV bit.

Set the TXREV bit to select VDD=0/mark,Gnd=1/idle (TXREV=1) or VDD=1/idle,Gnd=0/mark (TXREV=0) for signal transmission on USART_TX pin.

Set the RXREV bit to select VDD=0/mark,Gnd=1/idle (RXREV=1) or VDD=1/idle,Gnd=0/mark (RXREV=0) for signal transmission on USART RX pin.

12.5 DMA transfer introduction

Enable transmit data buffer and receive data buffer using DMA to achieve continuous high-speed transmission for USART, which is detailed in subsequent sections. For more information on specific DMA configuration, refer to DMA chapter.

12.5.1 Transmission using DMA

- 1. Select a DMA channel: Select a DMA channel from DMA channel map table described in DMA chapter.
- 2. Configure the destination of DMA transfer: Configure the USART_DT register address as the destination address bit of DMA transfer in the DMA control register. Data will be sent to this address after transmit request is received by DMA.
- 3. Configure the source of DMA transfer: Configure the memory address as the source of DMA transfer in the DMA control register. Data will be loaded into the USART_DT register from the memory address after transmit request is received by DMA.
- 4. Configure the total number of bytes to be transferred in the DMA control register.
- 5. Configure the channel priority of DMA transfer in the DMA control register.
- 6. Configure the DMA interrupt generation after half or full transfer in the DMA control register.
- 7. Enable DMA transfer channel in the DMA control register.

12.5.2 Reception using DMA

- 1. Select a DMA transfer channel: Select a DMA channel from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the memory address as the destination of DMA transfer in the DMA control register. Data will be loaded from the USART_DT register to the programmed destination after reception request is received by DMA.
- 3. Configure the source of DMA transfer: Configure the USART_DT register address as the source of DMA transfer in the DMA control register. Data will be loaded from the USART_DT register to the programmed destination after reception request is received by DMA.
- 4. Configure the total number of bytes to be transferred in the DMA control register.
- 5. Configure the channel priority of DMA transfer in the DMA control register.
- 6. Configure DMA interrupt generation after half or full transfer in the DMA control register.
- 7. Enable a DMA transfer channel in the DMA control register.

12.6 Baud rate generation

12.6.1 Introduction

USART baud rate generator uses an internal counter based on PCLK. The DIV (USART_BAUDR[15:0] register) represents the overflow value of the counter. Each time the counter is full, it denotes one-bit data. Thus each data bit width refers to PCLK cycles x DIV.

The receiver and transmitter of USART share the same baud rate generator, and the receiver splits each data bit into 16 equal parts to achieve oversampling, so the data bit width should not be less than 16 PCLK periods, that is, the DIV value must be greater than or equal to 16.

12.6.2 Configuration

User can program the desired baud rate by setting different system clocks and writing different values into the USART BAUDR register. The calculation format is as follows:

$$\frac{\text{TX}}{\text{RX}}$$
 band rate = $\frac{f_{CK}}{\text{DIV}}$

Where, f_{CK} refers to the system clock of USART (PCLK1 for USART2, 3, 4, 5 and UART7, 8, and PCLK2 for USART1, 6).

Note: 1. Write access to the USART_BAUDR register is performed before setting the UEN bit. The baud rate register values should not be altered when UEN=1.

2. When USART receiver or transmitter is disabled, the internal counter will be reset, and baud rate interrupt will occur.

Table 12-1 Error calculation for programmed baud rate

Baud	rate	fPCLK=36	MHz	fPCLK=72	2MHz		
No.	Kbps	Actual	Value programmed in the baud rate register	Error %	Actual	Value programmed in the baud rate register	Error %
1	2.4	2.4	15000	0%	2.4	30000	0%
2	9.6	9.6	3750	0%	9.6	7500	0%
3	19.2	19.2	1875	0%	19.2	3750	0%
4	57.6	57.6	625	0%	57.6	1250	0%
5	115.2	115.384	312	0.15%	115.2	625	0%
6	230.4	230.769	156	0.16%	230.769	312	0.16%
7	460.8	461.538	78	0.16%	461.538	156	0.16%
8	921.6	923.076	39	0.16%	923.076	78	0.16%
9	2250	2250	16	0%	2250	32	0%
10	4500	NA	NA	NA	4500	16	0%

If the baud rate is 115.2Kbps, when fPCLK=36 MHz, the baud rate register should be set as 312(0x138), and the calculated result is 36000000 / 312 = 115384 = 115.384Kbps.

Error: (actual value – theoretical value) / theoretical value * 100%:(115.384 - 115.2) / 115.2 * 100% = 0.15%.

12.7 Transmitter

12.7.1 Introduction

USART transmitter has its individual TEN control bit. The transmitter and receiver share the same baud rate that is programmable. There is a transmit data buffer (TDR) and a transmit shift register in the USART. The TDBE bit is set whenever the TDR is empty, and an interrupt is generated if the TDBEIEN is set.

The data written by software is stored in the TDR register. When the shift register is empty, the data will be moved from the TDR register to the shift register so that the data in the transmit shift register is output on the TX pin in LSB mode. The output format depends on the programmed frame format.

If synchronous transfer or clock output is selected, the clock pulse is output on the CK pin. If the hardware flow control is selected, the control signal is input on the CTS pin.

Note: 1. The TEN bit cannot be reset during data transfer, or the data on TX pin will be corrupted.

2. After the TEN bit is enabled, the USART will automatically send an idle frame.

12.7.2 Transmitter configuration

- 1. USART enable: set UEN= 1.
- 2. Full-duplex/half-duplex configuration: Refer to full-duplex/half-duplex selector for more information (Section 12.2).
- 3. Mode configuration: Refer to mode selector for more information (Section 12.3).
- 4. Frame format configuration: Refer to frame format for more information (Section 12.4).
- 5. Interrupt configuration: Refer to interrupt generation for more information (Section 12.10).
- 6. DMA transmission configuration: If the DMA mode is selected, the DMATEN bit (bit [7] in the USART_CTRL3 register) is set, and configure DMA register accordingly.
- 7. Baud rate configuration: Refer to baud rate generation for details (Section 12.6).
- 8. Transmitter enable: When the TEN bit is set, the USART transmitter will send an idle frame.
- 9. Write operation: Wait until the TDBE bit is set, the data to be transferred will be loaded into the USART_DT register (this operation will clear the TDBE bit). Repeat this operation in non-DMA mode.
- 10. After the last data expected to be transferred is written, wait until the TDC bit is set, indicating the end of transfer. The USART cannot be disabled before the flag is set; otherwise, transfer error will occur.
- 11. When TDC=1, read access to the USART_STS register and write access to the USART_DT register will clear the TDC bit; this bit can also be cleared by writing "0", but this is valid only in DMA mode.

12.8 Receiver

12.8.1 Introduction

USART receiver has its individual REN control bit (bit [2] in the USART_CTRL1 register). The transmitter and receiver share the same baud rate that is programmable. There is a receive data buffer (RDR) and a receive shift register in the USART.

The data is input on the RX pin of the USART. When a valid start bit is detected, the receiver ports the data received into the receive shift register in LSB mode. After a full data frame is received, based on the programmed frame format, it will be moved from the receive shift register to the receive data buffer, and the RDBF is set accordingly. An interrupt is generated if the RDBFIEN is set.

If hardware flow control is selected, the control signal is output on the RTS pin.

During data reception, the USART receiver will detect whether there are errors to occur, including framing error, overrun error, parity check error or noise error, depending on software configuration, and whether there are interrupts to generate using the interrupt enable bits.

12.8.2 Receiver configuration

Configuration procedure:

- 1. USART enable: set UEN=1.
- 2. Full-duplex/half-duplex configuration: Refer to full-duplex/half-duplex selector for more information (Section 12.2).
- 3. Mode configuration: Refer to mode selector for more information (Section 12.3).
- 4. Frame format configuration: Refer to frame format for more information (Section 12.4).
- 5. Interrupt configuration: Refer to interrupt generation for more information (Section 12.10).
- 6. Reception using DMA: If the DMA mode is selected, the DMAREN bit is set, and configure DMA register accordingly.
- 7. Baud rate configuration: Refer to baud rate generation for details (Section 12.6).
- 8. Receiver enable: set REN=1.

Character reception:

- The RDBF bit is set. It indicates that the content of the shift register is transferred to the RDR (Receiver Data Register). In other words, data is received and can be read (including its associated error flags).
- An interrupt is generated when the RDBFIEN bit is set.
- The error flag is set when a framing error, noise error or overrun error is detected during reception.
- In DMA mode, the RDBF bit is set after every byte is received, and it is cleared when the data register is read by DMA.
- In non-DMA mode, the RDBF bit is cleared when read access to the USART_DT register by software. The RDBF flag can also be cleared by writing "0" to it. The RDBF bit must be cleared before the end of next frame reception to avoid overrun error.

Break frame reception:

- Non-LIN mode: It is handled as a framing error, and the FERR is set. An interrupt is generated if
 the corresponding interrupt bit is enabled. Refer to framing error described below for details.
- LIN mode: It is handled as a break frame, and the BFF bit is set. An interrupt is generated if the BFIEN is set.

Idle frame reception:

• USART receiver processes this idle frame as a data frame, and the IDLEF bit is set. An interrupt is generated when the IDLEIEN is set.

When a framing error occurs:

- The FERR bit is set.
- The USART receiver moves the invalid data from the receive shift register to the receive data buffer.
- In non-DMA mode, both FERR and RDBF are set at the same time. The latter will generate an interrupt. In DMA mode, an interrupt is generated if the ERRIEN is set.

When an overrun error occurs:

- The ROERR bit is set.
- The data in the receive data buffer is not lost. The previous data is still available when the USART_DT register is read.
- The content in the receive shift register is overwritten. Afterwards, any data received will be lost.
- An interrupt is generated if the RDBFIEN bit is set or both ERRIEN and DMAREN bits are set.
- The ROERR bit is cleared by reading the USART_STS register and then reading the USART_DT register in order.

Note: If the ROERR bit is set, it indicates that at least one piece of data is lost, with two possibilities:

- If RDBF=1, it indicates that the last valid data is still stored in the receive data buffer and can be read.
- If RDBF=0, it indicates that the last valid data in the receive data buffer has already been read.

Note: The REN bit cannot be reset during data reception, or the byte that is currently being received will be lost.

12.8.3 Start bit and noise detection

A start bit detection occurs when the REN bit is set. With the oversampling techniques, the USART receiver samples data on the 3rd, 5th, 7th, 8th, 9th and 10th bits to detect the valid start bit and noise. The table below shows the data sampling over start bit and noise detection.

Table 12-2 Data sampling over start bit and noise detection

Sampled value (3·5·7)	Sampled value (8·9·10)	NERR bit	Start bit validity
000	000	0	Valid
001/010/100	001/010/100	1	Valid
001/010/100	000	1	Valid
000	001/010/100	1	Valid
111/110/101/011	Any value	0	Invalid
Any value	111/110/101/011	0	Invalid

Note: If the sampling values on the 3rd, 5th, 7th, 8th, 9th, and 10th bits do not match the above mentioned requirements, the USART receiver does not think that a correct start bit is received, and thus it will abort the start bit detection and return to idle state waiting for a falling edge.

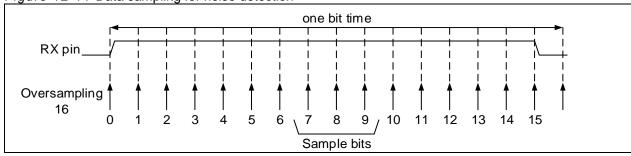
The USART receiver has the ability to detect noise. In the non-synchronous mode, the USART receiver samples data on the 7th, 8th and 9th bits, with its oversampling techniques, to distinguish valid data input from noise based on different sampling values, and recovers data as well as sets NERR (Noise Error Flag) bit.

Table 12-3 Data sampling over valid data and noise detection

Sampled value	NERR bit	Received bit value	Data validity
000	0	0	Valid
001	1	0	Invalid
010	1	0	Invalid
011	1	1	Invalid
100	1	0	Invalid
101	1	1	Invalid
110	1	1	Invalid
111	0	1	Valid

USART is able to receive data under the maximum allowable deviation condition. Its value depends on the DBN[1:0] of the USART_CTRL1 register and the DIV[3: 0] of the USART_BAUDR register.

Note: The maximum allowable deviations stated in the table below are calculated based on 115.2Kbps. The actual deviations may vary with the settings of buad rate. In other words, the greater the buad rate is, the smaller the maximum allowable deviation; in contrast, when the baud rate gets smaller, the maximum allowable deviation will get bigger.

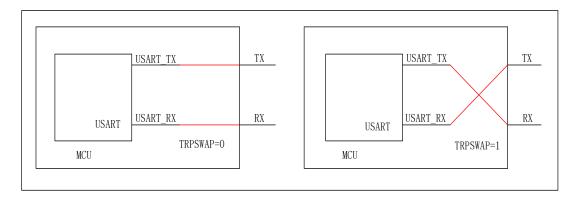

Table 12-4 Maximum allowable deviation

DBN[1:0]	DIV[3:0] = 0	DIV[3:0] != 0
00	3.75%	3.33%
 01	3.41%	3.03%
10	4.16%	3.7%

When noise is detected in a data frame:

- The NERR bit is set at the same time as the RDBF bit.
- The invalid data is transferred from the receive shift register to the receive data buffer.
- No interrupt is generated in non-DMA mode. However, since the NERR bit is set at the same time as the RDBF bit, the RDBF bit will generate an interrupt. In DMA mode, an interrupt will be issued if the ERRIEN is set.
- The NERR bit is cleared by reading the USART_STS register and the reading the USART_DT register in order.

Figure 12-11 Data sampling for noise detection



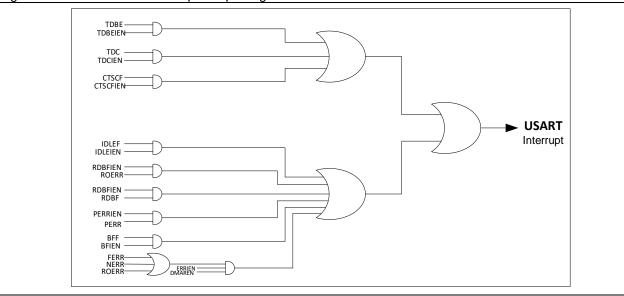
12.9 Tx/Rx swap

When the TRPSWAP (bit [15] in the USART_CTRL2 register) is set, Tx/Rx pins can be swapped. Two common scenes are listed below:

- If Tx/Rx are reversed while the user attempts to connect the device externally to a RS-232 chip, they can be swapped by setting the TRPSWAP bit, without the need of hardware intervention.
- If the user only connects the master Tx to the slave Rx in full-duplex mode, the Tx/Rx can be interchangeable with the TRPSWAP bit after the master and slave are swapped, without the need of hardware intervention.

Figure 12-12 Tx/Rx swap

Note: The SWAP (USART_CTRL2[15]) can be modified only when the USART is disabled (UEN=0).


12.10 Interrupts

USART interrupt generator serves as a control center of USART interrupts. It is used to monitor the interrupt source inside the USART in real time and the generation of interrupts according to the programmed interrupt control bits. The table below shows the USART interrupt source and interrupt enable control bit. An interrupt will be generated over an event when the corresponding interrupt enable bit is set.

Table 12-5 USART interrupt requests

Interrupt event	Event flag	Enable bit
Transmit data register empty	TDBE	TDBEIEN
CTS flag	CTSCF	CTSCFIEN
Transmit complete	TDC	TDCIEN
Receive data buffer full	RDBF	RDBFIEN
Receive overflow error	ROERR	NOBFIEN
Idle flag	IDLEF	IDLEIEN
Parity error	PERR	PERRIEN
Break frame flag	BFF	BFIEN
Noise error, overflow error or framing error	NERR, ROERR or FERR	ERRIEN(1)

12.11 I/O pin control

The following five interfaces are used for USART communication.

RX: Serial data input.

TX: Serial data output. In single-wire half-duplex mode and Smartcard mode, the TX pin is used as an I/O for data transmission and reception.

CK: Transmitter clock output. The output CLK phase, polarity and frequency are programmable.

CTS: Transmitter input. Send enable signal in hardware flow control mode.

RTS: Receiver output. Send request signal in hardware flow control mode.

12.12 USART registers

Table 12-6 USART register map and reset value

	- the second sec					
Register abbr.	Offset	Reset value				
USART_STS	0x00	0x00C0				
USART_DT	0x04	0x0000				
USART_BAUDR	0x08	0x0000				

USART_CTRL1	0x0C	0x0000	
USART_CTRL2	0x10	0x0000	
USART_CTRL3	0x14	0x0000	
USART_GDIV	0x18	0x0000	
USART_RTOV	0x1C	0x0000	
USART_IFC	0x20	0x0000	

12.12.1 Status register (USART_STS)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:18 Bit 16:12 Bit 10	Reserved	0x000000	resd	Forced to 0 by hardware
Bit 17	CMDF	0	r	Byte match detection flag
				This bit is set by hardware when the byte defined by ID[7:0] is received. It is cleared by software.
				0: No byte received
				1: Byte received
Bit 11	RTODF	0	r	Receiver timeout detection flag
				This bit is set by hardware when the timeout value reaches the programmed value in RTOV register and without any communication. It is cleared by software.
				0: No timeout detected
				1: Timeout detected
				CTS change flag
Bit 9	CTSCF	0x0	rw0c	This bit is set by hardware when the CTS status line changes. It is cleared by software.
				0: No change on the CTS status line
				1: A change occurs on the CTS status line
				Break frame flag
Bit 8	BFF	0x0	rw0c	This bit is set by hardware when a break frame is detected. It is cleared by software.
				0: No break frame is detected
				1: A break frame is detected
				Transmit data buffer empty
Bit 7	TDBE	0x1	ro	This bit is set by hardware when the transmit data buffer is empty. It is cleared by a write operation to the USART_DT register.
				0: Data is not transferred to the shift register
				1: Data is transferred to the shift register
				Transmit data complete
Bit 6	TDC	0x1	rw0c	This bit is set by hardware at the end of transmission. It is cleared by software (Option 1: Read access to the USART_STS and then write access to the USART_DT register; Option 2: Write "0" to this bit).
				0: Transmission is not completed
				1: Transmission is completed
				Receive data buffer full
Bit 5	RDBF	0x0	rw0c	This bit is set by hardware when the data is transferred from the shift register to the USART_DT register. It is cleared by software (Option 1: Read access to the USART_DT register; Option 2: Write "0" to the bit).
				0: Data is not received

2023.08.31 Page 185 Rev 2.00

				1: Data is received
				Idle flag
Bit 4 I	IDLEF	0x0	ro	This bit is set by hardware when an idle line is detected. It is cleared by software (read access to the USART_STS register and then read access to the USART_DT register).
				0: No idle line is detected
				1: Idle line is detected
				Receiver overflow error
Bit 3	ROERR	0x0	ro	This bit is set by hardware when the data is received while the RDNE is still set. It is cleared by software (read access to the USART_STS register and then read access to the USART_DT register).
				0: No overflow error
				1: Overflow error is detected
				Note: When this bit is set, the DT register content will not be lost, but the subsequent data will be overwritten.
				Noise error
Bit 2	NERR	0x0	ro	This bit is set by hardware when noise is detect on a received frame. It is cleared by software (read access to the USART_STS register and then read access to the USART_DT register).
				0: No noise is detected
				1: Noise is detected
				Framing error
Bit 1	FERR	0x0	ro	This bit is set by hardware when a stop bit error (low level), excessive noise or break frame is detected. It is cleared by software (read access to the USART_STS register and then read access to the USART_DT register).
				0: No framing error is detected
				1: Framing error is detected
				Parity error
Bit 0	PERR	0x0	ro	This bit is set by hardware when parity error occurs. It is cleared by software (read access to the USART_STS register and then read access to the USART_DT register).
				0: No parity error occurs
				1: Parity error occurs

12.12.2 Data register (USART_DT)

Bit	Abbr.	Reset value	Type	Description
Bit 31:9	Reserved	0x000000	resd	Forced to 0 by hardware
				Data value
Bit 8:0	DT	0x000	rw	This register provides read and write function. When transmitting with the parity bit enabled, the value written in the MSB bit will be replaced by the parity bit. When receiving with the parity bit enabled, the value in the MSB bit is the received parity bit.

12.12.3 Baud rate register (USART_BAUDR)

Note: If TEN and REN bits are disabled, the baud counter stops counting.

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Forced to 0 by hardware
Bit 15:0	DIV	00000		Divider
	DIV	0x0000	rw	This field defines the USART divider.

12.12.4 Control register 1 (USART_CTRL1)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:29	Reserved	0x00000	resd	Forced to 0 by hardware
				Data bit number
				This bit, along with the DBN0 bit, is used to program the number of data bits.
Bit 28	DBN1	0x0	rw	10: 7 data bits
				00: 8 data bits
				01: 9 data bits
				11: Write operation forbidden
				Receiver timeout detection enable
Bit 27	RTODEN	0	rw	0: Disabled
				1: Enabled
				Receiver timeout detection interrupt enable
Bit 26	RETODIE	0	rw	0: Disabled
				1: Enabled
				Transmit start delay time
				In RS485 mode, the first data (in sequential transmit
Bit 25:21	TSDT	0x00	rw	mode) is transmitted after a period of time of being written
		6 7.66		so as to ensure that the transfer direction of the external transmitter/receiver switches back to transmit. This time depends on the TSDT value, in unit of 1/16 baud rate.
				Transmit complete delay time
Bit 20:16	TCDT	0x00	rw	In RS485 mode, a period of time (delay) is needed before the last data transfer is complete even if the last STOP bit has been transferred. This time duration allows the transfer direction of the external receiver/transmitter to switch back to receive. This time depends on the TCDT value, in unit of 1/16 baud rate.
Bit 15	Reserved	0	resd	Kept at its default value.
				Character match detection interrupt enable
Bit 14	CMDIE	0	rw	0: Disabled
				1: Enabled
				USART enable
Bit 13	UEN	0x0	rw	0: Disabled
				1: Enabled
				Data bit number
				This bit, along with DBN1, is used to program the number of data bits
Bit 12	DBN0	0x0	rw	10: 7 data bits
				00: 8 data bits
				01: 9 data bits
				11: Write operation forbidden
				Wakeup mode
				This bit determines the way to wake up from silent mode.
Bit 11	WUM	0x0	rw	0: Waken up by idle line
				1: Waken up by ID match
				Parity enable
Bit 10	PEN	0x0	rw	This bit is used to enable hardware parity control (generation of parity bit for transmission; detection of parity bit for reception). When this bit is enabled, the MSB bit of the transmitted data is replaced with the parity bit; check whether the parity bit of the received data is correct.

				0: Disabled
				1: Enabled
				Parity selection
			rw	This bit selects the odd or even parity after the parity
Bit 9	PSEL	0x0		control is enabled.
				0: Even parity
				1: Odd parity
				PERR interrupt enable
Bit 8	PERRIEN	0x0	rw	0: Disabled
				1: Enabled
				TDBE interrupt enable
Bit 7	TDBEIEN	0x0	rw	0: Disabled
-				1: Enabled
				TDC interrupt enable
Bit 6	TDCIEN	0x0	rw	0: Disabled
				1: Enabled
				RDBF interrupt enable
Bit 5	RDBFIEN	0x0	rw	0: Disabled
				1: Enabled
	IDLEIEN		rw	IDLE interrupt enable
Bit 4		0x0		0: Disabled
				1: Enabled
				Transmitter enable
Bit 3	TEN	0v0	na/	This bit enables the transmitter.
סונ ט	TEN	0x0	rw	0: Disabled
				1: Enabled
		0x0		Receiver enable
Bit 2	REN		rw	This bit enables the receiver.
Dit Z	INLIN	0.00	I VV	0: Disabled
				1: Enabled
				Receiver mute
Bit 1	RM	0x0	rw	This bit determines if the receiver is in mute mode or not. It is set or cleared by software. When the idle line is used to wake up from mute mode, this bit is cleared by hardware after wake up. When the address match is used to wake up from mute mode, it is cleared by hardware after wake up. When address mismatches, this bit is set by hardware to enter mute mode again.
				0: Receiver is in active mode
				1: Receiver is in mute mode
				Send break frame
Bit 0	SBF	0x0	rw	This bit is used to send a break frame. It can be set or cleared by software. Generally speaking, it is set by software and cleared by hardware at the end of break frame transmission.
				0: No break frame is transmitted
				1: Break frame is transmitted

2023.08.31 Page 188 Rev 2.00

12.12.5 Control register 2 (USART_CTRL2)

Bit	Abbr.	Reset value	Туре	Description
				USART identification
Bit 31:28	IDH	0x0	rw	This field holds the upper four bits of USART ID. It is configurable.
Bit 27:20	Reserved	0x000	resd	Kept at its default value.
				MSB transmit first
Bit 19	MTF	0	rw	This bit is used to select MSB transmit first or LSB transmit first.
				0: LSB
				1: MSB
				DT register polarity reverse
Bit 18	DTREV	0	rw	0: 1=H, 0=L
-				1: 1=L, 0=H
				TX polarity reverse
Bit 17	TXREV	0	rw	0:VDD=1/idle,Gnd=0/mark
				1:VDD=0/mark,Gnd=1/idle
				RX polarity reverse
Bit 16	RXREV	0	rw	0:VDD=1/idle,Gnd=0/mark
				1:VDD=0/mark,Gnd=1/idle
				Transmit/receive pin swap
Bit 15	TRPSWAP	0x0	rw	0: Transmit/receive pin is not swappable
				1: Transmit/receive pin is swappable
		0x0	rw	LIN mode enable
Bit 14	LINEN			0: Disabled
				1: Enabled
				STOP bit number
		0x0		These bits are used to program the number of stop bits.
				00: 1 stop bit
Bit 13:12	STOPBN		rw	01: 0.5 stop bit
				10: 2 stop bits
				11: 1.5 stop bits
				Clock enable
Bit 11	CLKEN	0x0	rw	This bit is used to enable the clock pin for synchronous mode or Smartcard mode.
				0: Disabled
				1: Enabled
				Clock polarity
Bit 10	CLKPOL	0x0	rw	In synchronous mode or Smartcard mode, this bit is used to select the polarity of the clock output on the clock pin in idle state.
				0: Clock output low
				1: Clock output high
-				Clock phase
Bit 9	CLKPHA	0x0	rw	This bit is used to select the phase of the clock output on the clock pin in synchronous mode or Smartcard mode.
				0: Data capture is done on the first clock edge
				1: Data capture is done on the second clock edge
				Last bit clock pulse
Bit 8	LBCP	0x0	rw	This bit is used to select whether the clock pulse of the last
				data bit transmitted is output on the clock pin in

				synchronous mode.
				0: The clock pulse of the last data bit is not output on the clock pin
				1: The clock pulse of the last data bit is output on the clock pin
Bit 7	Reserved	0x0	resd	Kept at its default value.
				Break frame interrupt enable
Bit 6	BFIEN	0x0	rw	0: Disabled
				1: Enabled
		0x0		Break frame bit number
	DEDAL			This bit is used to select 11-bit or 10-bit break frame.
Bit 5	BFBN		rw	0: 10-bit
				1: 11-bit
				Identification bit number
				This bit is used to select ID bit number.
				0: 4-bit
Bit 4	IDBN	0	rw	1: Data bit – 1 bit
				Note: When this bit is set, in 7/8/9-bit data mode, the ID bit number is the lower 6/7/8-bit (or the 5/6/7-bit if parity check is enabled), respectively.
D:: 0 0	101			USART identification
Bit 3:0	IDL	0x0	rw	This field holds the USART ID, which is configurable.

Note: These three bits (CLKPOL, CLKPHA and LBCP) should not be changed while the transmission is enabled.

12.12.6 Control register 3 (USART_CTRL3)

Bit 31:16 Bit 31:16 Bit 13:11 Reserved 0x000000 resd Forced to 0 by hardward DE polarity selection or w 0: High level active 1: Low level active RS485 enable	are
Bit 15 DEP 0 rw 0: High level active 1: Low level active RS485 enable	
1: Low level active RS485 enable	
RS485 enable	
the USART controls t receiver/transmitter th	able RS485 mode. In RS485 mode, the transfer direction of the external prough the DE signal.
Bit 14 RS485EN 0 rw 0: RS485 mode disabled. RTS pin is u	oled. The control signal DE output is used in RS232 mode.
1: RS485 mode enabl the RTS pin.	led. The control signal DE outputs on
CTSCF interrupt enab	ole
Bit 10 CTSCFIEN 0x0 rw 0: Disabled	
1: Enabled	
CTS enable	
Bit 9 CTSEN 0x0 rw 0: Disabled	
1: Enabled	
RTS enable	
Bit 8 RTSEN 0x0 rw 0: Disabled	
1: Enabled	
DMA transmit enable	
Bit 7 DMATEN 0x0 rw 0: Disabled	
1: Enabled	

				DMA receiver enable
Bit 6	DMAREN	0x0	rw	0: Disabled
				1: Enabled
				Smartcard mode enable
Bit 5	SCMEN	0x0	rw	0: Disabled
				1: Enabled
				Smartcard NACK enable
D:: 4	0001401/51	0.0		This bit is used to send NACK when parity error occurs.
Bit 4	SCNACKEN	0x0	rw	0: NACK is disabled when parity error occurs
				1: NACK is enabled when parity error occurs
		0x0		Single-line bidirectional half-duplex enable
Bit 3	SLBEN		rw	0: Disabled
				1: Enabled
		0x0		IrDA low-power mode
D:1 0	IDDALD			This bit is used to configure IrDA low-power mode.
Bit 2	IRDALP		rw	0: Disabled
				1: Enabled
				IrDA enable
Bit 1	IRDAEN	0x0	rw	0: Disabled
				1: Enabled
				Error interrupt enable
D:+ 0	EDDIEN	0x0		An interrupt is generated when a framing error, overflow error or noise error occurs.
Bit 0	ERRIEN		rw	0: Disabled
				1: Enabled
				i. Enabled

2023.08.31 Page 191 Rev 2.00

12.12.7 Guard time and divider register (GDIV)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:16	Reserved	0x0000	resd	Forced to 0 by hardware
				Smartcard guard time
Bit 15:8	SCGT	0x00	rw	This field specifies the guard time value. The transmission complete flag is set after this guard time in Smartcard mode.
				IrDA/Smartcard division
				In IrDA mode:
				Bits [7:0] are invalid, which is invalid in common mode and must be set to 00000001. In low-power mode, it divides the peripheral clock to serve as the period base of the pulse width;
				00000000: Reserved–Do not write.
				00000001: Divided by 1
				00000010: Divided by 2
Bit 7:0	ISDIV	0x00	rw	
				In Smartcard mode:
				The lower five bits [4:0] are valid. This division is used to divide the peripheral clock to provide clock for the Smartcard. Configured as follows:
				00000: Reserved-Do not write.
				00001: Divided by 2
				00010: Divided by 4
				00011: Divided by 6

12.12.8 Receiver timeout detection register (RTOV)

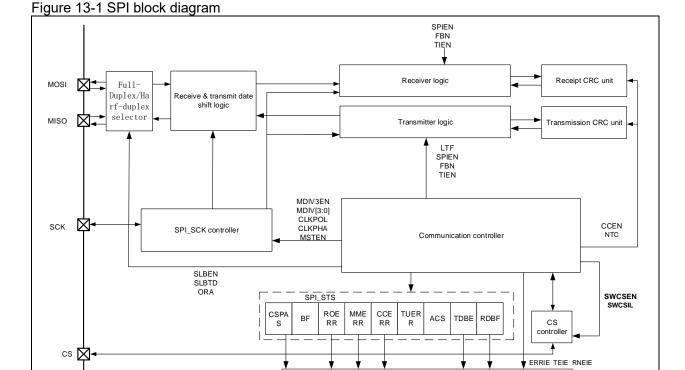
Bit	Abbr.	Reset value	Туре	Description
Bit 31:24	Reserved	0x00	resd	Forced to 0 by hardware
Bit 23:0	DTOV	0x00	rw	Receiver timeout value
	RTOV			The unit is 1-bit width.

12.12.9 Interrupt flag clear register (IFC)

Bit	Abbr.	Reset value	Туре	Description
Bit 31:18 Bit 16:12 Bit 10:0	Reserved	0x00	resd	Forced to 0 by hardware
Bit 17	CMDFC	0	w1	Character match detection flag clear
Bit 11	RTODFC	0	w1	Receiver timeout detection flag clear

13 Serial peripheral interface (SPI)

13.1 SPI introduction


The SPI interface supports either the SPI protocol or the I²S protocol, depending on software configuration. This chapter gives a full description of the main features and configuration procedures of SPI used as SPI or I²S.

13.2 Functional overview

13.2.1 SPI overview

The SPI can be configured in host or slave mode depending on software configuration. It is capable of operating in full-duplex, full-duplex receive-only, half-duplex transmit-only and half-duplex receive-only modes. It also supports DMA capability for transmission and reception, and automatic CRC calculation and check functions. The SPI interface can be compatible with TI protocol by software.

SPI block diagram:

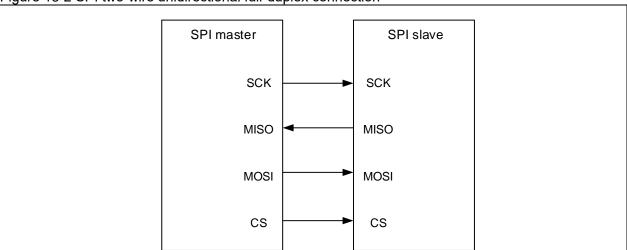
Main features as SPI:

- Programmable full-duplex or half-duplex communication
 - Full-duplex synchronous communication (supporting receive-only mode to free the transmit IO for other purposes)

Interrupt generator

- Half-duplex synchronous communication (transfer direction is configurable by software as receive or transmit)
- Programmable master or slave mode
- Programmable CS signal handling
 - CS signal handling by hardware
 - CS signal handling by software
- Programmable 8-bit or 16-bit frame format

- Programmable communication frequency and division factors (can be up to f_{PCLK}/2)
 Programmable clock polarity and phase
 Programmable data transfer order (MSB-first or LSB-first)
- Programmable error interrupt flags (CS pulse error, receiver overflow error, master mode error and CRC error)
- Programmable transmit data buffer empty interrupt and receive data buffer full interrupt
- Support transmission and reception with DMA
- Support hardware CRC transmission and check
- Busy status flag
- Compatible with the TI protocol


13.2.2 Full-duplex/half-duplex mode selector

When used as an SPI interface (through software configuration), it is capable of operating in four synchronous modes: two-wire unidirectional full-duplex, single-wire unidirectional receive only, single-wire bidirectional half-duplex transmit and single-wire bidirectional half-duplex receive.

Figure 13-2 shows the two-wire unidirectional full-duplex mode and SPI IO connection:

The SPI operates in two-wire unidirectional full-duplex mode when the SLBEN=0 and the ORA=0. In this case, the SPI supports simultaneous data transmission and reception. IOs are connected as follows:

Figure 13-2 SPI two-wire unidirectional full-duplex connection

In this scenario, whatever in master and slave mode, it is required to wait until the RDBF bit and TDBE bit is set, and BF=0 before disabling the SPI or entering power-saving mode (or disabling SPI system clock).

Figure 13-3 shows the single-wire unidirectional receive-only mode and SPI IO connection

The SPI operates in single-wire unidirectional receive-only mode when the SLBEN=0 and ORA=1. In this case, the SPI can be used as data receiver (transmission is not available). In master mode, the MISO pin receives data and the IO mapped onto MOSI is released. In slave mode, the MOSI pin receives data and the IO mapped onto MISO is released.

2023.08.31 Page 194 Rev 2.00

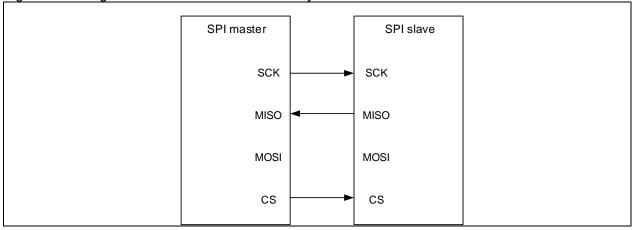
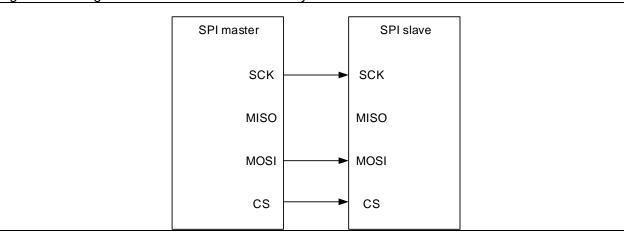



Figure 13-4 Single-wire unidirectional receive only in SPI slave mode

In this scenario, for SPI in master mode, it is required to wait until the second to last RDBF bit is set and then one SPI_CPK clock before disabling the SPI. The last RDBF must be set to 1 before entering power-saving mode (or disabling SPI system clock).

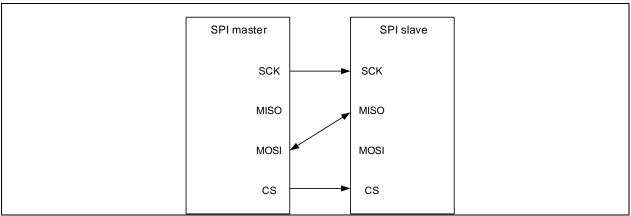

In slave mode, there is no need to check any flag before disabling the SPI. However, it is necessary to wait until the BF becomes 0 before entering power-saving mode (or disabling SPI system clock).

Figure 13-5 shows single-wire bidirectional half-duplex mode and SPI IO connection.

When SLBEN=1, the SPI operates in single-wire bidirectional half-duplex mode. In this case, the SPI supports data reception and transmission alternately. In master mode, the MOSI pin transmits/ receives data, and IO mapped onto MISO pin is released. In slave mode, the MISO pin transmits/receives data, and IO mapped onto MOSI pin is released.

The SLBTD bit is used by software to configure transfer direction. When SLBTD=1, the SPI can be used only for data transmission; when SLBTD=0, the SPI is used for data reception only.

Figure 13-5 Single-wire bidirectional half-duplex mode

In both master and slave mode, when the SPI is selected for data transmission in single-wire bidirectional half-duplex mode, the TDBE bit must be set, and the BF must be 0 before disabling the SPI. The power-saving mode (or disabling SPI system clock) cannot be entered unless the SPI is disabled.

In master mode, when the SPI is selected for data reception in single-wire bidirectional half-duplex mode, it is required to wait until the second to last RDBF is set and then one SPI_SCK cycle before disabling the SPI. And the last RDBF must be set to 1 before entering power-saving mode (or disabling SPI system clock).

In slave mode, when the SPI is selected for data reception in single-wire bidirectional half-duplex mode, there is no need to check any flag before disabling the SPI. However, the BT must be 0 before entering power-saving mode (or disabling SPI system clock).

13.2.3 Chip select controller

The Chip select controller (CS) is used to enable hardware or software control for chip select signals through software configuration. This controller is used to select master/slave device in multi-processor mode, and to avoid conflicts on data lines by enabling the SCK signal output followed by CS signal. The hardware and software configuration procedures are detailed as follows, along with their respective input/output in master and slave mode.

Hardware CS configuration procedures:

In master mode with CS being as an output, the CS hardware control is enabled by setting HWCSOE=1 and SWCSEN=0. If the SPI is enabled, low level is output on the CS pin. The CS signal is then released after the SPI is disabled and the transmission is complete.

In master mode with CS being as an input, the CS hardware control is enabled by setting HWCSOE=0 and SWCSEN=0. At this point, the SPI is automatically disabled by hardware and enters slave mode as soon as the CS pin low is detected by master SPI. The mode error flag (MMERR bit) is set accordingly. An interrupt is generated if ERRIE=1 is enabled. During the period of MMERR being set, the SPIEN and MSTEN cannot be set by software. The MMERR is cleared by read or write access to the SPI_STS register followed by write access to the SPI_CTRL1 register.

In slave mode with CS being as an input, the CS hardware control is enabled by setting HWCSOE=0 and SWCSEN=0. The slave determines whether to transmit / receive data based on the level on the CS pin. The slave is selected for data reception and transmission only when the CS pin is low.

Software CS configuration procedures:

In master mode with CS being as an input, the CS software control is enabled by setting SWCSEN=1. When SWCSIL=0, the SPI is automatically disabled by hardware and enters slave mode. The mode error flag (MMERR bit) is set accordingly. An interrupt is generated if ERRIE=1 is enabled. When the MMERR bit is set, the SPIEN and MSTEN bits cannot be set by software. The MMERR bit is cleared by read or write access to the SPI_STS register followed by write access to the SPI_CTRL1 register.

In slave mode with CS being as an input, SWCSEN=1, the CS software control is enabled. The SPI judges the CS signal with the SWCSIL bit, instead of CS pin. When SWCSIL=0, the slave is selected for data reception and transmission.

13.2.4 SPI_SCK controller

The SPI protocol adopts synchronous transmission. In master mode with the SPI being used as SPI, it is necessary to generate a communication clock for data reception and transmission via the SPI interface, and the communication clock should be output to the slave via IO for data reception and transmission. In slave mode, the communication clock is provided by peripherals, and is input to the SPI interface via IO. In all, the SPI_SCK controller is used for the generation and distribution of SPI_SCK. Here are the configuration procedures:

SPI_SCK controller configuration procedures:

- Select clock polarity and clock phase by setting the CLKPOL and CLKPHA bit.
- Select the desired PCLK frequency by setting the CRM bit, and select the desired prescaler by setting the MDIV[3: 0] bit or MDIV3EN bit.
- Select SPI as master/slave mode by setting the MSTEN bit.

Note that the clock output is activated after the SPI is enabled in master reception-only mode, and it remains present until when the SPI is disabled and the reception is complete.

13.2.5 CRC overview

The SPI interface provides separate CRC calculation unit for transmission and reception. When used as SPI through software configuration, the automatic CRC calculation and check is performed while the user is reading or writing data through either DMA or CPU. During transmission, if the received data is inconsistent with, detected by hardware, the data programmed in the SPI_RCRC register, and such data is exactly the CRC value, the CCERR bit will be set, and an interrupt is generated if ERRIE=1 is enabled. The CRC function and configuration procedures of the SPI are described as follows.

CRC configuration procedures

- Configure CRC calculation polynomial by setting the SPI_CPOLY register.
- Enable CRC calculation by setting the CCEN bit. This operation will reset the SPI_RCRC and SPI_TCRC registers.
- Select if or when the NTC bit is set, depending on DMA or CPU data register. See the following descriptions.

Transmission using DMA

When DMA is used to write the data to be transmitted, if the CCEN bit is enabled, the hardware calculates the CRC value automatically according to the value in the SPI_CPOLY register and each transmitted data, and sends the CRC value at the end of the last data transmission. This CRC value is the value of the SPI_TCRC register.

Reception using DMA

When DMA is used to read the to-be-received data, if the CCEN bit is enabled, the hardware calculates the CRC value automatically according to the value in the SPI_CPOLY register and each received data, and waits until the completion of CRC data reception at the end of the last data reception before comparing the received CRC value with the value programmed in the SPI_RCRC register. If check error occurs, the CCERR flag is set, and an interrupt is generated if the ERRIE bit is enabled.

Transmission using CPU

Unlike DMA mode, after software writing the last data to be transmitted, the CPU mode sets the NTC bit before the end of the last data transmission.

Reception using CPU

In two-wire unidirectional full-duplex mode, the CRC calculation and check in CPU reception mode will be completed automatically by following CPU transmission mode to operate the NTC bit.

In single-wire unidirectional reception-only mode and single-wire bidirectional reception-only mode, it is required to set the NTC bit by software before the last data is received when the second-to-last data is already received.

13.2.6 DMA transfer

The SPI interface supports the use of DMA for data write and read. Refer to the following configuration procedures for details in this regard.

Special attention should be paid to here:

When the CRC calculation and check is enabled, the number of data transferred by DMA is configured to be the number of the to-be-sent data, while the number of data read with DMA is configured as the number of the data to receive. Then the hardware will send CRC automatically at the end of full transfer, and the receiver will perform automatic CRC check. Note that the received CRC data will be moved into the SPI_DT register by hardware, the RDBF is set, and DMA read request will be issued if then DAM transfer feature is enabled. Hence, it is recommended to read the SPI_DT register by software to fetch the CRC value after the completion of CRC data reception, in order to avoid the upcoming transfer error.

Transmission with DMA

- Select a DMA channel for the current SPI according to DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the SPI_DT register address as the
 destination address bit of DMA transfer in the DMA control register. Data will be sent to this
 address after transmit request is received by DMA.
- Configure the source of DMA transfer: Configure the memory address as the source of DMA transfer in the DMA control register. Data will be loaded into the SPI_DT register from the memory address after transmit request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the channel priority of DMA transfer in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control register.
- Enable DMA transfer channel in the DMA control register.

Reception with DMA

- Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the memory address as the destination of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the source of DMA transfer: Configure the SPI_DT register address as the source of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control register
- Enable DMA transfer channel in the DMA control register.

13.2.7 TI mode overview

The SPI interface is compatible with the TI protocol. The TI mode is enabled by setting the TIEN bit to 1. In this mode, the SPI interface will generates a communication clock SPI_CLK in accordance with the TI protocol. This means that the SPI_CLK polarity and phase are forced to conform to the TI protocol requirements, without the need of the intervention of CLKPOL and CLKPHA bits. Thus the CLKPOL and CLKPHA bits cannot be used to change the polarity and phase of the SPI_CLK either.

In this mode, the SPI interface will generate a CS signal in accordance with the TI protocol, meaning that the CS input and output are forced to conform to the TI protocol requirements, without the need of the intervention of SWCSEN, SWCSIL and HWCSOE bits. Thus, the SWCSEN, SWCSIL and HWCSOE bits cannot be used for CS signal management either.

After the TI mode is enabled, the SPI slave controls the MISO pin only during data transmission, meaning that its MISO pin remains Hi-Z in idle state.

After the TI mode is enabled, when in slave mode, the SPI interface is capable of detecting CS pulse errors during data transmission, and setting the CSPAS bit (It is cleared by reading the SPI_STS) as soon as a CS pulse error is detected. At this point, the detected erroneous pulse will be ignored by the SPI. However, since there is something wrong with the CS signal, the software should disable the SPI slave and re-configure the SPI master before re-enabling the SPI slave for re-communication.

13.2.8 Transmitter

The SPI transmitter is clocked by SPI_SCK controller. It can output different data frame formats, depending on software configuration. There is a SPI_DT register in the SPI which is used to be written with the data to be transmitted. When the transmitter is clocked, the contents in the SPI_DT register are copied into the data buffer (Unlike SPI_DT, it is driven by SPI_SCK, and controlled by hardware, instead of software), and sent out in order based on the programmed frame format.

Both DMA and CPU can be used for write operation. For DMA transfer, refer to DMA transfer section for more details. For CPU transfer, attention should be paid to the TDBE bit. The reset value of this bit is 1, indicating that the SPI_DT register is empty, and an interrupt is generated if the TDBEIE bit is set. After the data is written, the TDBE is pulled low until the data are synchronized to the transmit data buffer before the TDBE is set once again, meaning that the user can be allowed to write the data to be transmitted only when the TDBE is set.

After the transmitter is configured and the SPI is enabled, the SPI is ready to send data. Before going forward, it is necessary for the users to refer to full-duplex / half-duplex chapter to get detailed configuration information, go to the Chip select controller chapter for selecting chip select mode, check the SPI_SCK controller chapter for information on communication clock, and refer to CRC and DMA transfer chapter to configure CRC and DMA (if necessary). The recommended configuration procedures are as follows.

Transmitter configuration procedures:

- Configure full-duplex/half-duplex selector
- Configure chip select controller
- Configure SPI SCK controller
- Configure CRC (if necessary)
- Configure DMA transfer (if necessary)
- If the DMA transfer mode is not used, the software will check whether to enable transmit data interrupt (TDBEIE =1) through the TDBE bit.
- Configure frame format: select MSB/LSB mode with the LTF bit, and select 8/16-bit data with the FBN bit
- Enable SPI by setting the SPIEN

13.2.9 Receiver

The SPI receiver is clocked by the SPI_SCK controller. It can receive different data frame formats through software configuration. There is a receive data buffer register, driven by the SPI_SCK, in the SPI receiver.

At the last CLK of each transfer, data are moved from the shift register to the receive data buffer register. Then the transmitter sets the receive data complete flag to the SPI control logic unit. When the flag is detected by the SPI logic, the data in the receive data buffer are pushed into the SPI_DT register, with the RDBF being set. This means that the data are received, and already stored into the SPI_DT. In this case, data can be read from the SPI_DT register. Reading the SPI_DT register will clear the RDBF bit.

Both DMA and CPU can be used for read operation. For DMA transfer, refer to DMA transfer section for more details. For CPU transfer, attention should be paid to the RDBE bit. The reset value of this bit is 0, indicating that the SPI_DT register is empty. If the data are received and moved into the SPI_DT, the RDBF is set, meaning that there are data pending for read in the SPI_DT register. Meanwhile, an interrupt is generated if the RDBFIE bit is set.

When the next received data is ready to be moved to the SPI_DT register while the previously received data have not been read yet (RDBF=1), then the data overflow occurs. The previously receive data are not lost, but the next received data will do. At this point, the ROERR is set, and an interrupt is generated

if the ERRIE is set. Reading SPI_DT register and then the SPI_STS register can clear the ROERR bit. The recommended configuration procedures are as follows.

Receiver configuration procedures:

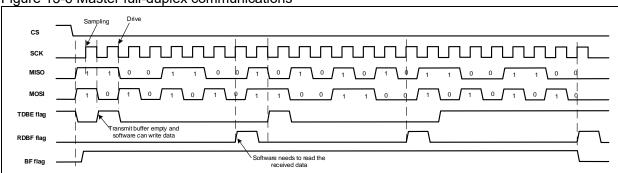
- Configure full-duplex/half-duplex selector
- Configure chip select controller
- Configure SPI_SCK controller
- Configure CRC (if necessary)
- Configure DMA transfer (if necessary)
- If the DMA transfer mode is not used, the software will check whether to enable receive data interrupt (RDBEIE =1) through the RDBE bit.
- Configure frame format: select MSB/LSB mode with the LTF bit, and select 8/16-bit data with the FBN bit
- Enable SPI by setting the SPIEN

13.2.10 Motorola mode

This section describes the SPI master/slave communication timings in full-duplex and half-duplex modes.

Full-duplex communication - master mode

For master side, configured as follows:


MSTEN=1: Master enable SLBEN=0: Full-duplex mode

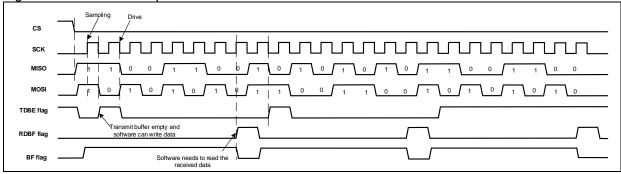
CLKPOL=0, CLKPHA=0: SCK idle output low, use the first edge for sampling

FBN=0: 8-bit data frame

Master sends data (MOSI): 0xaa, 0xcc, 0xaa Slave sends data (MISO): 0xcc, 0xaa, 0xcc

Figure 13-6 Master full-duplex communications

Full-duplex communication - slave mode


For slave side, configured as follows:

MSTEN=0: Slave enable SLBEN=0: Full-duplex mode

CLKPOL=0, CLKPHA=0: SCK idle output low, use the first edge for sampling

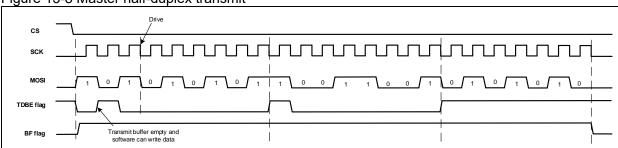
FBN=0: 8-bit data frame

Master sends data (MOSI): 0xaa, 0xcc, 0xaa Slave sends data (MISO): 0xcc, 0xaa, 0xcc Figure 13-7 Slave full-duplex communications

Half-duplex communication - master transmit timing

Configured as follows:

MSTEN=1: Master enable


SLBEN=1: Single line bidirectional mode

CLKPOL=0, CLKPHA=0: SCK idle output low, use the first edge for sampling

FBN=0: 8-bit data frame

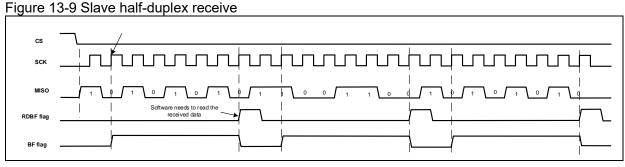
Master sends data (MOSI): 0xaa, 0xcc, 0xaa

Figure 13-8 Master half-duplex transmit

Half-duplex communication - slave receive timing

Configured as follows:

MSTEN=0: Slave enable


SLBEN=1: Single line bidirectional mode

SLBTD=0: Receive mode

CLKPOL=0, CLKPHA=0: SCK idle output low, use the first edge for sampling

FBN=0: 8-bit data frame

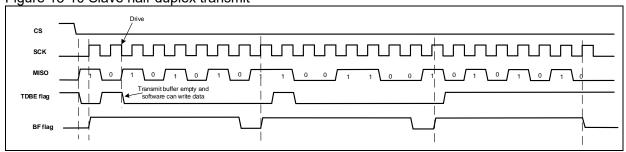
Slave receives data: 0xaa, 0xcc, 0xaa

Half-duplex communication – slave transmit timing

Configured as follows:

MSTEN=0: Slave enable

SLBEN=1: Single line bidirectional mode


SLBTD=1: Transmit enable

CLKPOL=0, CLKPHA=0: SCK idle output low, use the first edge for sampling

FBN=0: 8-bit data frame

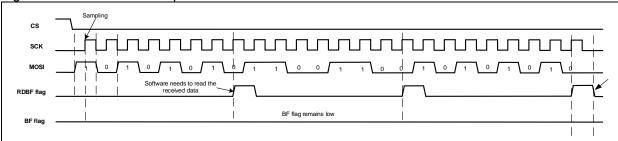
Slave sends data: 0xaa, 0xcc, 0xaa Figure 13-10 Slave half-duplex transmit

Half-duplex communication - master receive timing

Configured as follows:

MSTEN=1: Master enable

SLBEN=1: Single line bidirectional mode

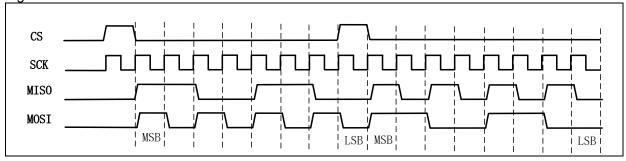

SLBTD=0: Receive enable

CLKPOL=0, CLKPHA=0: SCK idle output low, use the first edge for sampling

FBN=0: 8-bit data frame

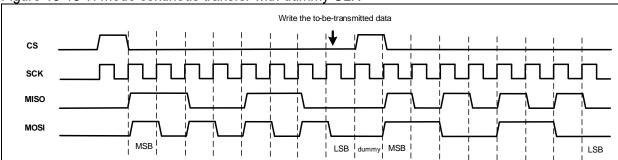
Master receives data: 0xaa, 0xcc, 0xaa

Figure 13-11 Master half-duplex receive



13.2.11 TI mode communication timings

The SPI interface supports TI mode. This mode is enabled by setting TIEN=1.


In TI mode, a slight difference is present between continuous and discontinuous communication timings. When the to-be sent data is written before the rising SCK edge corresponding to the last data of the current transmit frame, it is a continuous communication, without dummy CLK between data, and the host sends a valid CS pulse while transmitting the last data of the current frame.

In TI mode, when the to-be-sent data is written between the rising and falling SCK edges corresponding to the last data of the current transmit frame, a dummy CLK exists between data.

Figure 13-13 TI mode continous transfer with dummy CLK

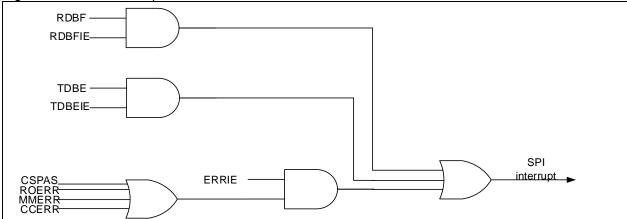

In TI mode, when the to-be-sent data is written after the falling SCK edge corresponding to the last data of the current transmit frame, the host always issues a valid SCK clock after 1T SCK + 4T PCLK cycles. If the slave still does not detect a valid CS pulse at the end of the last data of the current data frame, it disables MISO output after 1/2T SCK + 3T PCLK cycles to control MISO floating.

Figure 13-14 TI mode continous transfer with dummy CLK

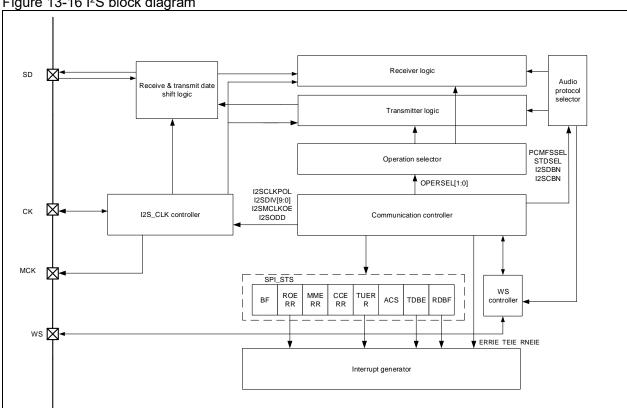
13.2.12 Interrupts

Figure 13-15 SPI interrupts

13.2.13 IO pin control

When used as SPI, the SPI interface is connected to external devices through four pins.

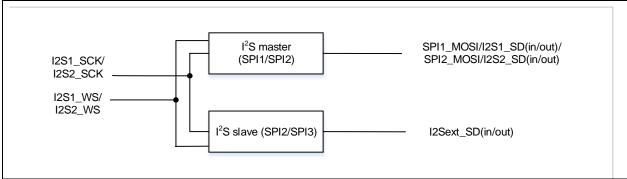
- MISO: Master In/Slave Out. The pin is used to receive data from slave in SPI master mode, and transmit data in slave mode.
- MOSI: Master Out/Slave In. The pin is used to transmit data in SPI master mode, and receive data in slave mode.
- SCK: SPI communication clock. The pin serves as output (communication clock is sent to peripheral via this pin) in SPI master mode, and as input (communication clock from master is input to SPI via this pin) in SPI slave mode.
- CS: Chip Select signal. This is an optional pin which is used to select master/slave mode. Refer to CS section for more information.


13.3 I2S functional description

13.3.1 I²S introduction

The I2S is capable of operating in master receive, master transmit, and slave receive and slave transmit, depending on software configuration. These four operating modes support four audio protocols including Philips standard, MSB-aligned standard, LSB-aligned standard and PCM standard, respectively. The DMA transfer is also supported.

The combination of two I2S interfaces can be used to support I2S full-duplex mode. Refer to I2S fullduplex section for more information.


Main features when the SPI is used as I2S:

- Programmable operating modes
 - Slave device transmission
 - Slave device reception
 - Master device transmission
 - Master device reception
- Programmable clock polarity
- Programmable clock frequency (8 KHz to 192 KHz)
- Programmable data bits (16 bit, 24 bit, 32 bit)
- Programmable channel bits (16 bit, 32 bit)
- Programmable audio protocols
 - I²S Philips standard
 - MSB-aligned standard (left-aligned)
 - LSB-aligned standard (right-aligned)
 - PCM standard (channel frame with short and long frame synchronization)
- I²S full-duplex
- DMA transfer
- Main peripheral clock with a fixed frequency of 256x Fs (audio sampling frequency)

13.3.2 I²S full-duplex mode

Two SPIs can be combined to support I²S full-duplex mode through the SCFG_CFG2[31:30] bit in the SCFG register. Of the three SPIs, either SPI1 or SPI2 can be configured as full-duplex master, while the SPI2 or SPI3 can be set as full-duplex slave, which is selected through the SCFG_CFG2[31:30] bit in the SCFG register. Once selected (combining two SPIs to achieve I²S full-duplex mode), the IO remap relations of the master remains unchanged, while the SCK and WS of the slave are connected to the SCK and WS of the master internally, with the SD line of the slave remapped onto the I2S_SDEXT. The slave's original IO remap relations become invalid, keeping the corresponding IOs free for other purposes.

Figure 13-17 I²S full-duplex structure

I²S full-duplex master side:

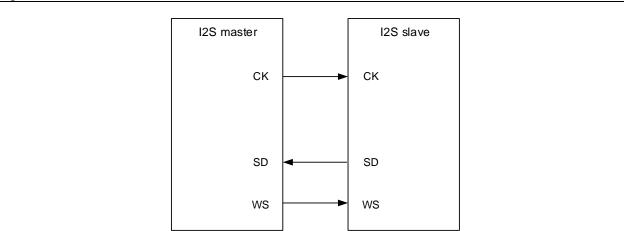
It supports master or slave mode. Thus it can programmed as a receiver or transmitter.

- I2Sx WS is used for WS signal interaction
- I2Sx SCK is responsible for clock signal interaction
- I2Sx SD is used for data and information interaction on the master side

I²S full-duplex slave side:

It supports slave mode only. It can be programmed as a transmitter or receiver.

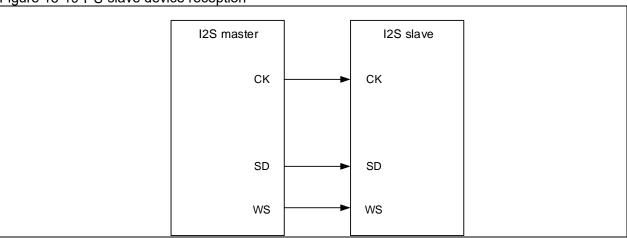
- I2Sy_WS does not take part in communication, releasing the corresponding IOs for other purposes
- I2Sy_SCK does not take part in communication, releasing the corresponding IOs for other purposes
- I2Sy_SD does not take part in communication, releasing the corresponding IOs for other purposes
- I2S_SDEXT takes part in communication for data and information interaction on the slave side *Note: x can be 1 or 2, whereas y can be 2 or 3.*


13.3.3 Operating mode selection

The SPI, used as I²S selector, offers multiple operating modes for selection, namely, slave device transmit, slave device receive, master device transmit and master device receive. This is done by software configuration.

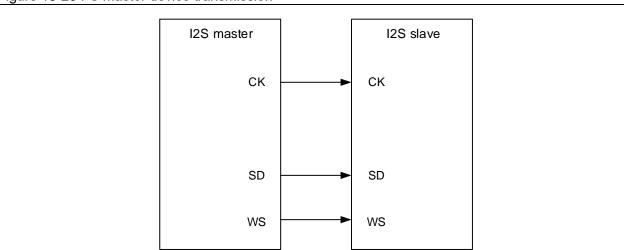
Slave device transmission:

Set the I2SMSEL bit, and OPERSEL[1:0] =00, the I2S will work in slave device transmission mode.


Figure 13-18 I2S slave device transmission

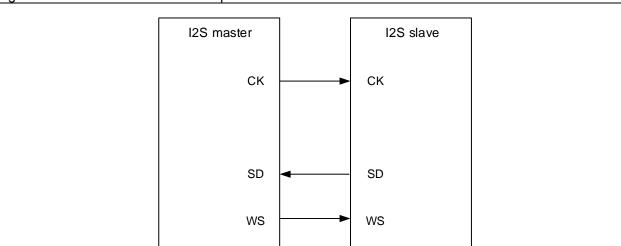
Slave device reception:

Set the I2SMSEL bit, and OPERSEL[1:0]=01, the I2S will work in slave device reception mode.


Figure 13-19 I2S slave device reception

Master device transmission:

Set the I2SMSEL bit, and OPERSEL[1:0]=10, the I2S will work in master device transmission mode.


Figure 13-20 I²S master device transmission

Master device reception:

Set the I2SMSEL bit, and OPERSEL[1: 0]=11, the I2S will work in master device reception mode.

Figure 13-21 I²S master device reception

13.3.4 Audio protocol selector

As I²S interface, the SPI supports multiple audio protocols. The user can select the desired audio protocol, the number of data bits and of channel bits through the audio protocol selector by software. By controlling the WS controller automatically, the audio protocol selector outputs or detects WS signals that conform to the protocol requirements.

Select audio protocol by setting the STDSEL bit

STDSLE=00: Philips standard

STDSLE=01: MSB-aligned standard (left-aligned)

STDSLE=10: LSB-aligned standard (right-aligned)

STDSLE=11: PCM standard

- Select PCM frame synchronization format: PCMFSSEL=1 for PCM long frame synchronization,
 PCMFSSEL=0 for short frame synchronization (this step is required when selecting PCM protocol)
- Select the number of data bits by setting the I2SDBN bit

I2SDBN=00: 16 bit I2SDBN =01: 24 bit I2SDBN =10: 32 bit

Select the number of channel bits by setting the I2SCBN bit

I2SDBN =0: 16 bit I2SDBN =1: 32 bit

Note: Read/Write operation mode depends on the selected audio protocol, data bits and channel bits. The following lists all possible configuration combinations and their respective read and write operation mode.

 Philips standard, PCM standard, MSB-aligned or LSB-aligned standard, 16-bit data and 16-bit channel

The data bits are the same as the channel bits. Each channel requires only one read/write operation from/ to the SPI_DT register, and the number of DMA transfer is 1.

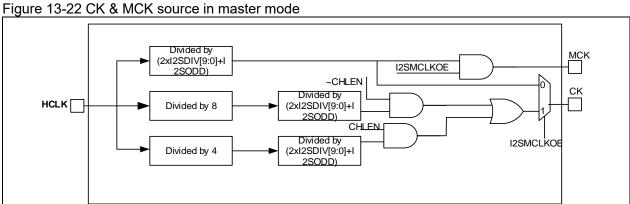
- Philips standard, PCM standard or MSB-aligned standard, 16-bit data and 32-bit channel The data bits are different from the channel bits. Each channel requires only one read/write operation from/to the SPI_DT register, and the number of DMA transfer is 1. The first 16 bits are valid data, and the remaining 16-bit are forced to 0 by hardware.
- Philips standard, PCM standard or MSB-aligned standard, 24-bit data and 32-bit channel The data bits are different from the change bits. Each channel requires two read/write operations from/to the SPI_DT register, and the number of DMA transfer is 2. The first 16-bit channel transmits and receives the first 16-bit data, while the last 16-bit channel transmits and receives the upper 8-bit data, and the lower 8-bit data are forced to 0 by hardware.
- Philips standard, PCM standard, MSB-aligned or LSB-aligned standard, 32-bit data and 32-bit channel

The data bits are the same as the channel bits. Each channel requires two read/write operations from/to the SPI_DT register, and the number of DMA transfer is 2. These 32-bit data are proceeded (transmit and reception) in two times, with 16-bit data each time.

LSB-aligned standard, 16-bit data and 32-bit channel

The data bits are different from the channel bits. Each channel requires only one read/write operation from/to the SPI_DT register, and the number of DMA transfer is 1. The last 16 bits (LSB) are valid data, while the first 16-bit data (MSB) are forced to 0 by hardware.

• LSB-aligned standard, 24-bit data and 32-bit channel


The data bits are different from the channel bits. Each channel requires two read/write operations from/to the SPI_DT register, and the number of DMA transfer is 2. Of the first 16-bit data, its lower 8 bits are valid data, and the upper 8 bits are forced to 0 by software; the last 16-bit channel transmits and receives the second 16-bit data.

13.3.5 I2S CLK controller

As I²S, The audio protocols the SPI supports use synchronous transmission. In master mode, it is required to generate a communication clock for data reception and transmission on the SPI interface, and the communication clock should be output to the slave via IO for data reception and transmission. In slave mode, the communication clock is provided by master, and is input to the SPI via IO. In all, the I2S SCK controller is used for the generation and distribution of I2S SCK.

In I²S master mode, the SPI provides communication clock (CK) and main peripheral clock (MCK) shown in *Figure 13-22*. The CK and MCK are generated by HCLK divider, and the MCK frequency division factor depends on the I2SDIV and I2SODD. The calculation formula is seen in *Figure 13-22*.

The CK frequency division factor depends on whether to provide the main clock for peripherals. To ensure that the main clock is always 256 times the audio sampling frequency, the use of main clock and the number of channel bits should be taken into account. When the main clock is needed for peripherals, the CK should first be divided by 8 (I2SCBN=0) or 4 (I2SCBN=1), then further divided by the same frequency division factor as that of the MCK, which is called the final communication clock; When the main clock is not needed for peripherals, the CK frequency division factor is determined by I2SDIV and I2SODD, shown in *Figure 13-22*.

In addition to the above configuration, the following table lists the values of I2SDIV and I2SODD corresponding to some specific frequencies, as well as their respective error for the users to configure the I2SDIV and I2SODD.

2023.08.31 Page 208 Rev 2.00

Table 13-1 Audio frequency precision using system clock

201.14	1401	Target		1	6bit	Sbit			32bit	
SCLK (MHz)	MCL K	Fs (Hz)	I2S DIV	I2S_ODD	RealFs	Error	I2S DIV	I2S_ODD	RealFs	Error
72	No	192000	6	0	187500	2.34%	3	0	187500	2.34%
72	No	96000	11	1	97826.09	1.90%	6	0	93750	2.34%
72	No	48000	32	1	34615.38	27.88%	11	1	48913.04	1.90%
72	No	44100	25	1	44117.65	0.04%	13	0	43269.23	1.88%
72	No	32000	35	0	32142.86	0.45%	17	1	32142.86	0.45%
72	No	22050	51	0	22058.82	0.04%	25	1	22058.82	0.04%
72	No	16000	70	1	15957.45	0.27%	35	0	16071.43	0.45%
72	No	11025	102	0	11029.41	0.04%	51	0	11029.41	0.04%
72	No	8000	140	1	8007.117	0.09%	70	1	7978.723	0.27%
72	Yes	96000	2	0	70312.5	26.76%	2	0	70312.5	26.76%
72	Yes	48000	3	0	46875	2.34%	3	0	46875	2.34%
72	Yes	44100	3	0	46875	6.29%	3	0	46875	6.29%
72	Yes	32000	4	1	31250	2.34%	4	1	31250	2.34%
72	Yes	22050	6	1	21634.62	1.88%	6	1	21634.62	1.88%
72	Yes	16000	9	0	15625	2.34%	9	0	15625	2.34%
72	Yes	11025	13	0	10817.31	1.88%	13	0	10817.31	1.88%
72	Yes	8000	17	1	8035.714	0.45%	17	1	8035.714	0.45%

13.3.6 DMA transfer

The SPI supports the use of DMA for write and read operations. Whether used as SPI or I²S, read/write request using DMA comes from the same peripheral. As a result, their configuration procedure are the same, described as follows.

Transmission with DMA

- Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the SPI_DT register address as the
 destination address bit of DMA transfer in the DMA control register. Data will be sent to this
 address after transmit request is received by DMA.
- Configure the source of DMA transfer: Configure the memory address as the source of DMA transfer in the DMA control register. Data will be loaded into the SPI_DT register from the memory address after transmit request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the channel priority of DMA transfer in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control register.
- Enable DMA transfer channel in the DMA control register.

Reception with DMA

- Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the memory address as the destination of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the source of DMA transfer: Configure the SPI_DT register address as the source of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the total number of bytes to be transferred in the DMA control register.

- Configure DMA interrupt generation after half or full transfer in the DMA control register
- Enable DMA transfer channel in the DMA control register.

13.3.7 Transmitter/Receiver

Whether used as SPI or I2S, there is no difference for CPU. The SPI (in whatever mode) shares the same base address, the same SPI_DT register, the same transmitter and receiver. The SPI transmitter and receiver are responsible for sending and receiving the desired data frame according to the configuration of the communication controller. Thus status flags such as TDBE, RDBF and ROERR, and their interrupt enable bits including TDBEIE, RDBFIE and ERRIE are identical.

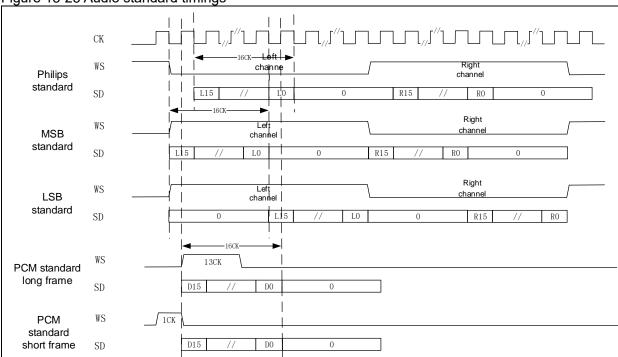
Special attention must be paid to:

- CRC check is not available on the I²S. Any operations related to CRC, including CCERR flag and corresponding interrupts, are not supported.
- I²S protocol needs decode the current channel status. The ACS bit is used to judge whether the current transfer occurs on the left channel (ACS=0) or the right channel (ACS=1).
- TUERR bit indicates whether an underrun occurs. TUERR=1 means an underrun error occurs on the transmitter. An interrupt is generated when the ERRIE is set.
- Read/write operation to the SPI_DT register is different under different audio protocols, data bits and channel bits. Refer to the audio protocol selector section for more information.
- Pay more attention to the I²S disable operation under different configurations, shown as follows:
 I2SDBN=00, I2SCBN=1, STDSLE=10: wait for the second-to-last RDBF=1 and 17 CK cycles before disabling the I²S.
 - I2SDBN=00, I2SCBN=1, STDSLE=00 or STDSLE=01 or STDSLE=11: wait for the last RDBF=1 and one CK cycles before the I²S.
 - I2SDBN, I2SCBN, STDSLE combination: wait for the second-to-last RDBF=1 and one CK cycles before disabling the I²S.

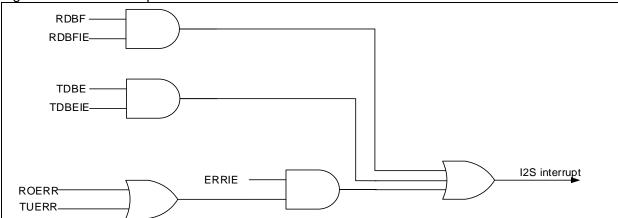
I²S transmitter configuration procedures:

- Configure operation mode selector
- Configure audio protocol selector
- Configure I2S SCK controller
- Configure DMA transfer (if necessary)
- Set the I2SEN bit to enable I2S
- Follow above steps to configure the I²SxEXT (For I²S full-duplex mode)

I²S receiver configuration procedures:


- Configure operation mode selector
- Configure audio protocol selector
- Configure I2S SCK controller
- Configure DMA transfer (if necessary)
- Set the I2SEN bit to enable I2S
- Follow above steps to configure the I²SxEXT (For I²S full-duplex mode)

13.3.8 I2S communication timings


I2S can address four different audio standards: Philips standard, the MSB-aligned (left-aligned) and the LSB-aligned (right-aligned) standards, and t PCM standard. Figure 13-23 shows their respective timings.

13.3.9 Interrupts

Figure 13-24 I²S interrupts

13.3.10 IO pin control

The I²S needs three pins for transfer operation, namely, the SD, WS and CK. The MCLK pin is also required if there is a need to provide main clock for peripherals. Considering the SPI interface cannot be used as I²S and SPI at the same time, the I²S shares some pins with SPI, described as follows:

- SD: Serial data (mapped on the MOSI pin) for bidirectional data transmission and reception.
- WS: Word select (mapped on the CS pin) for data control signal output in master mode, and input in slave mode.
- CK: Communication clock (mapped on the SCK pin) as clock signal output in master mode, and input in slave mode.
- MCLK: Master clock (mapped independently) is used to provide main clock for peripherals. The frequency of output clock signal is set to 256x Fs (audio sampling frequency)

13.4 SPI registers

These peripheral registers must be accessed by or words (32 bits).

Table 13-2 SPI register map and reset value

Register	Offset	Reset value
SPI_CTRL1	0x00	0x0000
SPI_CTRL2	0x04	0x0000
SPI_STS	0x08	0x0002
SPI_DT	0x0C	0x0000
SPI_CPOLY	0x10	0x0007
SPI_RCRC	0x14	0x0000
SPI_TCRC	0x18	0x0000
SPI_I2SCTRL	0x1C	0x0000
SPI_I2SCLKP	0x20	0x0002

13.4.1 SPI control register1 (SPI_CTRL1) (Not used in I²S mode)

Bit	Abbr.	Reset value	Type	Description
				Single line bidirectional half-duplex enable
Bit 15	SLBEN	0x0	rw	0: Disabled
				1: Enabled
				Single line bidirectional half-duplex transmission direction
				This bit and the SLBEN bit together determine the data
Bit 14	SLBTD	0x0	rw	output direction in "Single line bidirectional half-duplex"
DIL 17	OLDID	OAO	1 44	mode.
				0: Receive-only mode
				1: Transmit-only mode
				RC calculation enable
Bit 13	CCEN	0x0	rw	0: Disabled
				1: Enabled
				Transmit CRC next
				When this bit is set, it indicates that the next data
Bit 12	NTC	0x0	rw	transferred is CRC value.
				0: Next transmitted data is the normal value
				1: Next transmitted data is CRC value
				Frame bit num
		0x0	rw	This bit is used to configure the number of data frame bit
Bit 11	FBN			for transmission/reception.
				0: 8-bit data frame
				1: 16-bit data frame
				Receive-only active
		0x0		In two-wire unidirectional mode, when this bit is set, it
D:: 40	004			indicates that Receive-only is active, but the transmit is
Bit 10	ORA		rw	not allowed.
				0: Transmission and reception
				1: Receive-only mode
-				Software CS enable
				When this bit is set, the CS pin level is determined by the
D'' 0	014/00511	0.0		SWCSIL bit. The status of I/O level on the CK pin is
Bit 9	SWCSEN	0x0	rw	invalid.
				0: Disabled
				1: Enabled
				Software CS internal level
				This bit is valid only when the SWCSEN is set. It
Bit 8	SWCSIL	0x0	rw	determines the level on the CS pin.
•	2	07.0		In master mode, this bit must be set.
				0: Low level

				1: High level
Bit 7 Bit 6	LTF SPIEN	0x0 0x0	rw	LSB transmit first This bit is used to select for MST transfer first or LSB transfer first. 0: MSB 1: LSB SPI enable 0: Disabled
Dit 0	OI ILIV	0.00	I VV	1: Enabled
Bit 5: 3	MDIV	0x0	rw	Master clock frequency division In master mode, the peripheral clock divided by the prescaler is used as SPI clock. The MDIV[3] bit is in the SPI_CTRL2 register, MDIV[3: 0]: 0000: Divided by 2 0001: Divided by 4 0010: Divided by 8 0011: Divided by 16 0100: Divided by 32 0101: Divided by 64 0110: Divided by 128 0111: Divided by 256 1000: Divided by 512 1001: Divided by 1024
Bit 2	MSTEN	0x0	rw	Master enable 0: Disabled (Slave) 1: Enabled (Master)
Bit 1	CLKPOL	0x0	rw	Clock polarity Indicates the polarity of clock output in idle state. 0: Low level 1: High level
Bit 0	CLKPHA	0x0	rw	Clock phase 0: Data capture starts from the first clock edge 1: Data capture starts from the second clock edge

Note: The SPI_CTRL1 register must be 0 in I^2S mode.

13.4.2 SPI control register2 (SPI_CTRL2)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Forced to 0 by hardware.
				Master clock frequency divided by 3 enable
				0: Disabled
Bit 9	MDIV3EN	0x0	rw	1: Enabled
				Note: When this bit is set, the MDIV[3: 0] becomes invalid, and the SPI clock is forced to be PCLK/3.
Bit 8	MDI/([2]	٥٧٥	nu.	Master clock frequency division
DILO	MDIV[3]	0x0	rw	Refer to the MDIV[2: 0] of the SPI_CTRL1 register.
_				Transmit data buffer empty interrupt enable
Bit 7	TDBEIE	0x0	rw	0: Disabled
				1: Enabled
				Receive data buffer full interrupt enable
Bit 6	RDBFIE	0x0	rw	0: Disabled
				1: Enabled
				Error interrupt enable
Bit 5	ERRIE	0x0	rw	This bit controls interrupt generation when errors occur (CCERR, MMERR, ROERR and TUERR)
				0: Disabled
				1: Enabled
Bit 4	TIEN	0x0	nu.	TI mode enable
DIL 4	IIEIN	UXU	rw	0: TI mode disabled (Motorola mode)

2023.08.31 Page 213 Rev 2.00

				1: TI mode enabled (TI mode)
				Note: This mode is not used in I2S mode. It must be 0 in I2S mode.
Bit 3	Reserved	0x0	resd	Kept at default value
_				Hardware CS output enable
Bit 2	HWCSOE	0x0	rw	This bit is valid only in master mode. When this bit is set, the I/O output on the CS pin is low; when this bit is 0, the I/O input on the CS pin must be set high.
				0: Disabled
				1: Enabled
				DMA transmit enable
Bit 1	DMATEN	0x0	rw	0: Disabled
				1: Enabled
				DMA receive enable
Bit 0	DMAREN	0x0	rw	0: Disabled
				1: Enabled

13.4.3 SPI status register (SPI_STS)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 9	Reserved	0x00	resd	Forced to 0 by hardware
				CS pulse abnormal setting flag
				0: CS pulse flag normal
Bit 8	CSPAS	0x0	ro	1: CS pulse flag is set abnormally
				Note: This bit is used for TI slave mode. It is cleared by reading the STS register.
				Busy flag
Bit 7	BF	0x0	ro	0: SPI is not busy.
				1: SPI is busy.
				Receiver overflow error
Bit 6	ROERR	0x0	ro	0: No overflow error
				1: Overflow error occurs.
_				Master mode error
Bit 5	MMERR	0x0	ro	This bit is set by hardware and cleared by software (read/write access to the SPI_STS register, followed by write operation to the SPI_CTRL1 register)
				0: No mode error
				1: Mode error occurs.
				CRC error
Bit 4	CCERR	0x0	rw0c	Set by hardware, and cleared by software.
Dit 4	OOLINI	OXO	TWOC	0: No CRC error
				1: CRC error occurs.
				Transmitter underload error
D:1 0	TUEDD	0.0		Set by hardware, and cleared by software (read the SPI_STS register).
Bit 3	TUERR	0x0	ro	0: No underload error
				1: Underload error occurs.
				Note: This bit is only used in I ² S mode.
				Audio channel state
				This bit indicates the status of the current audio channel.
Bit 2	ACS	0x0	ro	0: Left channel
				1: Right channel
				Note: This bit is only used in I ² S mode.
Bit 1	TDBE	0x1	ro	Transmit data buffer empty

2023.08.31 Page 214 Rev 2.00

				0: Transmit data buffer is not empty.	
				1: Transmit data buffer is not empty.	
				Receive data buffer full	
Bit 0	RDBF	0x0	ro	0: Transmit data buffer is not full.	
				1: Transmit data buffer is full.	

13.4.4 SPI data register (SPI_DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DT	0x0000	rw	Data value This register controls read and write operations. When the data bit is set as 8 bit, only the 8-bit LSB [7: 0] is valid.

13.4.5 SPICRC register (SPI_CPOLY) (Not used in I²S mode)

Bit	Abbr.	Reset value	Type	Description
				CRC polynomial
Bit 15: 0	CPOLY	0x0007	rw	This register contains the polynomial used for CRC calculation.
			Note: This register is valid only in SPI mode.	

13.4.6 SPIRxCRC register (SPI_RCRC) (Not used in I²S mode)

Bit	Abbr.	Reset value	Type	Description
				Receive CRC
Dit 15: 0	RCRC	0x0000	ro	When CRC calculation is enabled, this register contains the CRC value computed based on the received data. This register is reset when the CCEN bit in the SPI_CTRL1 register is cleared.
Bit 15: 0	RORO		10	When the data frame format is set to 8-bit data, only the 8-bit LSB ([7: 0]) are calculated based on CRC8 standard; when 16-bit data bit is selected, follow CRC16 standard.
				Note: This register is only used in SPI mode.

13.4.7 SPITxCRC register (SPI_TCRC)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	TCRC	0x0000	ro	Transmit CRC When CRC calculation is enabled, this register contains the CRC value computed based on the transmitted data. This register is reset when the CCEN bit in the SPI_CTRL1 register is cleared. When the data frame format is set to 8-bit data only the
			When the data frame format is set to 8-bit data, only the 8-bit LSB ([7: 0]) are calculated based on CRC8 standard; when 16-bit data bit is selected, follow CRC16 standard. Note: This register is only used in SPI mode.	

13.4.8 SPI_I2S register (SPI_I2SCTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Forced to 0 by hardware.
				I ² S mode select
Bit 11	I2SMSEL	0x0	rw	0: SPI mode
				1: I ² S mode
				I ² S enable
Bit 10	I2SEN	0x0	rw	0: Disabled
				1: Enabled
Bit 9: 8	OPERSEL	0x0	rw	I ² S operation mode select

2023.08.31 Page 215 Rev 2.00

				00: Slave transmission
				01: Slave reception
				10: Master transmission
				11: Master reception
				PCM frame synchronization
D:4 7	DOMESSE	0.40		This bit is valid only when the PCM standard is used.
Bit 7	PCMFSSEL	0x0	rw	0: Short frame synchronization
				1: Long frame synchronization
Bit 6	Reserved	0x0	resd	Kept at default value
				I ² S standard select
				00: Philips standard
Bit 5: 4	STDSEL	0x0	rw	01: MSB-aligned standard (left-aligned)
				10: LSB-aligned standard (right-aligned)
				11: PCM standard
				I ² S clock polarity
				This bit indicates the clock polarity on the clock pin in idle
Bit 3	12SCLKPOL	0x0	rw	state.
				0: Low
				1: High
				I ² S data bit num
				00: 16-bit data length
Bit 2: 1	I2SDBN	0x0	rw	01: 24-bit data length
				10: 32-bit data length
				11: Not allowed.
				I ² S channel bit num
				This bit can be configured only when the I ² S is set to 16-
Bit 0	I2SCBN	0x0	rw	bit data; otherwise, it is fixed to 32-bit by hardware.
				0: 16-bit wide
				1: 32-bit wide

13.4.9 SPI_I2S prescaler register (SPI_I2SCLKP)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Forced 0 by hardware.
				I ² S Master clock output enable
Bit 9	12SMCLKOE	0x0	rw	0: Disabled
				1: Enabled
				Odd factor for I ² S division
Bit 8	I2SODD	0x0	rw	0: Actual divider factor =I2SDIV*2
				1: Actual divider factor =(I2SDIV*2)+1
Bit 11: 10				I ² S division
	I2SDIV	0x02	rw	It is not allowed to configure I2SDIV[9: 0]=0 or I2SDIV[9:
Bit 7: 0				0]=1

2023.08.31 Page 216 Rev 2.00

14 Full-duplexed I2S (I2SF)

14.1 I2SF introduction

I2SF audio interface is an extended version of I2S which supports full duplex mode. Its master clock sources can be from system clock, PLL input clock, HICK output clock or external input clock. A more accurate audio frequency can be achieved by configuring the master clock of I2SF.

14.2 I2SF functional overview

In addition to I2S functionalities described in Chapter 13, there are additional features available to I2SF which will be detailed in the following sections.

14.2.1 I2SF full duplex mode

I2SFfull duplex mode is enabled by setting the I2SFDUPEN bit in the I2SF_I2SCTRL register. The I2SF can operate in master or slave mode through setting the OPERSEL[1] register. When I2SF is configured in master transmit or slave transmit mode through the OPERSEL[1:0], SD represents input while SDEXT represent input; when

Figure 14-1 I2SF full-duplex host transmit/slave transmit

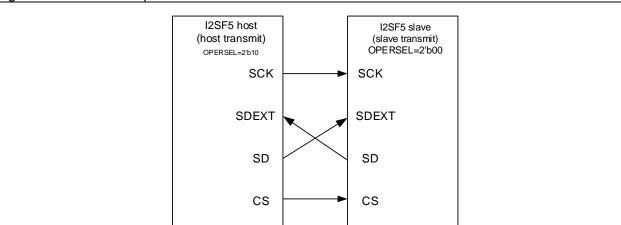


Figure 14-2 I2SF full-duplex host transmit/slave receive

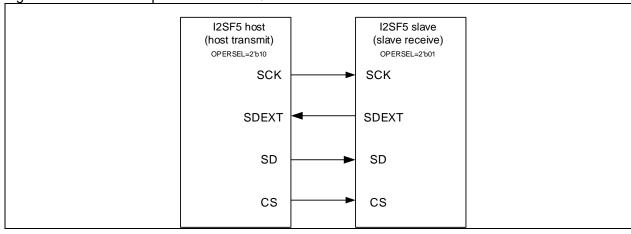


Figure 14-3 I2SF full-duplex host receive/slave transmit

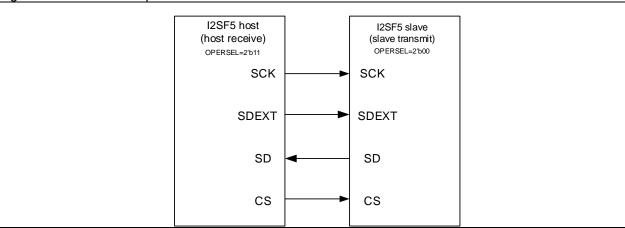
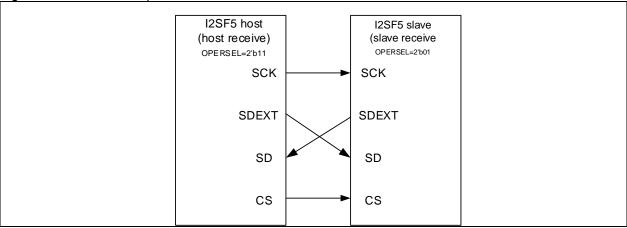
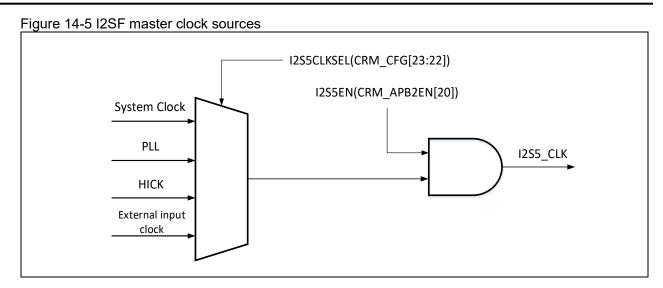



Figure 14-4 I2SF full-duplex host receive/slave receive

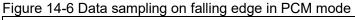
Full-duplex transfer in master mode (I2SFDUPEN=1 and OPERSEL[9]=1)

- The transfer sequence begins when a data is written to the I2SF_DT register (transmission buffer)
- The data is parallel loaded into the shift register during the first bit transmission, and then shifted out, serially to the SD/SDEXT pin
- The data received on SDEXT/SD are serially moved to the shift register, and then serially loaded into the I2SF_DT register


Full-duplex transfer in slave mode (I2SFDUPEN=1 and OPERSEL[9]=0)

- The data transfer begins when the slave receives a clock signal. Then the data on the SDEXT/SD are serially loaded into the shift register. The data in the shift register is sent to the I2SF_DT register each time a 16-bit data transfer is finished
- At the same time, the data of the I2SF_DT register (transmission buffer) are in parallel loaded into the shift register, and then sent to the SD/SDEXT pins serially. It shout be noted that the to-be-sent data have been written to the I2SF_DT register before the I2SF host starts transferring data

14.2.2 I2SF master clock sources


There are four clock sources dedicated to I2SF controller, which is configured through the I2SF5CLKSEL[1: 0] register. The external input clock is input via IO. The HICK oscillator clock output can be configured as 8M or 48M through corresponding register. The PLL is derived from PLLP.

2023.08.31 Page 218 Rev 2.00

14.2.3 PCM mode

The I2SF has an additional I2SFPCMCKSEL register used to select rising edge or falling edge of the clock for sampling data in PCM long-frame or PCM short-frame format. See the figures below for communication timings.

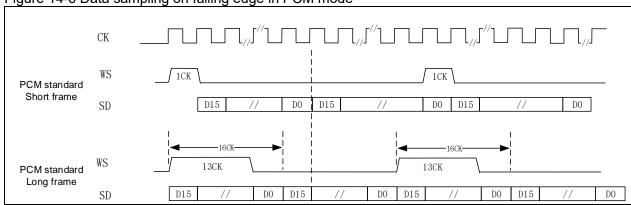
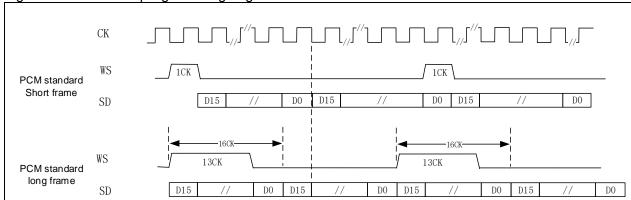
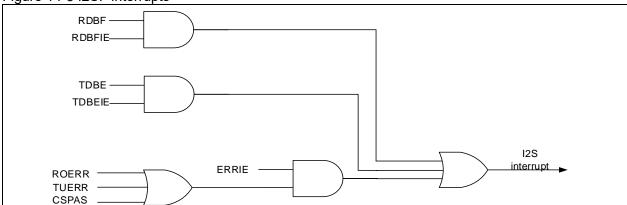




Figure 14-7 Data sampling on rising edge in PCM mode

14.2.4 Interrupts

Figure 14-8 I2SF interrupts

14.2.5 IO pin control

When full-duplex feature is enabled, the I2SF needs three pins to implement I²S communication. They are SD (data pin), WS (synchronization pin) and CK (communication clock pin). If there is a need to provide main clock for peripherals, a MCLK is required. When the full-duplex mode is enabled, it requires another pin SDEXT to implement bidirectional data transfer. In master mode, it is possible to select CLKIN_IN as the external input interface of I²S master clock through the I2SF5CLKSEL[1:0] register.

- SD: Serial data (mapped on the MOSI pin). It serves as a bidirectional transceiver pin when I2SF full-duplex mode is disabled. The direction of data transfer is dependent on registers when the I2SF full-duplex mode is enabled.
- SDEXT: this pin is not available when I2SF full-duplex mode is disabled. The direction of data transfer is dependent on registers when I2SF full-duplex mode is enabled.
 When the OPERSEL[9:8] is configured as host transmit/slave transmit mode, SD is used as output and the SDEXT as input. When the OPERSEL[9:8] is configured as host receive/slave receive mode, SD is used as input, and SDEXT as output
- WS: Word select (mapped on the CS pin) for data control signal output in master mode, and input in slave mode.
- CK: Communication clock (mapped on the SCK pin) as clock signal output in master mode, and input in slave mode.
- CLKIN_IN: it is the I²S master clock external input interface in master mode, and not available in slave mode
- MCLK: Master clock (mapped independently) is used to provide main clock for peripherals. The frequency of output clock signal is set to 256x Fs (audio sampling frequency)

14.2.6 Special notes on I2SF

- The clock of the APB2 should be greater than the one of I2SF
- In slave mode, when an edge is detected at an unexpected location, the CS pulse error flag is set by hardware, and is cleared by software reading the register.

14.3 I2SF registers

These peripheral registers must be accessed by or words (32 bits).

Table 14-1 I2SF5 register map and reset value

Register	Offset	Reset value
I2SF_CTRL2	0x04	0x0000
I2SF_STS	0x08	0x0002
I2SF_DT	0x0C	0x0000
I2SF_I2SCTRL	0x1C	0x0000
I2SF_I2SCLKP	0x20	0x0002
I2SF_MISC1	0x30	0x0000

14.3.1 I2SF control register 2 (I2SF_CTRL2)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Forced to 0 by hardware.
				Transmit data buffer empty interrupt enable
Bit 7	TDBEIE	0x0	rw	0: Disabled
				1: Enabled
				Receive data buffer full interrupt enable
Bit 6	RDBFIE	0x0	rw	0: Disabled
				1: Enabled
				Error interrupt enable
Bit 5	ERRIE	0x0	rw	This bit controls interrupt generation when errors occur (CCERR, MMERR, ROERR and TUERR)
				0: Disabled
				1: Enabled
Bit 4: 2	Reserved	0x0	resd	Kept at default value
				DMA transmit enable
Bit 1	DMATEN	0x0	rw	0: Disabled
				1: Enabled
				DMA receive enable
Bit 0	DMAREN	0x0	rw	0: Disabled
				1: Enabled

14.3.2 I2SF status register (I2SF_STS)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 9	Reserved	0x00	resd	Forced to 0 by hardware
				CS pulse abnormal setting flag
				0: CS pulse flag normal
Bit 8	CSPAS	0x0	ro	1: CS pulse flag is set abnormally
				Note: This bit is used for TI slave mode. It is cleared by reading the STS register.
				Busy flag
Bit 7	BF	0x0	ro	0: SPI is not busy.
				1: SPI is busy.
				Receiver overflow error
Bit 6	ROERR	0x0	ro	0: No overflow error
				1: Overflow error occurs.
Bit 5: 4	Reserved	0x0	resd	Forced to 0 by hardware

				Transmitter underload error
D:: 0	TUEDD	0.0		Set by hardware, and cleared by software (read the SPI_STS register).
Bit 3	TUERR	0x0	ro	0: No underload error
				1: Underload error occurs.
				Note: This bit is only used in I ² S mode.
_				Audio channel state
				This bit indicates the status of the current audio channel.
Bit 2	ACS	0x0	ro	0: Left channel
				1: Right channel
				Note: This bit is only used in I ² S mode.
_				Transmit data buffer empty
Bit 1	TDBE	0x1	ro	0: Transmit data buffer is not empty.
				1: Transmit data buffer is not empty.
_				Receive data buffer full
Bit 0	RDBF	0x0	ro	0: Transmit data buffer is not full.
				1: Transmit data buffer is full.

14.3.3 I2SF data register (I2SF_DT)

Bit	Abbr.	Reset value	Туре	Description
Bit 15: 0	DT	0x0000	rw	Data value This register controls read and write operations. When the data bit is set as 8 bit, only the 8-bit LSB [7: 0] is valid.

14.3.4 I2SF register (I2SF_I2SCTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Forced to 0 by hardware.
				I ² S full duplex enable
Bit 13	I2SFDUPEN	0x0	rw	0: I ² S full duplex disabled
				1: I ² S full duplex enabled
Bit 12:11	Reserved	0x0	resd	Forced to 0 by hardware.
				I ² S enable
Bit 10	I2SEN	0x0	rw	0: Disabled
				1: Enabled
				I ² S operation mode select
				00: Slave transmission
Bit 9: 8	OPERSEL	0x0	rw	01: Slave reception
				10: Master transmission
				11: Master reception
				PCM frame synchronization
Bit 7	PCMFSSEL	0x0		This bit is valid only when the PCM standard is used.
DIL 1	FUNITSSEL	UXU	rw	0: Short frame synchronization
				1: Long frame synchronization
Bit 6	Reserved	0x0	resd	Kept at default value
				I ² S standard select
				00: Philips standard
Bit 5: 4	STDSEL	0x0	rw	01: MSB-aligned standard (left-aligned)
				10: LSB-aligned standard (right-aligned)
				11: PCM standard
				I ² S clock polarity
				This bit indicates the clock polarity on the clock pin in idle
Bit 3	I2SCLKPOL	0x0	rw	state.
				0: Low
				1: High
Dit 0, 1	IOCDDNI	0.40	20.47	I ² S data bit num
Bit 2: 1	I2SDBN	0x0	rw	00: 16-bit data length
-				

-				01: 24-bit data length
				10: 32-bit data length
				11: Not allowed.
				I ² S channel bit num
				This bit can be configured only when the I ² S is set to 16-
Bit 0	I2SCBN	0x0	rw	bit data; otherwise, it is fixed to 32-bit by hardware.
				0: 16-bit wide
				1: 32-bit wide

14.3.5 I2SF prescaler register (I2SF_I2SCLKP)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Forced 0 by hardware.
				I ² S Master clock output enable
Bit 9	12SMCLKOE	0x0	rw	0: Disabled
				1: Enabled
				Odd factor for I ² S division
Bit 8	I2SODD	0x0	rw	0: Actual divider factor =I2SDIV*2
				1: Actual divider factor =(I2SDIV*2)+1
Dit 11, 10				I ² S division
Bit 11: 10 Bit 7: 0	I2SDIV	0x02	rw	It is not allowed to configure I2SDIV[9: 0]=0 or I2SDIV[9:
DIL 1. U				0]=1

14.3.6 I2SF additional register (I2SF_MISC1)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 1	Reserved	0x0	resd	Forced 0 by hardware.
				I ² S PCM clock edge select
Bit 0	I2SFPCMCKSEL 0x02	rw	0: Falling edge 1: Rising edge	

2023.08.31 Page 223 Rev 2.00

15 Timer

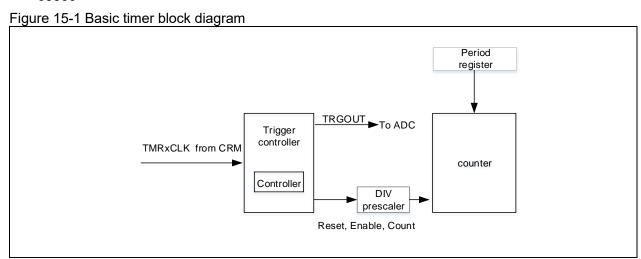
AT32F402/405 timers include basic timers, general-purpose timers, and advanced timers.

Please refer to Section 15.1 \sim Section 15.5 for detailed function modes. All functions of different timers are shown in the following tables.

Table 15-1 TMR functional comparison

Timer type	Timer	Counter bit	Count mode	Repetition	Prescaler	DMA requests	Capture/compare channel	PWM input mode	ETR input	Break input
Advanced- control timer	TMR1	16	Up Down Up/Down	16-bit	1~65536	0	4	0	0	0
	TMR2	16/32	Up Down Up/Down	Х	1~65536	0	4	0	0	х
General-	TMR3 TMR4	16	Up Down Up/Down	Х	1~65536	0	4	0	0	Х
purpose timer	TMR9	16	Up Down Up/Down	8-bit	1~65536	0	2	0	X	0
	TMR10 TMR11 TMR13 TMR14	16	Up Down	8-bit	1~65536	0	1	Х	x	0
Basic timer	TMR6 TMR7	16	Up	Х	1~65536	0	х	Х	Х	Х

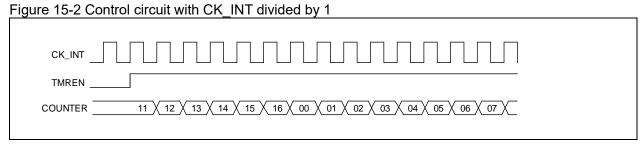
Timer type	Timer	Counter bit	Count mode	PWM output	Single pulse output	Complementary output	Dead- time	Encoder interface connection	Interfacing with hall sensors	Linkage peripheral
Advanced- control timer	TMR1	16	Up Down Up/Down	0	0	0	0	0	0	Timer synchronization/ADC
	TMR2	16/32	Up Down Up/Down	0	0	×	Х	0	0	Timer synchronization/ADC
	TMR3 TMR4	16	Up Down Up/Down	0	0	х	Х	0	0	Timer synchronization/ADC
General- purpose time	TMR9	16	Up Down Up/Down	0	0	0	0	0	X	Timer synchronization/ ADC
	TMR10 TMR11 TMR13 TMR14	16	Up Down	0	0	0	0	Х	x	Timer synchronization
Basic timer	TMR6 TMR7	16	Up	Х	Х	Х	Х	Х	Х	ADC


15.1 Basic timer (TMR6 and TMR7)

15.1.1 TMR6 and TMR7 introduction

Basic timers (TMR6 and TMR7) include a 16-bit up counter with corresponding control logic, without being connected to external I/Os. They can be used for basic timing function.

15.1.2 TMR6 and TMR7 main features


- 16-bit auto reload upcounter
- 16-bit prescaler used to divide the TMR_CLK clock frequency by any factor between 1 and 65536

15.1.3 TMR6 and TMR7 function overview

15.1.3.1 Counting clock

The counter clock of TMR6 and TMR7 is provided by the internal clock source (CK_INT) divided by prescaler. When TMR's APB clock prescaler factor is 1, the CK_INT frequency is equal to APB, otherwise, it doubles the APB clock frequency.

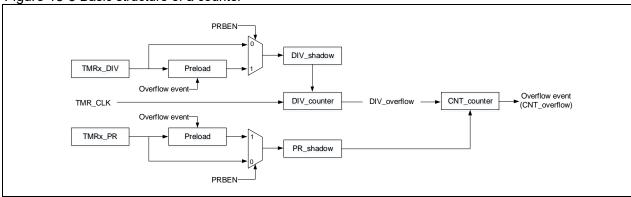
15.1.3.2 Counting mode

The basic timer only supports upcounting mode. It has an internal 16-bit counter.

The TMRx_PR register is used to set counting period of the counter. The value in the TMRx_PR is immediately moved to the shadow register by default. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event.

TMRx_DIV register is used to define the counting frequency of the counter. The counter counts once every DIV[15:0]+1 clock cycle. Similar to TMRx_PR register, after periodic buffer is enabled, the value of the TMRx_DIV register is transferred into the shadow register upon an overflow event.

Reading the TMRx_CNT register returns the current counter value. Writing the TMRx_CNT register will update the current counter value.


An overflow event is enabled by default. It can be disabled by setting OVFEN=1 in the TMRx_CTRL1 register. The OVFS bit in the TMRx_CTRL1 register is used to select the source of an overflow event, which is, by default, counter overflow or underflow, setting OVFSWTR, reset signal generated by slave

mode timer controller in reset mode. Once the OVFS is set, an overflow event is generated only when overflow or underflow occurs.

Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual counter enable signal TMR_EN is set 1 clock cycle after the TMREN is set.

Figure 15-3 Basic structure of a counter

Upcounting mode

Upcounting mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b0 in the TMRx_CTRL1 register.

In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, then restarts from 0 and generates a counter overflow event with setting OVFIF=1 at the same time. If the overflow event is disabled, the counter is no longer reloaded with a prescaler value and a periodic value when a counter overflow event occurs, otherwise, the counter is updated with prescaler and periodic values at an overflow event.

Figure 15-4 Overflow event when PRBEN=0

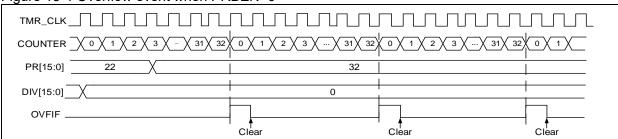


Figure 15-5 Overflow event when PRBEN=1

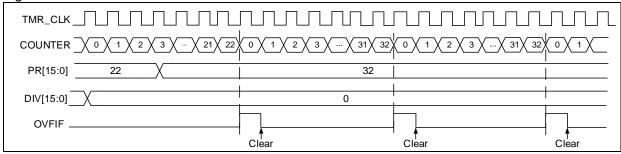
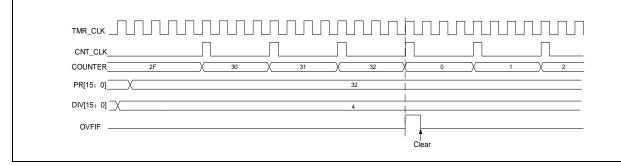



Figure 15-6 Counting timing diagram when the prescaler division is 4

15.1.3.3 Debug mode

When the microcontroller enters debug mode (Cortex ®-M4F core halted), the TMRx counter stops counting when the TMRx PAUSE bit is set to 1 in the DEBUG module.

15.1.4 TMR6 and TMR7 registers

These peripheral registers have to be accessed by words (32 bits).

In Table 15-2, all the TMR6 and TMR7 registers are mapped to a 16-bit addressable space.

Table 15-2 TMR6 and TMR7 register table and reset value

Register	Offset	Reset value
TMRx_CTRL1	0x00	0x0000
TMRx_CTRL2	0x04	0x0000
TMRx_IDEN	0x0C	0x0000
TMRx_ISTS	0x10	0x0000
TMRx_SWEVT	0x14	0x0000
TMRx_CVAL	0x24	0x0000
TMRx_DIV	0x28	0x0000
TMRx_PR	0x2C	0x0000

15.1.4.1 TMR6 and TMR7 control register1 (TMRx_CTRL1)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled.
				1: Period buffer is enabled.
Bit 6: 4	Reserved	0x0	resd	Kept at default value.
				One cycle mode enable
				This bit is used to select whether to stop the counter at
Bit 3	OCMEN	0x0	rw	overflow event.
				0: Disabled
				1: Enabled
				Overflow event source
				This bit is used to select overflow event or DMA request
Bit 2	OVFS	0x0	rw	sources.
DIL 2	OVIS	UXU	T VV	0: Counter overflow, overflow event generated by setting
				the OVFSWTR bit or from the slave timer controller
				1: Only counter overflow generates an overflow event.
				Overflow event enable
				This bit is used to enable or disable OEV event
				generation.
				0: OEV event is enabled. An overflow event is generated
				by any of the following events:
				- Counter overflow
Bit 1	OVFEN	0x0	rw	- Setting the OVFSWTR bit to 1
Dit 1	OVILIN	OAO	1 44	 Overflow event generated from the slave timer
				controller
				1: OEV event is disabled.
				If the OVFSWTR bit is set to 1, or if a hardware reset is
				generated from the slave mode controller, the counter
				and the prescaler are reinitialized.
				Note: This bit is set and cleared by software.
				TMR enable
Bit 0	TMREN	0x0	rw	0: Disabled
-				1: Enabled

15.1.4.2 TMR6 and TMR7 control register2 (TMRx_CTRL2)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 7	Reserved	0x000	resd	Kept at default value.
				Master TMR output selection
				This field is used to select the signals in master mode to
Bit 6: 4	PTOS	0x0	r\4/	be sent to slave timers.
DIL 0. 4	F103	UXU	rw	000: Reset
				001: Enable
				010: Update
Bit 3: 0	Reserved	0x0	resd	Kept at default value.

15.1.4.3 TMR6 and TMR7 DMA/interrupt enable register (TMRx_IDEN)

Bit	Abbr.	Reset value	Type	Description	
Bit 15: 9	Reserved	0x00	resd	Kept at default value.	
				Overflow event DMA request enable	
Bit 8	OVFDEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 7: 1	Reserved	0x00	resd	Kept at default value.	
				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

15.1.4.4 TMR6 and TMR7 interrupt status register (TMRx_ISTS)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 1	Reserved	0x0000	resd	Kept at default value.
				Overflow interrupt flag
				This bit is set by hardware at an overflow event. It is cleared by software.
				0: No overflow event occurred.
Bit 0	OVFIF	0x0	rw0c	1: Overflow event occurred, and if OVFEN=0, and
Dit 0	OVIII	UXU	TWOC	OVFS=0 in the TMRx_CTRL1 register:
				 An overflow event occurred when OVFG=1 in the
				TMRx_SWEVE register
				- An overflow event occurred when the counter value
				(CVAL) is reinitialized by a trigger event.

15.1.4.5 TMR6 and TMR7 software event register (TMRx_SWEVT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 1	Reserved	0x0000	resd	Kept at default value.
Bit 0	OVFSWTR	0x0	rw0c	Overflow event triggered by software An overflow event is trigged by software. 0: No effect 1: Generate an overflow event by software

15.1.4.6 TMR6 and TMR7 counter value (TMRx_CVAL)

Bit	Abbr.	Reset value	Type	Description	
Bit 15: 0	CVAL	0x0000	rw	Counter value	

15.1.4.7 TMR6 and TMR7 division (TMRx_DIV)

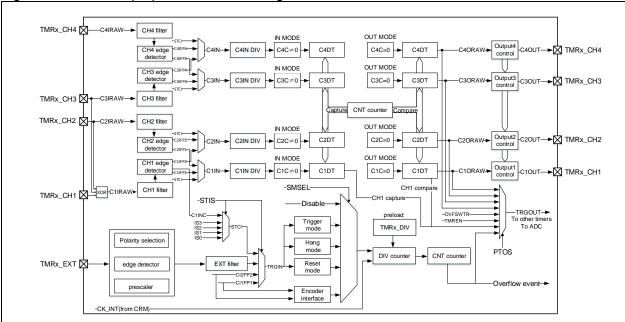
Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DIV	0x0000	rw	Divider value The counter clock frequency fck_cnt = ftmr_clk / (DIV[15: 0]+1). At each overflow event, DIV value is written to the DIV register.

2023.08.31 Page 228 Rev 2.00

15.1.4.8 TMR6 and TMR7 period register (TMRx_PR)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	PR	0x0000	rw	Period value This indicates the period value of the TMRx counter. The timer stops working when the period value is 0.

15.2 General-purpose timer (TMR2 to TMR4)


15.2.1 TMR2 to TMR4 introduction

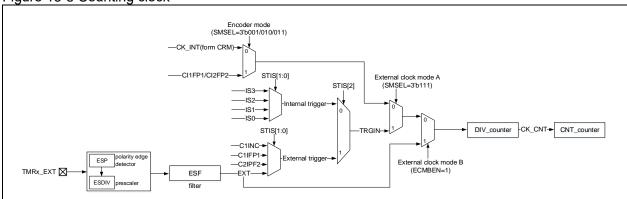
The general-purpose timers (TMR2 to TMR4) consist of a 16-bit counter supporting up, down, up/down (TMR2 can be extended to 32 bits) counting modes, four capture/compare registers, and four independent channels. They can be used for input capture and programmable PWM output.

15.2.2 TMR2 to TMR4 main features

- Counter clock source: internal clock, external clock and internal trigger input
- 16-bit up, down, up/down and encoder mode counter
- 4 independent channels for input capture, output compare, PWM generation and one-pulse mode output
- Synchronization control between master and slave timers
- Interrupt/DMA generation at overflow event, trigger event and channel event
- Support TMR burst DMA transfer

Figure 15-7 General-purpose timer block diagram

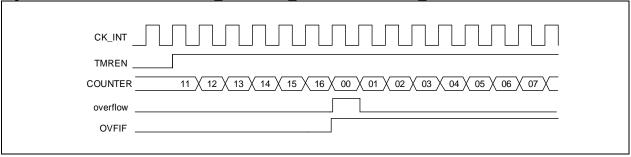
15.2.3 TMR2 to TMR4 functional overview


15.2.3.1 Counting clock

The counter clock of TMR2 to TMR4 can be provided by the internal clock (CK_INT), external clock (external clock mode A and B) and internal trigger input (ISx)

2023.08.31 Page 229 Rev 2.00

Figure 15-8 Counting clock


Internal clock (CK_INT)

By default, the CK_INT, which is divided by a prescaler, is used to drive the counter to count. When TMR's APB clock prescaler factor is 1, the CK_INT frequency is equal to APB, otherwise, it doubles the APB clock frequency.

Follow the procedures below:

- Select a counting mode by setting the TWCMSEL[1:0] in TMRx_CTRL1 register. If a unidirectional aligned counting mode is selected, it is necessary to select a counting direction through the OWCDIR bit in TMRx_CTRL1 register.
- Set counting frequency through TMRx DIV register
- Set counting cycles through TMRx_PR register
- Enable the counter by setting the TMREN bit in the TMRx CTRL1 register

Figure 15-9 Control circuit with CK_INT, TMRx_DIV=0x0 and TMRx_PR=0x16

External clock (TRGIN/EXT)

The counter clock can be provided by two external clock sources, namely, TRGIN and EXT signals.

SMSEL=3'b111: External clock mode A is selected. Select an external clock source TRGIN signal by setting the STIS[2: 0] bit to drive the counter to start counting.

The external clock sources include:

C1INC (STIS=3'b100, channel 1 rising edge and falling edge)

C1IFP1 (STIS=3'b101, channel 1 signal after filtering and polarity selection)

C2IFP2 (STIS=3'b110, channel 2 signal after filtering and polarity selection)

EXT (STIS=3'b111, external input signal after polarity selection, frequency division and filtering).

ECMBEN=1: External clock mode B is selected. The counter is driven by external input that has gone through polarity selection, frequency division and filtering. The external clock mode B is equivalent to the external clock mode A which selects EXT signal as an external force TRGIN.

To use external clock mode A, follow the steps below:

Set external source TRGIN parameters

If the TMRx_CH1 is used as a source of TRGIN, it is necessary to configure channel 1 input filter (C1DF[3:0] in TMRx_CM1 register) and channel 1 input polarity (C1P/C1CP in TMRx_CCTRL register);

If the TMRx_CH2 is used as source of TRGIN, it is necessary to configure channel 2 input filter

(C2DF[3:0] in TMRx_CM1 register) and channel 2 input polarity (C2P/C2CP in TMRx_CCTR register);


If the TMRx_EXT is used as a source of TRGIN, it is necessary to configure the external signal polarity (ESP in TMRx_STCTRL register), external signal frequency division (ESDIV[1:0] in TMRx_STCTRL) and external signal filter (ESF[3:0] in TMRx_STCTRL register).

- Set TRGIN signal source using the STIS[1:0] bit in TMRx STCTRL register
- Enable external clock mode A by setting SMSEL=3'b111 in TMRx_STCTR register
- Set counting frequency through the DIV[15:0] in TMRx DIV register
- Set counting period through the PR[15:0] in TMRx PR register
- Enable counter through the TMREN bit in TMRx CTRL1 register

To use external clock mode B, follow the steps below:

- Set external signal polarity through the ESP bit in TMRx STCTRL register
- Set external signal frequency division through the ESDIV[1:0] bit in TMRx STCTRL register
- Set external signal filter through the ESF[3:0] bit in TMRx STCTRL register
- Enable external clock mode B through the ECMBEN bit in TMRx STCTR register
- Set counting frequency through the DIV[15:0] bit in TMRx_DIV register
- Set counting period through the PR[15:0] bit in TMRx_PR register
- Enable counter through the TMREN in TMRx CTRL1 register

Figure 15-10 Block diagram of external clock mode A

Note: The delay between the signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Figure 15-11 Counting in external clock mode A, PR=0x32 and DIV=0x0

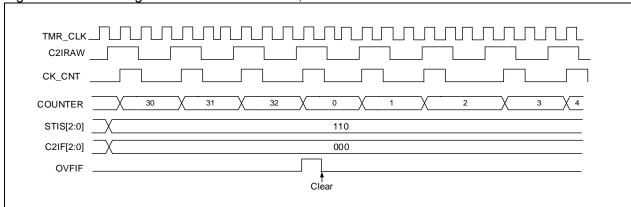
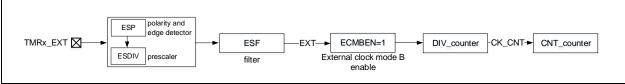
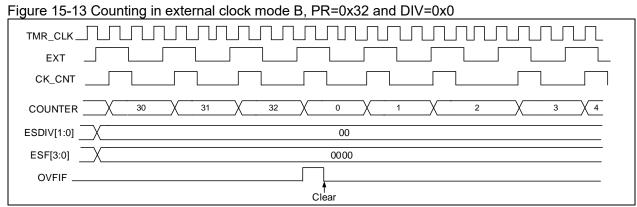




Figure 15-12 Block diagram of external clock mode B

Note: The delay between the EXT signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Internal trigger input (ISx)

Timer synchronization allows interconnection between several timers. The TMR_CLK of one timer can be provided by the TRGOUT signal from another timer. The internal trigger signal is selected by setting the STIS[2: 0] bit to enable counting.

TMR2 to TMR4 consist of a 16-bit prescaler, which is used to generate the CK_CNT that enables the counter to count. The frequency division relationship between the CK_CNT and TMR_CLK can be adjusted by setting the value of the TMRx_DIV register. The prescaler value can be modified at any time, but the new prescaler value is taken into account when the next overflow event occurs.

Below is the configuration procedure for internal trigger input:

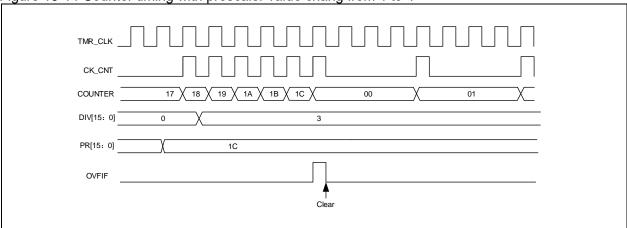

- Set counting cycles through TMRx_PR register
- Set counting frequency through TMRx_DIV register
- Set counting modes through the TWCMSEL[1:0] in TMRx_CTRL1 register
- Select internal trigger by setting STIS[2:0]= 3'b000~3'b011 in TMRx_STCTRL register
- Select external clock mode A by setting SMSEL[2:0]=3'b111 in TMRx_STCTRL register
- Enable TMRx to start counting through the TMREN in TMRx_CTRL1 register

Table 15-3 TMRx internal trigger connection

Slave controller	IS0 (STIS = 000)	IS1 (STIS = 001)	IS2 (STIS = 010)	IS3 (STIS = 011)
TMR2	TMR1	TMR9	TMR3	OTGFS_SOF
TMR3	TMR1	TMR2	TMR9	TMR4
TMR4	TMR1	TMR2	TMR3	TMR9

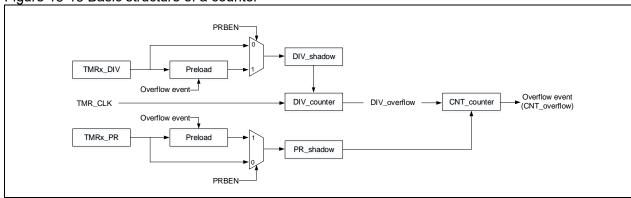
Note 1: If there is no corresponding timer in a device, the corresponding trigger signal ISx is not present.

Figure 15-14 Counter timing with prescaler value chang from 1 to 4

15.2.3.2 Counting mode

The timers (TMR2 to TMR4) support several counting modes to meet different application scenarios. They have an internal 16-bit up, down, up/down counter. TMR2/5 can be extended to 32 bits by setting the PMEN bit to 1.

The TMRx_PR register is used to set counting period of the counter. The value in the TMRx_PR is immediately moved to the shadow register by default. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event.


TMRx_DIV register is used to define the counter frequency of the counter. The counter counts once every DIV[15:0]+1 clock cycle. Similar to TMRx_PR register, after enabling periodic buffer, the value of the TMRx_DIV register is transferred into the shadow register at each overflow event.

Reading the TMRx_CNT register returns the current counter value. Writing the TMRx_CNT register will update the current counter value.

An overflow event is enabled by default. It can be disabled by setting OVFEN=1 in the TMRx_CTRL1 register. The OVFS bit in the TMRx_CTRL1 register is used to select the source of an overflow event, which is, by default, counter overflow or underflow, setting OVFSWTR, reset signal generated by slave mode timer controller in reset mode. Once the OVFS is set, an overflow event is generated only when overflow or underflow occurs.

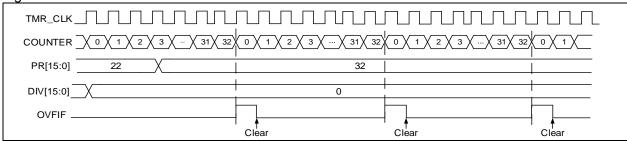
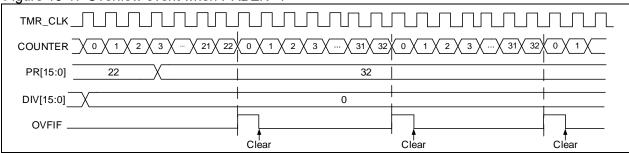
Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR EN is set 1 clock cycle after the TMREN is set.

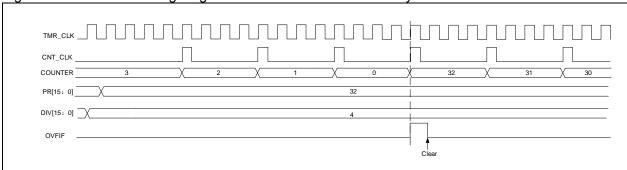
Upcounting mode

This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b0 in the TMRx CTRL1 register.

In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, restarts from 0, and generates a counter overflow event, with setting OVFIF=1. If the overflow event is disabled, the register is no longer reloaded with the prescaler and periodic value after counter overflow occurs, otherwise, the prescaler and periodic value will be updated at an overflow event.

Figure 15-16 Overflow event when PRBEN=0

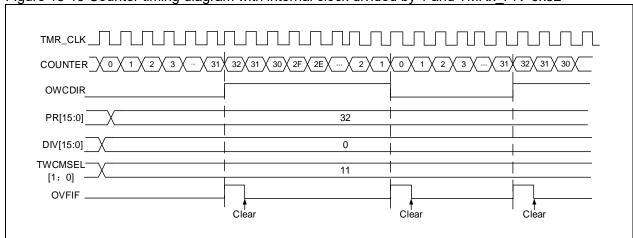

Figure 15-17 Overflow event when PRBEN=1

Downcounting mode

This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b1 in the TMRx_CTRL1 register. In downcounting mode, the counter counts from the value programmed in the TMRx_PR register down to 0, and restarts from the value programmed, and generates a counter underflow event.

Figure 15-18 Counter timing diagram with internal clock divided by 4

Up/down counting mode (center-aligned mode)

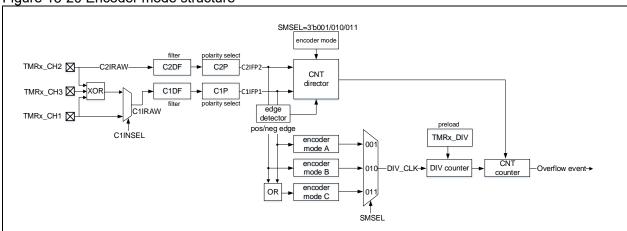

This mode is selected by setting CMSEL[1:0] \(\neq 2' \) b00 in the TMRx_CTRL1 register.

In up/down counting mode, the counter counts up/down alternatively. When the counter counts from the value programmed in the TMRx_PR register down to 1, an underflow event is generated, and then restarts counting from 0; when the counter counts from 0 to the value of the TMRx_PR register -1, an overflow event is generated, and then restarts counting from the value of the TMRx_PR register. The OWCDIR bit indicates the current counting direction.

The TWCMSEL[1:0] bit in the TMRx_CTRL1 register is used to select the condition under which the CxIF flag is set in two-way counting mode. In other words, when TWCMSEL[1:0]=2'b01 (counting mode 1) is selected, the CxIF flag is set only when the counter counts down; when TWCMSEL[1:0]=2'b10 (counting mode 2) is selected, the CxIF flag is set only when the counter counts up; when TWCMSEL[1:0]=2'b11 (counting mode 3) is selected, the CxIF flag is set when the counter counts up and down.

Note: The OWCDIR is ready-only in up/down counting mode.

Figure 15-19 Counter timing diagram with internal clock divided by 1 and TMRx PR=0x32



Encoder interface mode

In this mode, the two input (TMRx_CH1 and TMRx_CH2) signals are required. Depending on the level on one input signal, the counter counts up or down on the edge of the other input signal. The OWCDIR bit indicates the direction of the counter, as shown in the table below:

Figure 15-20 Encoder mode structure

Encoder mode A: SMSEL=3'b001. The counter counts on the selected C1IFP1 edge (rising and falling edges), and the counting direction is dependent on the edge direction of C1IFP1 and the level of C2IFP2.

Encoder mode B: SMSEL=3'b010. The counter counts on the selected C2IFP2 edge (rising and falling edges), and the counting direction is dependent on the edge direction of C2IFP2 and the level of C1IFP1.

Encoder mode C: SMSEL=3'b011. The counter counts on both C1IFP1 and C2IFP2 edges (rising and falling edges). The counting direction is dependent on the C1IFP1 edge direction and C2IFP2 level, and C2IFP2 edge direction and C1IFP1 level.

To use encoder mode, follow the procedures below:

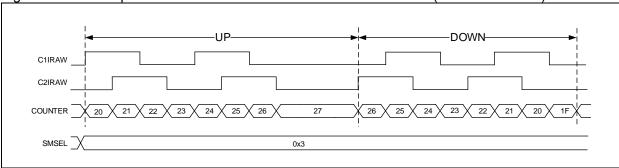

- Set channel 1 input signal filtering through the C1DF[3:0] bit in the TMRx_CM1 register;
 Set channel 1 input signal active level through the C1P bit in the TMRx_CCTRL register
- Set channel 2 input signal filtering through the C2DF[3:0] bit in the TMRx_CM1 register;
 Set channel 2 input signal active level through the C2P bit in the TMRx_CCTRL register
- Set channel 1 as input mode through the C1C[1:0] bit in the TMRx_CM1 register;
 Set channel 2 as input mode through the C2C[1:0] bit in the TMRx_CM1 register
- Select encoder mode A (SMSEL=3'b001), encoder mode B (SMSEL=3'b010), or encoder mode C (SMSEL=3'b011) by setting the SMSEL[2:0] bit in the TMRx_STCTRL register
- Set counting cycles through the PR[15:0] bit in the TMRx_PR register
- Set counting frequency through the DIV[15:0] bit in the TMRx DIV register
- Configure the corresponding IOs of TMRx CH1 and TMRx CH2 as multiplexed mode
- Enable counter through the TMREN bit in the TMRx CTRL1 register

Table 15-4	Counting	direction	versus	encoder s	ignals

A ativa a dara	Level on opposite signal	C1IFP1 signal		C2IFP2 signal	
Active edge	(C1IFP1 to C2IFP2, C2IFP2 to C1IFP1)	Rising	Falling	Rising	Falling
Count on C1IED1 only	High	Down	Up	No count	No count
Count on C1IFP1 only	Low	Up	Down	No count	No count
Count on COIFEO only	High	No count	No count	Up	Down
Count on C2IFP2 only	Low	No count	No count	Down	Up
Count on both C1IFP1	High	Down	Up	Up	Down
and C2IFP2	Low	Up	Down	Down	Up

Figure 15-21 Example of counter behavior in encoder interface mode (encoder mode C)

15.2.3.3 TMR input function

Each of timers (TMR2 to TMR4) has four independent channels, with each channel being configured as input or output. As input, each channel input signal is processed as follows:

- TMRx_CHx outputs the pre-processed CxIRAW. The C1INSE bit is used to select the source of C1IRAW from TMRx_CH1, or XOR-ed TMRx_CH1, TMRx_CH2 and TMRx_CH3.
 - The sources of C2IRAW, C3IRAW and C4IRAW are TMRx_CH2, TMRx_CH3 and TMRx_CH4 respectively.
- CxIRAW inputs digital filter and outputs filtered CxIF signal. The digital filter uses the CxDF bit to program sampling frequency and sampling times.
- CxIF goes through edge detector, and generates CxIFPx signal after edge selection. The edge selection depends on both CxP and CxCP bits. It is possible to select input rising edge, falling edge or both edges.
- CxIFPx goes through capture signal selector, and generates the CxIN signal after capture signal selection. The capture signal selection is defined by CxC bits. It is possible to select CxIFPx, CyIFPx or STCI as CxIN source. Of those, CyIFPx (x≠y) is the CyIFPy signal that is from Y channel and processed by channel-x edge detector (for example, C1IFP2 is the C1IFP1 signal that is from channel 1 and passes through channel 2 edge detector). The STCI comes from slave timer controller, and its source is selected by STIS bit.
- CxIN goes through input divider and generates the CxIPS signal. The divider factor can be defined as No division, /2, /4 or /8, by the CxIDIV bit.

2023.08.31 Page 236 Rev 2.00

Figure 15-22 Input/output channel 1 main circuit

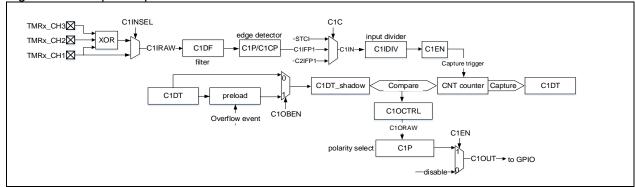
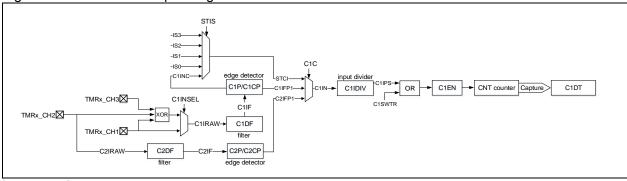



Figure 15-23 Channel 1 input stage

Input mode

In input mode, the TMRx_CxDT register latches the current counter values after the selected trigger signal is detected, and the capture compare interrupt flag bit (CxIF) is set to 1. An interrupt or a DMA request will be generated if the CxIEN and CxDEN bits are enabled. If the selected trigger signal is detected when the CxIF is set to 1, a capture overflow event is generated, and the previous counter value will be overwritten by the current counter value, with setting CxRF to 1.

To capture the rising edge of C1IN input, follow the procedure below

- Set C1C=01 in the TMRx_CM1 register to select the C1IN as channel 1 input
- Set C1IN signal filter bandwidth (CxDF[3: 0])
- Set the active edge of C1IN channel by writing C1P=0 (rising edge) in the TMRx CCTRL register
- Program C1IN signal capture frequency divider (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt or DMA request by setting the C1IEN bit in the TMRx IDEN register or the C1DEN bit in the TMRx IDEN register

Timer Input XOR function

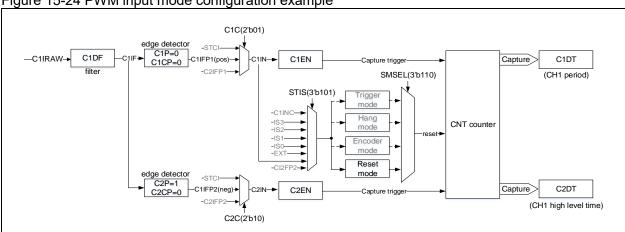
The 3 timer input pins (TMRx_CH1, TMRx_CH2 and TMRx_CH3) are connected to the channel 1 through an XOR gate. This function is selected by setting the C1INSE in the TMRx_CTRL2 register.

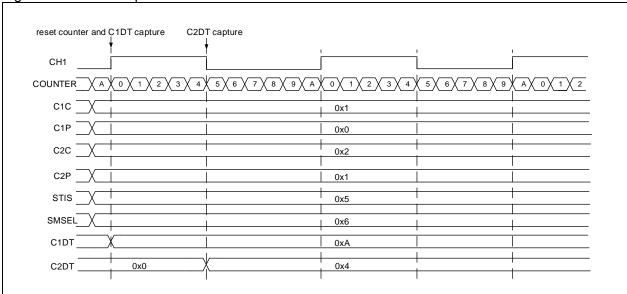
The XOR gate can be used to connect Hall sensors. For example, connect the three XORed inputs to the three Hall sensors respectively so as to calculate the position and speed of the rotation by analyzing three Hall sensor signals.

PWM input

PWM input mode is applied to channel 1 and 2. To use this mode, both C1IN and C2IN have to be mapped to the same TMRx_CHx, and the CxIFPx of either channel 1 or channel 2 must be configured as trigger input and slave timer controller is configured in reset mode.

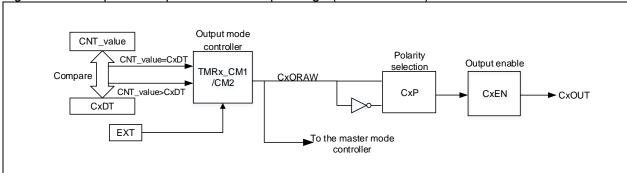
The PWM input mode can be used to measure the period and duty cycle of the PWM input signal. For example, the user can measure the period and duty cycle of the PWM applied on channel 1 using the following procedures:


- Set C1C=2'b01: select C1IN for C1IFP1
- Set C1P=1'b0, select C1IFP1 rising edge active
- Set C2C=2'b10, select C2IN for C1IFP2


- Set C2P=1'b1, select C1IFP2 falling edge active
- Set STIS=3'b101, select the slave mode timer trigger signal as C1IFP1
- Set SMSEL=3'b100: configure the slave mode controller in reset mode
- Set C1EN=1'b1 and C2EN=1'b1. Enable channel 1 and input capture

After above configuration, the rising edge of channel 1 input signal will trigger the capture and stores the capture value into C1DT register, and it will reset the counter at the same time. The falling edge of the channel 1 input signal triggers the capture and stores the capture value into C2DT register. The period of the channel 1 input signal is calculated through C1DT, and its duty cycle through C2DT.

Figure 15-24 PWM input mode configuration example



15.2.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal.

Figure 15-26 Capture/compare channel output stage (channel 1 to 4)

Output mode

Write CxC[2: 0]≠2'b00 to configure the channel as output to support multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent to IO after being processed by the output control circuit. The period of the output signal is configured by the TMRx PR register, while the duty cycle by the TMRx CxDT register.

Output compare modes include:

PWM mode A:

Enable PWM mode A by setting CxOCTRL=3'b110. In upcounting mode, C1ORAW outputs high when TMRx_C1DT>TMRx_CVAL, otherwise, it is low; in downcounting mode, C1ORAW outputs low when TMRx_C1DT<TMRx_CVAL, otherwise, it is high.

To use PWM mode A, the following procedures are recommended:

- Set PWM period through TMRx PR register
- Set PWM duty cycles through TMRx CxDT
- Select PWM mode A by setting CxOCTRL=3'b110 in the TMRx CM1/CM2 register
- Set counting frequency through TMRx DIV register
- Select counting mode by setting the TWCMSEL[1:0] bit in the TMRx CTRL1 register
- Select output polarity through the CxP and CxCP bits in the TMRx CCTRL register
- Enable channel output through the CxEN and CxCEN bits in the TMRx_CCTRL register
- Enable TMRx output through the OEN bit in the TMRx_BRK register
- Configure GPIOs corresponding to TMR output channels as multiplexed mode
- Enable TMRx to start counting through the TMREN bit in the TMRx CTRL1 register.

PWM mode B:

Enable PWM mode B by setting CxOCTRL=3'b111. In upcounting mode, C1ORAW outputs low when TMRx_C1DT>TMRx_CVAL, otherwise, it is high; in downcounting mode, C1ORAW outputs high when TMRx_C1DT<TMRx_CVAL, otherwise, it is low.

Forced output mode:

Enable forced output mode by setting CxOCTRL=3'b100/101. In this case, the CxORAW is forced to be the programmed level, regardless of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.

Output compare mode:

Enable output compare mode by setting CxOCTRL=3'b001/010/011. In this case, when the counter value matches the value of the CxDT register, the CxORAW is forced high (CxOCTRL=3'b001), low (CxOCTRL=3'b010) or toggling (CxOCTRL=3'b011).

One-pulse mode:

This is a particular case of PWM mode. Enable one-pulse by setting OCMEN=1. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When configured in upcounting mode, the configuration must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.

Fast output mode:

Enable this mode by setting CxOIEN=1. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but change at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx CxDT register will determine the level of CxORAW in advance.

Figure 15-27 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.

Figure 15-28 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 15-29 gives an example of the combination between up/down counting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 15-30 gives an example of the combination between upcounting mode and one-pulse PWM mode

B. The counter only counts only one cycle, and the output signal sends only one pulse.

Figure 15-27 C1ORAW toggles when counter value matches the C1DT value

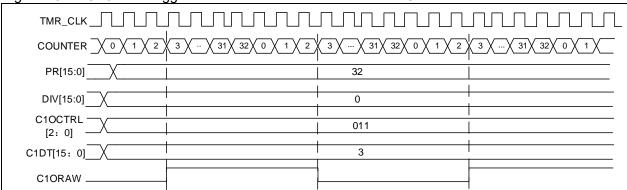
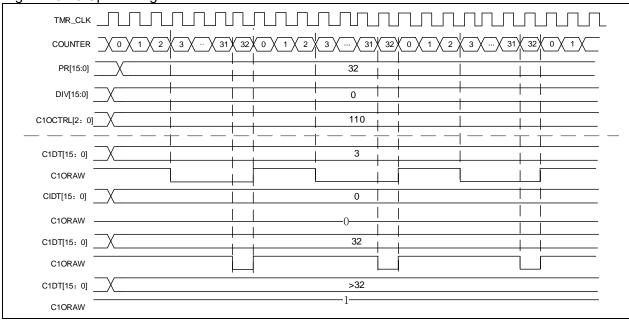



Figure 15-28 Upcounting mode and PWM mode A

2023.08.31 Page 240 Rev 2.00

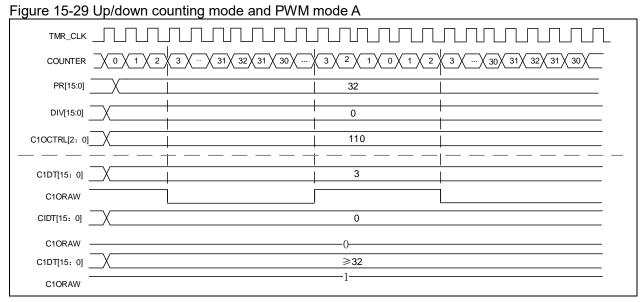
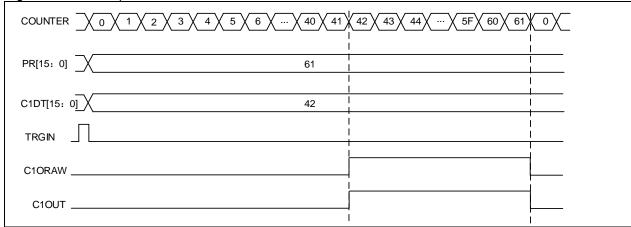
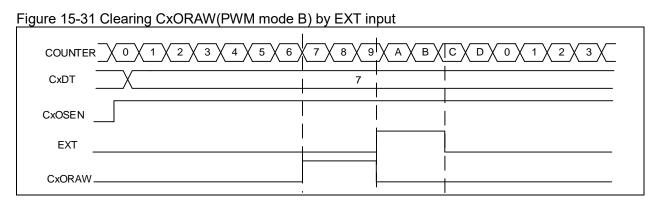



Figure 15-30 One-pulse mode

Master mode timer event output

When TMR is used as a master timer, one of the following source of signals can be selected as TRGOUT output to a slave mode timer. This is done by setting the PTOS bit in the TMRxCTRL2 register.

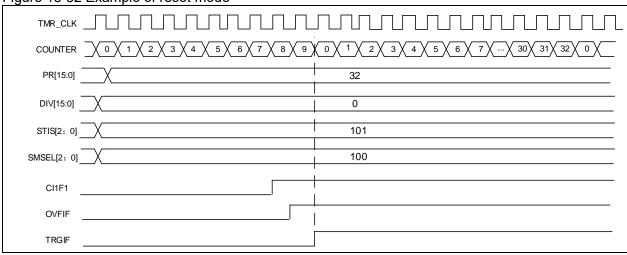

- PTOS=3'b000, TRGOUT output software overflow event (OVFSWTR bit in TMRx_SWEVT register)
- PTOS=3'b001, TRGOUT output counter enable
- PTOS=3'b010, TRGOUT output counter overflow event
- PTOS=3'b011, TRGOUT output capture and compare event
- PTOS=3'b100, TRGOUT output C1ORAW
- PTOS=3'b101, TRGOUT output C2ORAW
- PTOS=3'b110, TRGOUT output C3ORAW
- PTOS=3'b111, TRGOUT output C4ORAW

CxORAW clear

When the CxOSEN bit is set to 1, the CxORAW signal for a given channel is cleared by applying a high level to the EXT input. The CxORAW signal remains unchanged until the next overflow event.

This function can only be used in output capture or PWM modes, and does not work in forced mode. *Figure 15-31* shows the example of clearing CxORAW signal. When the EXT input is high, the CxORAW signal, which was originally high, is driven low; when the EXT is low, the CxORAW signal outputs the corresponding level according to the comparison result between the counter value and CxDT value.

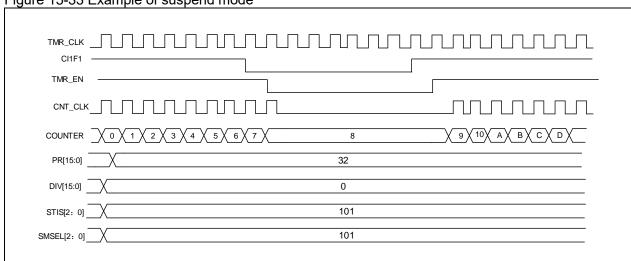
15.2.3.5 TMR synchronization


The timers are linked together internally for timer synchronization. Master timer is selected by setting the PTOS[2: 0] bit; Slave timer is selected by setting the SMSEL[2: 0] bit.

Slave modes include:

Slave mode: Reset mode

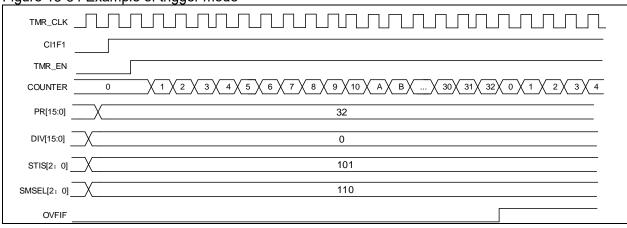
The counter and its prescaler can be reset by a selected trigger signal. An overflow event is generated when OVFS=0.



Slave mode: Suspend mode

In this mode, the counter is controlled by a selected trigger input. The counter starts counting when the trigger input is high and stops as soon as the trigger input is low.

Figure 15-33 Example of suspend mode



Slave mode: Trigger mode

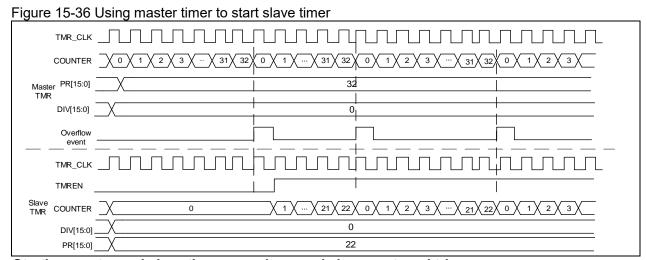
The counter can start counting on the rising edge of a selected trigger input (TMR_EN=1)

Figure 15-34 Example of trigger mode

Master/slave timer interconnection

Both Master and slave timer can be configured in different master and slave mode scenarios respectively. The combination of both them can be used for various purposes. *Figure 15-35* provides an example of interconnection between master timer and slave timer.

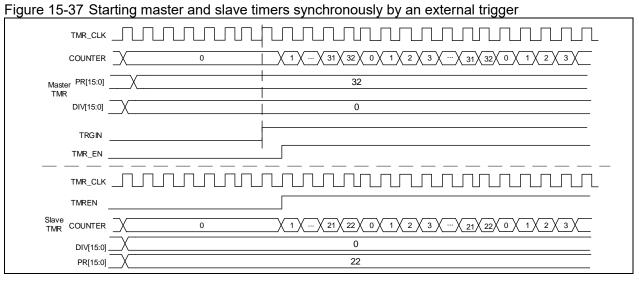
Figure 15-35 Master/slave timer connection



Using master timer to clock the slave timer:

- Configure master timer output signal TRGOUT as an overflow event (PTOS[2: 0]=3'b010). The
 master timer outputs a pulse signal at each counter overflow event, which is used as the
 counting clock of the slave timer.
- Configure the master timer counting period (TMRx PR register)
- Configure the slave timer trigger input signal TRGIN as master timer output (STIS[2: 0] in the TMRx_STCTRL register)
- Configure the slave timer to use external clock mode A (SMSEL[2: 0]=3'b111 in the TMRx STCTRL register)
- Set TMREN =1 in both master timer and slave timer to enable them

Using master timer to start slave timer:


- Configure master timer output signal TRGOUT as an overflow event (PTOS[2: 0]=3'b010). The
 master timer outputs a pulse signal at each counter overflow event, which is used as the
 counting clock of the slave timer.
- Configure master timer counting period (TMRx_PR registers)
- Configure slave timer trigger input signal TRGIN as master timer input
- Configure slave timer as trigger mode (SMSEL=3'b110 in the TMR2 STCTRL register)
- Set TMREN=1 to enable master timer.

Starting master and slave timers synchronously by an external trigger:

In this example, configure the master timer as master and slave mode synchronously and enable its slave timer synchronization function. This mode is used for synchronization between master timer and slave timer.

- Set the STS bit of the master timer.
- Configure master timer output signal TRGOUT as an overflow event (PTOS[2: 0]=3'b010). The
 master timer outputs a pulse signal at each counter overflow event, which is used as the
 counting clock of the slave timer.
- Configure the slave timer mode of the master timer as trigger mode, and select C1IN as trigger source
- Configure slave timer trigger input signal TRGIN as master timer output
- Configure slave timer as trigger mode (SMSEL=3'b110 in the TMR2_STCTRL register)

15.2.3.6 Debug mode

When the microcontroller enters debug mode (Cortex[™]-M4F core halted), the TMRx counter stops counting by setting the TMRx_PAUSE in the DEBUG module.

15.2.4 TMR2 to TMR4 registers

These peripheral registers have to be accessed by half words (16 bits) or words (32 bits).

TMR2 and TMR4 registers are mapped into a 16-bit addressable space.

Table 15-5 TMR2 to TMR4 register map and reset value

Register	Offset	Reset value
TMRx_CTRL1	0x00	0x0000
TMRx_CTRL2	0x04	0x0000
TMRx_STCTRL	0x08	0x0000
TMRx_IDEN	0x0C	0x0000
TMRx_ISTS	0x10	0x0000
TMRx_SWEVT	0x14	0x0000
TMRx_CM1	0x18	0x0000
TMRx_CM2	0x1C	0x0000
TMRx_CCTRL	0x20	0x0000
TMRx_CVAL	0x24	0x0000
TMRx_DIV	0x28	0x0000
TMRx_PR	0x2C	0x0000
TMRx_C1DT	0x34	0x0000
TMRx_C2DT	0x38	0x0000
TMRx_C3DT	0x3C	0x0000
TMRx_C4DT	0x40	0x0000
TMRx_DMACTRL	0x48	0x0000
TMRx_DMADT	0x4C	0x0000
TMR2_RMP	0x50	0x0000

15.2.4.1 Control register 1 (TMRx_CTRL1)

	•	` –		,
Bit	Abbr.	Reset value	Type	Description
Bit 15: 11	Reserved	0x0	resd	Kept at default value.
				Plus Mode Enable
				This bit is used to enable TMR2 plus mode. In this mode,
				TMR2_CVAL, TMR2_PR and TMR2_CxDT are extended
				from 16-bit to 32-bit.
Bit 10	PMEN	0x0	rw	0: Disabled
Dit 10	I IVILIN	OXO	I VV	1: Enabled
				Note: This function is only valid for TMR2. It is not
				applicable to other TMRs. In plus mode or when disabled,
				only 16-bit value can be written to TMR2_CVAL,
				TMR2_PR and TMR2_CxDT registers.
				Clock division
				This bit is used to select the division ratio between f _{DTS}
				(digital filter sampling frequency) and the (f _{CK_INT)} timer
Bit 9: 8	CLKDIV	0x0	rw	clock frequency
DIL 9. 0	CERDIV	0.00	I VV	00: No division, f _{DTS} =f _{CK_INT}
				01: Divided by 2, f _{DTS} =f _{CK_INT} /2
				10: Divided by 4, f _{DTS} =f _{CK INT} /4
				11: Reserved
-				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled
				1: Period buffer is enabled
				Two-way counting mode selection
				00: One-way counting mode, depending on the OWCDIR
Bit 6: 5	TWCMSEL	0x0	rw	bit
				01: Two-way counting mode1. The counter counts up and
				down alternately, the CxIF bit is set only when the counter

-				is counting down
				10: Two-way counting mode 2. The counter counts up and down alternately, the CxIF bit is set only when the counter is counting up
				11: Two-way counting mode 3. The counter counts up
				and down alternately, the CxIF bit is set when the counter counting up or down
				One-way count direction
Bit 4	OWCDIR	0x0	rw	0: Up
				1: Down
				One cycle mode enable
		0x0		This bit is use to select whether to stop counting at an
Bit 3	OCMEN		rw	overflow event
				0: The counter does not stop at an overflow event
				1: The counter stops at an overflow event
		0x0		Overflow event source
				This bit is used to select overflow event or DMA request
Bit 2	OVFS		rw	sources.
DIL Z	OVFS			0: Counter overflow, setting the OVFSWTR bit or overflow
				event generated by slave timer controller
				1: Only counter overflow generates an overflow event
				Overflow event enable
Bit 1	OVFEN	0x0	rw	0: Enabled
				1: Disabled
				TMR enable
Bit 0	TMREN	0x0	rw	0: Disabled
				1: Enabled

15.2.4.2 Control register 2 (TMRx_CTRL2)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at its default value.
				C1IN selection
Bit 7	C1INSEL	0x0	ma.	0: CH1 pin is connected to C1IRAW input
DIL I	CHINSEL	UXU	rw	1: The XOR result of CH1, CH2 and CH3 pins is
				connected to C1IRAW input
				Master TMR output selection
				This field is used to select the TMRx signal sent to the
				slave timer.
		0x0		000: Reset
				001: Enable
Bit 6: 4	PTOS		rw	010: Update
				011: Compare pulse
				100: C1ORAW signal
				101: C2ORAW signal
				110: C3ORAW signal
				111: C4ORAW signal
				DMA request source
Bit 3	DRS	0x0	rw	0: Capture/compare event
				1: Overflow event
Bit 2: 0	Reserved	0x0	resd	Kept at its default value.

15.2.4.3 Slave timer control register (TMRx_STCTRL)

Bit	Abbr.	Reset value	Type	Description
				External signal polarity
Bit 15	ESP	0x0	rw	0: High or rising edge
				1: Low or falling edge
				External clock mode B enable
Bit 14	ECMBEN	0x0	mar	This bit is used to enable external clock mode B
DIL 14			rw	0: Disabled
				1: Enabled
				External signal divider
Bit 13: 12	ESDIV	0x0	rw	This field is used to select the frequency division factor of
				an external trigger

2023.08.31 Page 246 Rev 2.00

00: Normal 01: Divided by 2 10: Divided by 4	
10. Divided by 4	
· · · · · · · · · · · · · · · · · · ·	
11: Divided by 8	
External signal filter	
This field is used to filter an external signal. The	
signal can be sampled only after it has been ge	nerated N
times	
0000: No filter, sampling by f_{DTS}	
0001: $f_{SAMPLING} = f_{CK_INT}$, N=2	
0010: $f_{SAMPLING} = f_{CK_INT}$, N=4	
0011: $f_{SAMPLING} = f_{CK_INT}$, N=8	
0100: $f_{SAMPLING} = f_{DTS}/2$, N=6	
Bit 11: 8 ESF 0x0 rw $\frac{0101: f_{SAMPLING} = f_{DTS}/2, N=8}{}$	
0110: $f_{SAMPLING} = f_{DTS}/4$, N=6	
0111: $f_{SAMPLING} = f_{DTS}/4$, N=8	
1000: f _{SAMPLING} =f _{DTS} /8, N=6	
1001: f _{SAMPLING} =f _{DTS} /8, N=8	
1010: f _{SAMPLING} =f _{DTS} /16, N=5	
1011: f _{SAMPLING} =f _{DTS} /16, N=6	
1100: f _{SAMPLING} =f _{DTS} /16, N=8	
1101: f _{SAMPLING} =f _{DTS} /32, N=5	
1110: f _{SAMPLING} =f _{DTS} /32, N=6	
1111: f _{SAMPLING} =f _{DTS} /32, N=8	
Subordinate TMR synchronization	
Bit 7 STS 0x0 rw 0 Right Holder, master and slave timer can be sync	nronized.
Bit 7 STS 0x0 rw 0: Disabled	
1: Enabled	
Subordinate TMR input selection	
This field is used to select the input of subording	ate TMR.
000: Internal selection 0 (IS0)	
001: Internal selection 1 (IS1)	
010: Internal selection 2 (IS2)	
Bit 6: 4 STIS 0x0 rw 011: Internal selection 3 (IS3)	
100: C1IRAW input detector (C1INC)	
101: Filtered input 1 (C1IF1)	
110: Filtered input 2 (C1IF2)	
111: External input (EXT)	
Please refer to Table 14-3 for more information	on ISx for
each timer.	
Bit 3 Reserved 0x0 resd Kept at default value	
Subordinate TMR mode selection	
000: Slave mode is disabled	
001: Encoder mode A	
010: Encoder mode B	
011: Encoder mode C	
100: Reset mode —Rising edge of the TRGIN	input
reinitializes the counter	
Bit 2: 0 SMSEL 0x0 rw 101: Suspend mode — The counter starts cour	iting when
the TRGIN is high	
110: Trigger mode — A trigger event is generat	ed at the
rising edge of the TRGIN input	
111: External clock mode A — Rising edge of	ne IRGIN
input clocks the counter	
Note: Please refer to count mode section for th	e details
on encoder mode A/B/C.	

15.2.4.4 DMA/interrupt enable register (TMRx_IDEN)

Bit	Abbr.	Reset value	Type	Description	
Bit 15	Reserved	0x0	resd	Kept at default value	
Bit 14	TDEN	0x0	rw	Trigger DMA request enable 0: Disabled 1: Enabled	

2023.08.31 Page 247 Rev 2.00

D:: 40		0.0		12 1 1 1 1 1 1	
Bit 13	Reserved	0x0	resd	Kept at default value	
	0.55			Channel 4 DMA request enable	
Bit 12	C4DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 3 DMA request enable	
Bit 11	C3DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 2 DMA request enable	
Bit 10	C2DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 DMA request enable	
Bit 9	C1DEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Overflow event DMA request enable	
Bit 8	OVFDEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 7	Reserved	0x0	resd	Kept at default value	
				Trigger interrupt enable	
Bit 6	TIEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 5	Reserved	0x0	resd	Kept at default value	
				Channel 4 interrupt enable	
Bit 4	C4IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 3 interrupt enable	
Bit 3	C3IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 2 interrupt enable	
Bit 2	C2IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 interrupt enable	
Bit 1	C1IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

15.2.4.5 Interrupt status register (TMRx_ISTS)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 13	Reserved	0x0	resd	Kept at default value
Bit 12	CADE	0x0	rw0c	Channel 4 recapture flag
DIL 12	C4RF	UXU	TWUC	Please refer to C1RF description.
Bit 11	C3RF	0x0	rw0c	Channel 3 recapture flag
	OSIKI	0.00	TWOC	Please refer to C1RF description.
Bit 10	C2RF	0x0	rw0c	Channel 2 recapture flag
DIL 10	CZKF	UXU	TWOC	Please refer to C1RF description.
				Channel 1 recapture flag
	C1RF	0x0		This bit indicates whether a recapture is detected when
Bit 9			rw0c	C1IF=1. This bit is set by hardware, and cleared by
ыга			TWOC	writing "0".
				0: No capture is detected
				1: Capture is detected.
Bit 8: 7	Reserved	0x0	resd	Kept at default value
				Trigger interrupt flag
				This bit is set by hardware on a trigger event. It is
				cleared by writing "0".
Bit 6	TRGIF	0x0	rw0c	0: No trigger event occurred
				1: Trigger event is generated.
				Trigger event: an active edge is detected on TRGIN
				input, or any edge in suspend mode.
Bit 5	Reserved	0x0	resd	Kept at default value
Bit 4	C4IF	0x0	rw0c	Channel 4 interrupt flag

2023.08.31 Page 248 Rev 2.00

				Please refer to C1IF description.
Bit 3	C3IF	0x0	rw0c	Channel 3 interrupt flag
<u></u>	0011	0,0	1000	Please refer to C1IF description.
Bit 2 C2IF	C2IF	0x0	rw0c	Channel 2 interrupt flag
Dit Z	OZII	0.00	1000	Please refer to C1IF description.
				Channel 1 interrupt flag
				If the channel 1 is configured as input mode:
				This bit is set by hardware on a capture event. It is
				cleared by software or read access to the TMRx_C1DT
				0: No capture event occurred
Bit 1	C1IF	0x0	rw0c	1: Capture event is generated
				If the channel 1 is configured as output mode:
				This bit is set by hardware on a compare event. It is
				cleared by software.
				0: No compare event occurred
				1: Compare event is generated
				Overflow interrupt flag
				This bit is set by hardware on an overflow event. It is
				cleared by software.
				0: No overflow event occurred
Bit 0	OVFIF	0x0	rw0c	1: Overflow event is generated. If OVFEN=0 and
DIL U	OVEIE	UXU	TWOC	OVFS=0 in the TMRx_CTRL1 register:
				 An overflow event is generated when OVFG= 1 in the
				TMRx_SWEVE register;
				 An overflow event is generated when the counter
				CVAL is reinitialized by a trigger event.

15.2.4.6 Software event register (TMRx_SWEVT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 7	Reserved	0x000	resd	Kept at default value.
				Trigger event triggered by software
Bit 6	TRGSWTR	0x0	F1.47	This bit is set by software to generate a trigger event.
DIL 0	INGOWIN	UXU	rw	0: No effect
				1: Generate a trigger event.
Bit 5	Reserved	0x0	resd	Kept at default value.
Bit 4	C4SWTR	0.40		Channel 4 event triggered by software
	C45W1R	0x0	wo	Please refer to C1M description.
D:+ 2	C3SWTR	0x0	wo	Channel 3 event triggered by software
Bit 3	CSSWIK	UXU	WO	Please refer to C1M description.
Bit 2	C2SWTR	0x0	wo	Channel 2 event triggered by software
DIL Z	C25W1R	UXU	wo	Please refer to C1M description
				Channel 1 event triggered by software
Bit 1	C1SWTR	0x0	wo	This bit is set by software to generate a channel 1 event.
DIL I	CISWIK		WO	0: No effect
				1: Generate a channel 1 event.
				Overflow event triggered by software
Bit 0	OVFSWTR	0x0	wo	This bit is set by software to generate an overflow event.
טונט	OVIOVIN	0.00	VVO	0: No effect
				1: Generate an overflow event.

15.2.4.7 Channel mode register1 (TMRx_CM1)

Output compare mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15	C2OSEN	0x0	rw	Channel 2 output switch enable
Bit 14: 12	C2OCTRL	0x0	rw	Channel 2 output control
Bit 11	C2OBEN	0x0	rw	Channel 2 output buffer enable
Bit 10	C20IEN	0x0	rw	Channel 2 output enable immediately
Bit 9: 8	C2C	0x0	rw	Channel 2 configuration This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0': 00: Output

				01: Input, C2IN is mapped on C2IFP2 10: Input, C2IN is mapped on C1IFP2 11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS register.
Bit 7	C1OSEN	0x0	rw	Channel 1 output switch enable 0: C1ORAW is not affected by EXT 1: Once high level is detect on EXT input, clear C1ORAW.
Bit 6: 4	C1OCTRL	0x0	rw	Channel 1 output control This field defines the behavior of the original signal C1ORAW. 000: Disconnected. C1ORAW is disconnected from C1OUT; 001: C1ORAW is high when TMRx_CVAL=TMRx_C1DT 010: C1ORAW is low when TMRx_CVAL=TMRx_C1DT 011: Switch C1ORAW level when TMRx_CVAL=TMRx_C1DT 100: C1ORAW is forced low 101: C1ORAW is forced high. 110: PWM mode A -OWCDIR=0, C1ORAW is high once TMRx_C1DT>TMRx_CVAL, else low; -OWCDIR=1, C1ORAW is low once TMRx_C1DT <tmrx_cval, -owcdir="0," 111:="" b="" c1oraw="" else="" high;="" is="" low="" mode="" once="" pwm="" tmrx_c1dt="">TMRx_CVAL, else high; -OWCDIR=1, C1ORAW is high once TMRx_C1DT >TMRx_CVAL, else high; -OWCDIR=1, C1ORAW is high once TMRx_C1DT <tmrx_cval, 000',="" also="" but="" by="" c1oraw,="" c1oraw.="" c1out="" cctrl.<="" changes="" configurations="" connected="" else="" in="" is="" level="" low.="" not="" note:="" of="" only="" other="" output="" polarity="" set="" subject="" td="" than="" the="" to=""></tmrx_cval,></tmrx_cval,>
Bit 3	C1OBEN	0x0	rw	Channel 1 output buffer enable 0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately. 1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
Bit 2	C10IEN	0x0	rw	Channel 1 output enable immediately In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event. 0: Need to compare the CVAL with C1DT before generating an output 1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
Bit 1: 0	C1C	0x0	rw	Channel 1 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IFP1 10: Input, C1IN is mapped on C2IFP1 11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

Input capture mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	C2DF	0x0	rw	Channel 2 digital filter
Bit 11: 10	C2IDIV	0x0	rw	Channel 2 input divider
Bit 9: 8	C2C	0x0	rw	Channel 2 configuration

				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0': 00: Output 01: Input, C2IN is mapped on C2IFP2 10: Input, C2IN is mapped on C1IFP2 11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
Bit 7: 4	C1DF	0x0	rw	Channel 1 digital filter This field defines the digital filter of the channel 1. N stands for the number of filtering, indicating that the input edge can pass the filter only after N sampling events. 0000: No filter, sampling is done at f_{DTS} 1000: $f_{SAMPLING} = f_{DTS}/8$, N=6 0001: $f_{SAMPLING} = f_{CK_INT}$, N=2 1001: $f_{SAMPLING} = f_{CK_INT}$, N=4 1010: $f_{SAMPLING} = f_{CK_INT}$, N=4 1010: $f_{SAMPLING} = f_{CK_INT}$, N=8 1011: $f_{SAMPLING} = f_{DTS}/16$, N=6 0100: $f_{SAMPLING} = f_{DTS}/16$, N=6 1100: $f_{SAMPLING} = f_{DTS}/16$, N=8 1101: $f_{SAMPLING} = f_{DTS}/16$, N=8 1101: $f_{SAMPLING} = f_{DTS}/16$, N=6 1110: $f_{SAMPLING} = f_{DTS}/16$, N=6 1110: $f_{SAMPLING} = f_{DTS}/16$, N=6 1110: $f_{SAMPLING} = f_{DTS}/16$, N=6 1111: $f_{SAMPLING} = f_{DTS}/16$, N=8 1111: $f_{SAMPLING} = f_{DTS}/16$, N=8 1111: $f_{SAMPLING} = f_{DTS}/16$, N=8
Bit 3: 2	C1IDIV	0x0	rw	Channel 1 input divider This field defines Channel 1 input divider. 00: No divider. An input capture is generated at each active edge. 01: An input compare is generated every 2 active edges 10: An input compare is generated every 4 active edges 11: An input compare is generated every 8 active edges Note: the divider is reset once C1EN='0'
Bit 1: 0	C1C	0x0	rw	Channel 1 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IFP1 10: Input, C1IN is mapped on C2IFP1 11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

15.2.4.8 Channel mode register2 (TMRx_CM2)

Output compare mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15	C4OSEN	0x0	rw	Channel 4 output switch enable
Bit 14: 12	C4OCTRL	0x0	rw	Channel 4 output control
Bit 11	C4OBEN	0x0	rw	Channel 4 output buffer enable
Bit 10	C40IEN	0x0	rw	Channel 4 output enable immediately
Bit 9: 8	C4C	0x0	rw	Channel 4 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C4EN='0': 00: Output 01: Input, C4IN is mapped on C4IFP4 10: Input, C4IN is mapped on C3IFP4 11: Input, C4IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
Bit 7	C3OSEN	0x0	rw	Channel 3 output switch enable

Bit 6: 4	C3OCTRL	0x0	rw	Channel 3 output control
Bit 3	C3OBEN	0x0	rw	Channel 3 output buffer enable
Bit 2	C3OIEN	0x0	rw	Channel 3 output enable immediately
Bit 1: 0	C3C	0x0	rw	Channel 3 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C3EN='0': 00: Output 01: Input, C3IN is mapped on C3IFP3 10: Input, C3IN is mapped on C4IFP3 11: Input, C3IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

Input capture mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	C4DF	0x0	rw	Channel 4 digital filter
Bit 11: 10	C4IDIV	0x0	rw	Channel 4 input divider
Bit 9: 8	C4C	0x0	rw	Channel 4 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C4EN='0': 00: Output 01: Input, C4IN is mapped on C4IFP4 10: Input, C4IN is mapped on C3IFP4 11: Input, C4IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
Bit 7: 4	C3DF	0x0	rw	Channel 3 digital filter
Bit 3: 2	C3IDIV	0x0	rw	Channel 3 input divider
Bit 1:0	C3C	0x0	rw	Channel 3 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C3EN='0': 00: Output 01: Input, C3IN is mapped on C3IFP3 10: Input, C3IN is mapped on C4IFP3 11: Input, C3IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

15.2.4.9 Channel control register (TMRx_CCTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 14	Reserved	0x0	resd	Kept at default value.
Bit 13	C4P	0x0	rw	Channel 4 polarity
DIL 13	C4P			Please refer to C1P description.
Bit 12	C4EN	0x0	rw	Channel 4 enable
DIL 12	O4LIN			Please refer to C1EN description.
			rw	Channel 3 complementary polarity
Bit 11	C3CP	0x0		This bit defines the valid edge of input signals. Refer to
				C1P bit for details.
Bit 10	Reserved	0x0	resd	Kept at default value.
Bit 9	C3P	0x0	rw	Channel 3 polarity
Dit 9				Please refer to C1P description.
Bit 8	C3EN	0x0	rw	Channel 3 enable
Dit 0				Please refer to C1EN description.
	C2CP	0x0	rw	Channel 2 complementary polarity
Bit 7				This bit defines the valid edge of input signals. Refer to
				C1P bit for details.
Bit 6	Reserved	0x0	resd	Kept at default value.
Bit 5	C2P	0x0	rw	Channel 2 polarity
DII O				Please refer to C1P description.
Bit 4	C2EN	0x0	rw	Channel 2 enable
				Please refer to C1EN description.
Bit 3	C1CP	0x0	rw	Channel 1 complementary polarity
-				

				This bit defines the valid edge of input signals. Refer to
				C1P bit for details.
Bit 2	Reserved	0x0	resd	Kept at default value.
				Channel 1 polarity
				When the channel 1 is configured as output mode:
				0: C1OUT is active high
				1: C1OUT is active low
				When the channel 1 is configured as input mode:
				C1CP/C1P are used to define the valid edge of input
Bit 1	C1P	0x0	F147	signals.
DIL I	CIF	UXU	rw	00: C1IN active edge is on its rising edge. When used as
				external trigger, C1IN is not inverted.
				01: C1IN active edge is on its falling edge. When used
				as external trigger, C1IN is inverted.
				10: Reserved
				11: C1IN rising and falling edges active. When used as
				external trigger, C1IN is not inverted.
				Channel 1 enable
Bit 0	C1EN	0x0	rw	0: Input or output is disabled
				1: Input or output is enabled

Table 15-6 Standard CxOUT channel output control bit

CxEN bit	CxOUT output state
0	Output disabled (CxOUT=0, Cx_EN=0)
1	CxOUT = CxORAW + polarity, Cx_EN=1

Note: The state of the external I/O pins connected to the standard CxOUT channel depends on the CxOUT channel state and the GPIO and IOMUX registers.

15.2.4.10 Counter value (TMRx_CVAL)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	CVAL	0x0000	rw	Counter value When TMR2 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the CVAL is extended to 32 bits.
Bit 15: 0	CVAL	0x0000	rw	Counter value

15.2.4.11 Frequency division value (TMRx_DIV)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DIV	0x0000	rw	Divider value The counter clock frequency f _{CK_CNT} = f _{TMR_CLK} /(DIV[15: 0]+1). DIV contains the value written at an overflow event.

15.2.4.12 Period register (TMRx_PR)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	PR	0x0000	rw	Period value When TMR2 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the PR is extended to 32 bits.
Bit 15: 0	PR	0x0000	rw	Period value This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

15.2.4.13 Channel 1 data register (TMRx_C1DT)

Bit	Abbr.	Reset value	Type	Description
				Channel 1 data register
Bit 31: 16	C1DT	0x0000	rw	When TMR2 enables plus mode (the PMEN bit in the
				TMR_CTRL1 register), the C1DT is extended to 32 bits.
Bit 15: 0	C1DT	0x0000	rw	Channel 1 data register
		0x0000		When the channel 1 is configured as input mode:

The C1DT is the CVAL value stored by the last channel 1 input event (C1IN)
When the channel 1 is configured as output mode:
C1DT is the value to be compared with the CVAL value.
Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

15.2.4.14 Channel 2 data register (TMRx_C2DT)

Bit	Abbr.	Reset value	Type	Description
				Channel 2 data register
Bit 31: 16	C2DT	0x0000	rw	When TMR2 enables plus mode (the PMEN bit in the
				TMR_CTRL1 register), the C2DT is expanded to 32 bits.
				Channel 2 data register
				When the channel 2 is configured as input mode:
				The C2DT is the CVAL value stored by the last channel
				2 input event (C1IN)
Bit 15: 0	C2DT	0x0000	rw	When the channel 2 is configured as output mode:
				C2DT is the value to be compared with the CVAL value.
				Whether the written value takes effective immediately
				depends on the C2OBEN bit, and the corresponding
				output is generated on C2OUT as configured.

15.2.4.15 Channel 3 data register (TMRx_C3DT)

Bit	Abbr.	Reset value	Type	Description
				Channel 3 data register
Bit 31: 16	C3DT	0x0000	rw	When TMR2 enables plus mode (the PMEN bit in the
				TMR_CTRL1 register), the C3DT is expanded to 32 bits.
				Channel 3 data register
				When the channel 3 is configured as input mode:
				The C3DT is the CVAL value stored by the last channel
				3 input event (C1IN)
Bit 15: 0	C3DT	0x0000	rw	When the channel 3 is configured as output mode:
				C3DT is the value to be compared with the CVAL value.
				Whether the written value takes effective immediately
				depends on the C3OBEN bit, and the corresponding
				output is generated on C3OUT as configured.

15.2.4.16 Channel 4 data register (TMRx_C4DT)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	C4DT	0x0000	rw	Channel 4 data register When TMR2 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the C4DT is expanded to 32 bits.
Bit 15: 0	C4DT	0x0000	rw	Channel 4 data register When the channel 4 is configured as input mode: The C4DT is the CVAL value stored by the last channel 4 input event (C1IN) When the channel 4 is configured as output mode: C4DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C4OBEN bit, and the corresponding output is generated on C4OUT as configured.

15.2.4.17 DMA control register (TMRx_DMACTRL)

Bit	Abbr.	Reset value	Type	Description	
Bit 15: 13	Reserved	0x0	resd	Kept at default value	e.
Bit 12: 8	DTB	0x00	rw	DMA transfer bytes This field defines the 00000: 1 byte 00010: 3 bytes 10000: 17 bytes	e number of DMA transfers: 00001: 2 bytes 00011: 4 bytes 10001: 18 bytes

Bit 7: 5	Reserved	0x0	resd	Kept at default value.
Bit 4: 0	ADDR	0x00	rw	DMA transfer address offset ADDR is defined as an offset starting from the address of the TMRx_CTRL1 register. 00000: TMRx_CTRL1 00001: TMRx_CTRL2 00010: TMRx_STCTRL

15.2.4.18 DMA data register (TMRx_DMADT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DMADT	0x0000	rw	DMA data register A read or write operation to the DMADT register accesses the TMR registers at the following address: TMRx peripheral address + ADDR*4 to TMRx peripheral address + ADDR*4 + DTB*4.

15.2.4.19 TMR2 channel input remap register (TMR2_RMP)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Kept at default value
Bit 11: 10	TMR2_IS3_IRMP	0x0	rw	TMR2 IS3 input remap x0: OTG_FS_SOF x1: OTG_HS_SOF
Bit 9: 0	Reserved	0x000	resd	Kept at default value

15.3 General-purpose timer (TMR9)

15.3.1 TMR9 introduction

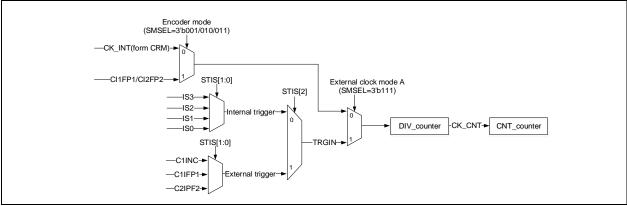
The general-purpose timer (TMR9) consists of a 16-bit counter supporting upcounting mode. It has two capture/compare registers, and two independent channels for dead-time insertion, input capture and programmable PWM output.

15.3.2 TMR9 main features

- Counter clock source: internal clock, external input and internal trigger inputs
- 16-bit up counter, 8-bit repetition counter
- 2x independent channels for input capture, output compare, PWM generation, one-pulse mode and dead-timer insertion
- 2x independent channel for complementary channels
- TMR break feature
- Synchronization circuit to interconnect several timers together
- Interrupt/DMA generation on at overflow, trigger event, break input and channel events

2023.08.31 Page 255 Rev 2.00

Figure 15-38 Block diagram of general-purpose TMR9 Clock failure event htrol CSS(Clock Security System) Polarity BRK filter TMRx BRK CNT counter Compare TMRx_CH2 CH2 filter OUT MODE IN MODE Output2 control ► TMRx CH2 C2DT C2C=0 → C2DT ·C2COUT-➤ 🗖 TMRx_CH2C OUT MODE TMRx_CH1 C1COUT→ TMRX_CH1

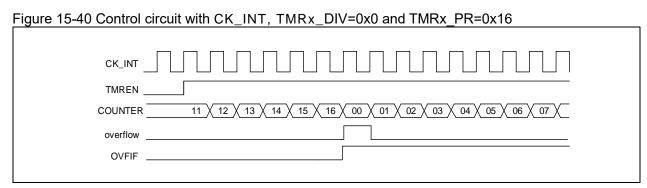

control C1COUT→ TMRX_CH1C C1IN DIV C1DT C1C=0 C1DT -SMSEL CH1 comr CH1 filter TMRx_CH1 🔯 -STIS —TRGOUT→
To other timers
To ADC -TMREN Trigger mode TMRx_DIV Hang mode PTOS CNT counter DIV counte TMRx RPR RPR counter

15.3.3 TMR9 functional overview

15.3.3.1 Counting clock

The counter clock of TMR9 can be provided by the internal clock (CK_INT), external clock (external clock mode A) and internal trigger input (ISx)

Figure 15-39 Counting clock


Internal clock (CK INT)

By default, the CK_INT, which is divided by a prescaler, is used to drive the counter to count. When TMR's APB clock prescaler factor is 1, the CK_INT frequency is equal to APB, otherwise, it doubles the APB clock frequency.

Follow the procedures below:

- Select counting mode by setting the TWCMSEL[1:0] in TMRx_CTRL1 register. If a unidirectional aligned counting mode is selected, there is a need to select counting direction through the OWCDIR in TMRx_CTRL1 register.
- Set counting frequency through TMRx_DIV register
- Set counting cycles through TMRx_PR register
- Enable the counter by setting the TMREN bit in the TMRx_CTRL1 register

External clock (TRGIN/EXT)

The counter clock can be provided by the external clock source TRGIN.

SMSEL=3'b111: External clock mode A is selected. Select an external clock source TRGIN signal by setting the STIS[2: 0] bit to drive the counter to start counting.

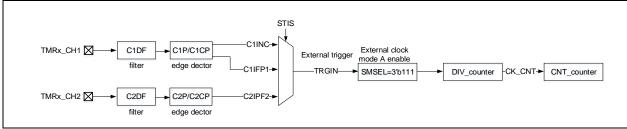
The external clock sources include:

C1INC (STIS=3'b100, channel 1 rising edge and falling edge)

C1IFP1 (STIS=3'b101, the channel 1 signal with filtering and polarity selection)

C2IFP2 (STIS=3'b110, a channel 2 signal with filtering and polarity selection).

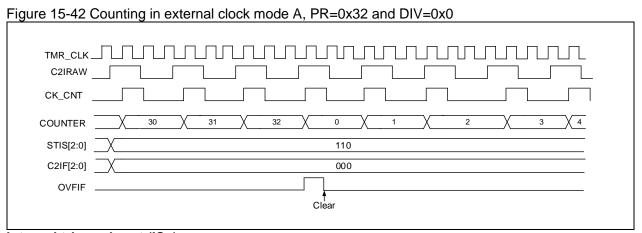
To use external clock mode A, follow the steps below:


Set external source TRGIN parameters

If the TMRx_CH1 is used as a source of TRGIN, it is necessary to configure channel 1 input filter (C1DF[3:0] in TMRx_CM1 register) and channel 1 input polarity (C1P/C1CP in TMRx_CCTRL register);

If the TMRx_CH2 is used as source of TRGIN, it is necessary to configure channel 1 input filter (C2DF[3:0] in TMRx_CM1 register) and channel 2 input polarity (C2P/C2CP in TMRx_CCTR register);

- Set TRGIN signal source using the STIS[1:0] bit in TMRx_STCTRL register
- Enable external clock mode A by setting SMSEL=3'b111 in TMRx_STCTR register
- Set counting frequency through the DIV[15:0] in TMRx_DIV register
- Set counting period through the PR[15:0] in TMRx_PR register
- Enable counter through the TMREN bit in TMRx_CTRL1 register

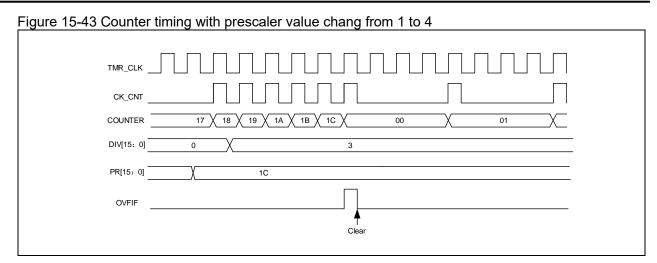

Figure 15-41 Block diagram of external clock mode A

Note: The delay between the signal on the input side and the actual clock of the counter is due to the synchronization circuit.

2023.08.31 Page 257 Rev 2.00

Internal trigger input (ISx)

Timer synchronization allows interconnection between several timers. The TMR_CLK of one timer can be provided by the TRGOUT signal from another timer. The internal trigger signal is selected by setting the STIS[2: 0] bit to enable counting.


TMR9 consists of a 16-bit prescaler, which is used to generate the CK_CNT that enables the counter to count. The frequency division relationship between the CK_CNT and TMR_CLK can be adjusted by setting the value of the TMRx_DIV register. The prescaler value can be modified at any time, but the new prescaler value is taken into account when the next overflow event occurs.

Below is the configuration procedure for internal trigger input:

- Set counting cycles through TMRx_PR register
- Set counting frequency through TMRx_DIV register
- Set counting modes through the TWCMSEL[1:0] in TMRx_CTRL1 register
- Select internal trigger by setting STIS[2:0]= 3'b000~3'b011 in TMRx_STCTRL register
- Select external clock mode A by setting SMSEL[2:0]=3'b111 in TMRx_STCTRL register
- Enable TMRx to start counting through the TMREN in TMRx_CTRL1 register

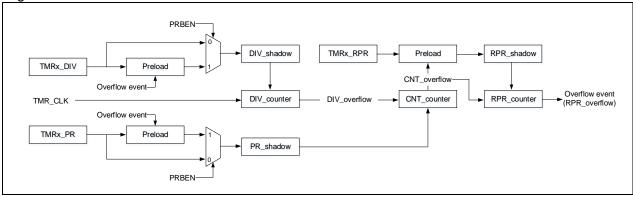
Table 15-7 TMRx internal trigger connection

Slave controller	IS0	IS1	IS2	IS3
	(STIS = 000)	(STIS = 001)	(STIS = 010)	(STIS = 011)
TMR9	TMR2	TMR3	TMR10_C1OUT	TMR11_C1OUT

15.3.3.2 Counting mode

The general-purpose timer (TMR9) consists of a 16-bit counter supporting multiple counting modes to meet different application scenarios.

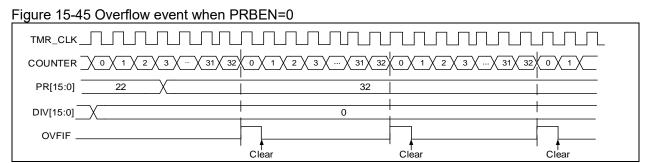
The TMRx_PR register is used to define counting period of counter. The value in the TMRx_PR is immediately moved to the shadow register by default. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event.

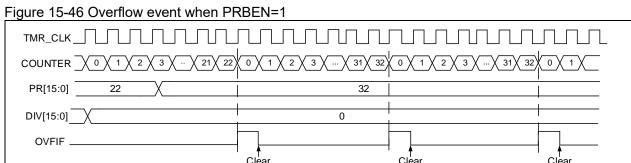

TMRx_DIV register is used to define the counter frequency of the counter. The counter counts once every DIV[15:0]+1 clock cycle. Similar to TMRx_PR register, after enabling periodic buffer, the value of the TMRx_DIV register are transferred into the shadow register at each overflow event.

Reading the TMRx_CNT register returns the current counter value. Writing the TMRx_CNT register will update the current counter value.

An overflow event is enabled by default. It can be disabled by setting OVFEN=1 in the TMRx_CTRL1 register. The OVFS bit in the TMRx_CTRL1 register is used to select the source of an overflow event, which is, by default, counter overflow or underflow, setting OVFSWTR, reset signal generated by slave mode timer controller in reset mode. Once the OVFS is set, an overflow event is generated only when overflow or underflow occurs.

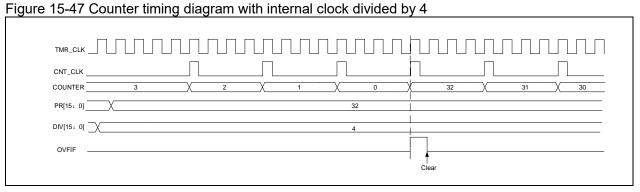
Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR_EN is set 1 clock cycle after the TMREN is set.


Figure 15-44 Basic structure of a counter



Upcounting mode

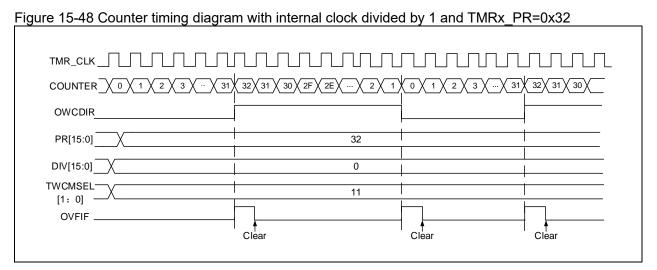
This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b0 in the TMRx_CTRL1 register. In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, restarts from 0, and generates a counter overflow event, with setting OVFIF bit to 1. If the overflow event is disabled, the counter is no longer reloaded with the prescaler and period value on counter overflow, otherwise, the prescaler and period value will be updated on an overflow event.



Downcounting mode

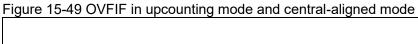
This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b1 in the TMRx_CTRL1 register. In downcounting mode, the counter counts from the value programmed in the TMRx_PR register down to 0, and restarts from the value programmed, and generates a counter underflow event.

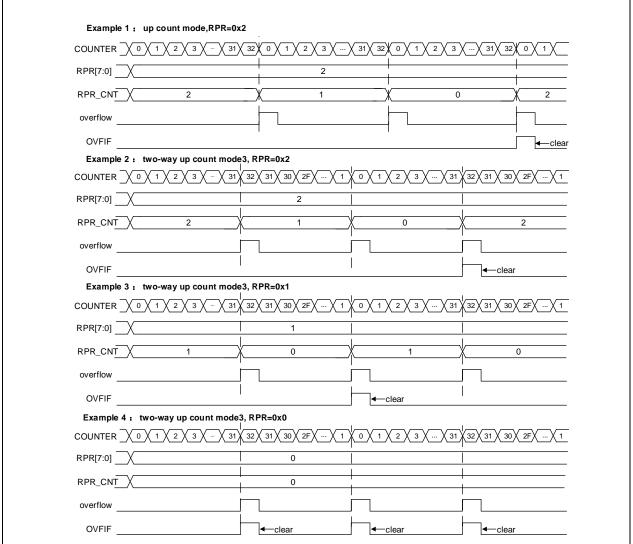
Up/down counting mode (center-aligned mode)


This mode is selected by setting CMSEL[1:0] \neq 2'b00 in the TMRx CTRL1 register.

In up/down counting mode, the counter counts up/down alternatively. When the counter counts from the value programmed in the TMRx_PR register down to 1, an underflow event is generated, and then restarts counting from 0; when the counter counts from 0 to the value of the TMRx_PR register -1, an overflow event is generated, and then restarts counting from the value of the TMRx_PR register. The OWCDIR bit indicates the current counting direction.

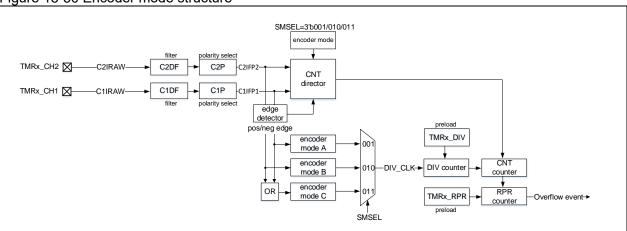
The TWCMSEL[1:0] bit in the TMRx_CTRL1 register is used to select the condition under which the CxIF flag is set in two-way counting mode. In other words, when TWCMSEL[1:0]=2'b01 (counting mode 1) is selected, the CxIF flag is set only when the counter counts down; when TWCMSEL[1:0]=2'b10 (counting mode 2) is selected, the CxIF flag is set only when the counter counts up; when TWCMSEL[1:0]=2'b11 (counting mode 3) is selected, the CxIF flag is set when the counter counts up and down.


Note: The OWCDIR is ready-only in up/down counting mode.



Repetition counter mode:

The TMRx_RPR register is used to enable repetition counting mode. This mode is enabled when the repetition counter value is not equal to 0. In this mode, an overflow event is generated when a counter overflow occurs (RPR[7:0]+1). The repetition counter is decremented at each counter overflow. An overflow event is generated when the repetition counter reaches 0. The frequency of the overflow event generation can be adjusted by setting the repetition counter value.



Encoder interface mode

In this mode, the two input (TMRx_CH1 and TMRx_CH2) signals are required. Depending on the level on one input, the counter counts up or down on the edge of the other input signal. The OWCDIR bit indicates the direction of the counter, as shown in the table below:

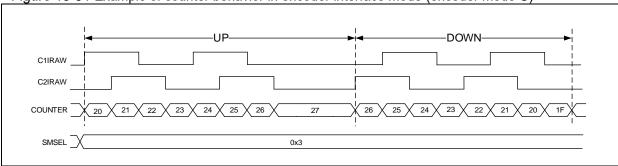
Figure 15-50 Encoder mode structure

Encoder mode A: SMSEL=3'b001. The counter counts on the selected C1IFP1 edge (rising and falling edges), and the counting direction is dependent on the edge direction of C1IFP1 and the level of C2IFP2.

Encoder mode B: SMSEL=3'b010. The counter counts on the selected C2IFP2 edge (rising and falling edges), and the counting direction is dependent on the edge direction of C2IFP2 and the level of C1IFP1.

Encoder mode C: SMSEL=3'b011. The counter counts on both C1IFP1 and C2IFP2 edges (rising and falling edges). The counting direction is dependent on the C1IFP1 edge direction and C2IFP2 level, and C2IFP2 edge direction and C1IFP1 level.

To use encoder mode, follow the procedures below:


- Set channel 1 input signal filtering through the C1DF[3:0] bit in the TMRx_CM1 register;
 Set channel 1 input signal active level through the C1P bit in the TMRx_CCTRL register
- Set channel 2 input signal filtering through the C2DF[3:0] bit in the TMRx_CM1 register;
 Set channel 2 input signal active level through the C2P bit in the TMRx_CCTRL register
- Set channel 1 as input mode through the C1C[1:0] bit in the TMRx_CM1 register;
 Set channel 2 as input mode through the C2C[1:0] bit in the TMRx_CM1 register
- Select encoder mode A (SMSEL=3'b001), encoder mode B (SMSEL=3'b010), or encoder mode C (SMSEL=3'b011) by setting the SMSEL[2:0] bit in the TMRx_STCTRL register
- Set counting cycles through the PR[15:0] bit in the TMRx_PR register
- Set counting frequency through the DIV[15:0] bit in the TMRx DIV register
- Configure the corresponding IOs of TMRx_CH1 and TMRx CH2 as multiplexed mode
- Enable counter through the TMREN bit in the TMRx CTRL1 register

T 11 45		1. 4.		
12hla 15	-X ('Alintina	diraction v	ersus encode	ar eignaie
Table 10.	-0 COULIUIU	unection v	CIBUS CITOUU	zı sıurıaıs

A ativo adas	Level on opposite signal (C1IFP1 to C2IFP2, C2IFP2	C1IFP1 signal		C2IFP2 signal	
Active edge	to C1IFP1)		Falling	Rising	Falling
Count on C1IED1 only	High	Down	Up	No count	No count
Count on C1IFP1 only	Low	Up	Down	No count	No count
Count on C2IFP2 only	High	No count	No count	Up	Down
	Low	No count	No count	Down	Up
Count on both C1IFP1	High	Down	Up	Up	Down
and C2IFP2	Low	Up	Down	Down	Up

Figure 15-51 Example of counter behavior in encoder interface mode (encoder mode C)

15.3.3.3 TMR input function

TMR9 has two independent channels that can be configured as input or output each.

As input, each channel input signal is processed as follows:

- TMRx_CHx outputs the pre-processed CxIRAW. The C1INSE bit is used to select TMRx_CHx as the source of C1IRAW
- CxIRAW goes through digital filter and generates the filtered CxIF signal. The digital filter uses the CxDF bit to program sampling frequency and sampling times.
- CxIF goes through edge detector, and generates the CxIFPx signal after edge selection. The edge selection depends on both CxP and CxCP bits. It is possible to select input rising edge, falling edge or both edges.
- CxIFPx inputs capture signal selector, and outputs the CxIN signal after capture signal selection. The capture signal selection is defined by CxC bits. It is possible to select CxIFPx, CyIFPx or STCI as CxIN source. Of those, CyIFPx (x≠y) is the CyIFPy signal that is from Y channel and processed by channel-x edge detector (for example, C1IFP2 is the C1IFP1 signal that is from channel 1 and processed by channel 2 edge detector). The STCI comes from slave timer controller, and its source is selected by STIS bit.
- CxIN outputs the CxIPS signal that is divided by input channel divider. The divider factor can be defined as No division, /2, /4 or /8, by the CxIDIV bit.

2023.08.31 Page 263 Rev 2.00

Figure 15-52 Input/output channel 1 main circuit

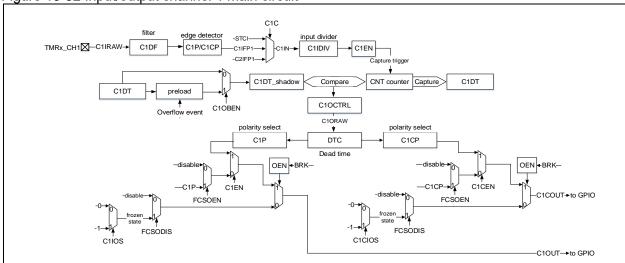
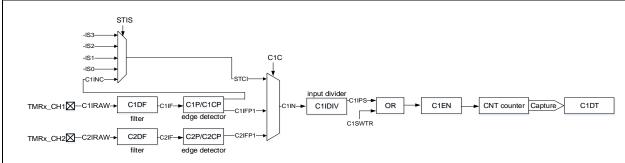



Figure 15-53 Channel 1 input stage

Input mode

In input mode, the TMRx_CxDT register latches the current counter values after the selected trigger signal is detected, and the capture compare interrupt flag bit (CxIF) is set to 1. An interrupt or DMA request will be generated if the CxIEN bit or CxDEN bit is enabled. If the selected trigger signal is detected when CxIF=1, a capture overflow event is generated. The previous counter value will be overwritten by the current counter value, and the CxRF is set to 1.

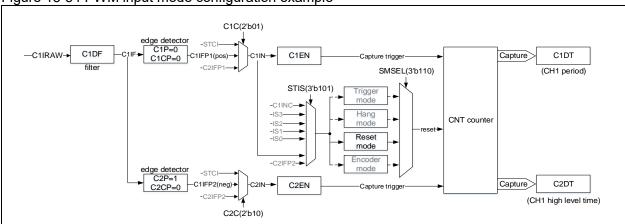
To capture the rising edge of C1IN input, follow the procedure below:

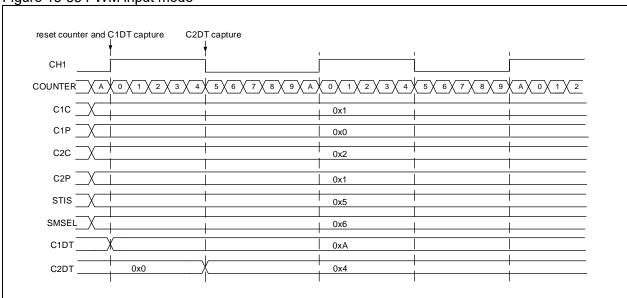
- Set C1C=01 in the TMR9_CM1 register to select the C1IN as channel 1 input
- Set C1IN signal filter bandwidth (CxDF[3: 0])
- Set the active edge of C1IN channel by writing C1P=0 (rising edge) in the TMR9_CCTRL register
- Program C1IN signal capture frequency divider (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt or DMA request by setting the C1IEN bit or C1DEN bit in the TMR9 IDEN register

PWM input

PWM input mode is applied to channel 1 and 2. To use this mode, both C1IN and C2IN are mapped on the same TMRx_CHx, and the CxIFPx of either channel 1 or channel 2 must be configured as trigger input and slave mode controller is configured in reset mode.

The PWM input mode can be used to measure the period and duty cycle of the PWM input signal. For example, the user can measure the period and duty cycle of the PWM applied on channel 1 using the following procedures:


- Set C1C=2'b01: select C1IN for C1IFP1
- Set C1P=1'b0, select C1IFP1 rising edge active
- Set C2C=2'b10, select C2IN for C1IFP2
- Set C2P=1'b1, select C1IFP2 falling edge active
- Set STIS=3'b101, select the slave mode timer trigger signal as C1IFP1


- Set SMSEL=3'b100: configure the slave mode controller in reset mode
- Set C1EN=1'b1 and C2EN=1'b1. Enable channel 1 and input capture

After above configuration, the rising edge of channel 1 input signal will trigger the capture and stores the capture value into C1DT register, and it will reset the counter at the same time. The falling edge of the channel 1 input signal triggers the capture and stores the capture value into C2DT register. The period of the channel 1 input signal is calculated through C1DT, and its duty cycle through C2DT.

Figure 15-54 PWM input mode configuration example

2023.08.31 Page 265 Rev 2.00

15.3.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal.

Figure 15-56 Channel 1 output stage

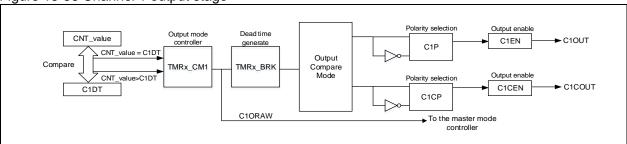
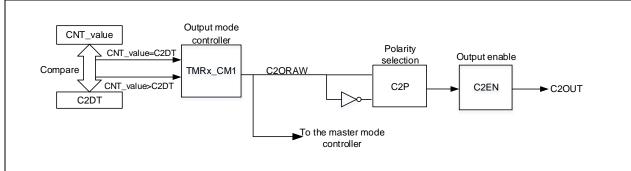



Figure 15-57 Channel 2 output stage

Output mode

Write CxC[2: 0] \$\neq 2'\$ b00 to configure the channel as output to implement multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent to IO after being processed by the output control circuit. The period of the output signal is configured by the TMR9 PR register, while the duty cycle by the TMRx_CxDT register.

Output compare modes include:

PWM mode A:

Enable PWM mode A by setting CxOCTRL=3'b110. In upcounting mode, C1ORAW outputs high when TMRx_C1DT>TMRx_CVAL, otherwise, it is low; in downcounting mode, C1ORAW outputs low when TMRx_C1DT<TMRx_CVAL, otherwise, it is high.

To use PWM mode A, the following procedures are recommended:

- Set PWM period through TMRx_PR register
- Set PWM duty cycles through TMRx CxDT
- Select PWM mode A by setting CxOCTRL=3'b110 in the TMRx CM1/CM2 register
- Set counting frequency through TMRx DIV register
- Select counting mode by setting the TWCMSEL[1:0] bit in the TMRx CTRL1 register
- Select output polarity through the CxP and CxCP bits in the TMRx_CCTRL register
- Enable channel output through the CxEN and CxCEN bits in the TMRx_CCTRL register
- Enable TMRx output through the OEN bit in the TMRx_BRK register
- Configure GPIOs corresponding to TMR output channels as multiplexed mode
- Enable TMRx to start counting through the TMREN bit in the TMRx CTRL1 register.

PWM mode B:

Enable PWM mode B by setting CxOCTRL=3'b111. In upcounting mode, C1ORAW outputs low when TMRx_C1DT>TMRx_CVAL, otherwise, it is high; In downcounting mode, C1ORAW outputs high when TMRx_C1DT<TMRx_CVAL, otherwise, it is low.

Forced output mode:

Enable forced output mode by setting CxOCTRL=2'b100/101. In this case, the CxORAW is forced to be the programmed level, regardless of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.

Output compare mode:

Enable output compare mode by setting CxOCTRL=3'b001/010/011. In this case, when the counter value matches the value of the CxDT register, the CxORAW is forced high (CxOCTRL=3'b001), low (CxOCTRL=3'b010) or toggling (CxOCTRL=3'b011).

One-pulse mode:

This is a particular case of PWM mode. Enable one-pulse by setting OCMEN=1. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When in upcounting mode, the configuration must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.

Fast output mode:

Enable this mode by setting CxOIEN=1. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but change at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx CxDT register will determine the level of CxORAW in advance.

Figure 15-58 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.

Figure 15-59 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 15-60 gives an example of the combination between upcounting mode and one-pulse PWM mode B. The counter only counts only one cycle, and the output signal sends only one pulse.

Figure 15-58 C1ORAW toggles when counter value matches the C1DT value

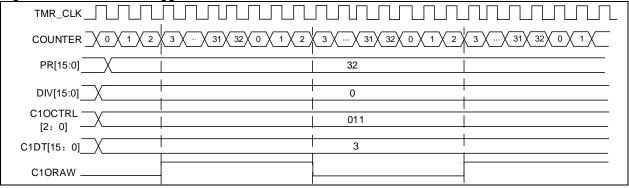
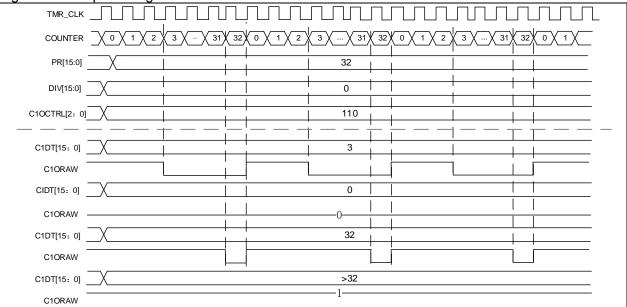
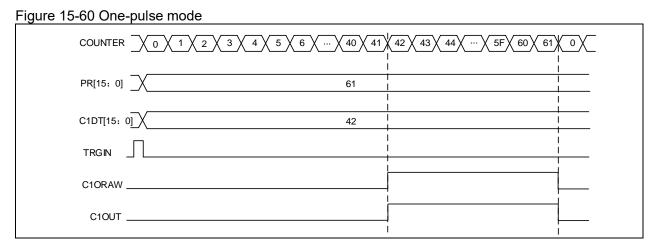




Figure 15-59 Upcounting mode and PWM mode A

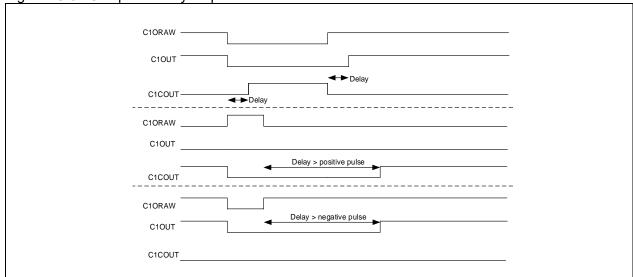
Master mode timer event output

When TMR is used as a master timer, one of the following source of signals can be selected as TRGOUT output to a slave mode timer. This is done by setting the PTOS bit in the TMRxCTRL2 register.

- PTOS=3'b000, TRGOUT output software overflow event (OVFSWTR bit in TMRx_SWEVT register)
- PTOS=3'b001, TRGOUT output counter enable
- PTOS=3'b010, TRGOUT output counter overflow event
- PTOS=3'b011, TRGOUT output capture and compare event
- PTOS=3'b100, TRGOUT output C1ORAW
- PTOS=3'b101, TRGOUT output C2ORAW

Dead-time insertion

TMR9 channel 1 has a reverse channel output. This function is enabled by the CxCEN bit and its polarity is selected by CxCP. Refer to Table 15-16 for more information about the output state of CxOUT and CxCOUT.


The dead-time is activated when switching to IDLEF state (OEN falling down to 0).

Setting both CxEN and CxCEN bits, and using DTC[7:0] bit to insert dead-time of different durations. After the dead-time insertion, the rising edge of the CxOUT is delayed compared to the rising edge of the reference signal; the rising edge of the CxCOU is delayed compared to the falling edge of the reference signal.

If the delay is greater than the width of the active output, C1OUT and C1COUT will not generate corresponding pulses. Therefore, the dead-time should be less than the width of the active output.

Figure 15-61 gives an example of dead-time insertion when CxP=0, CxCP=0, OEN=1, CxEN=1 and CxCEN=1.

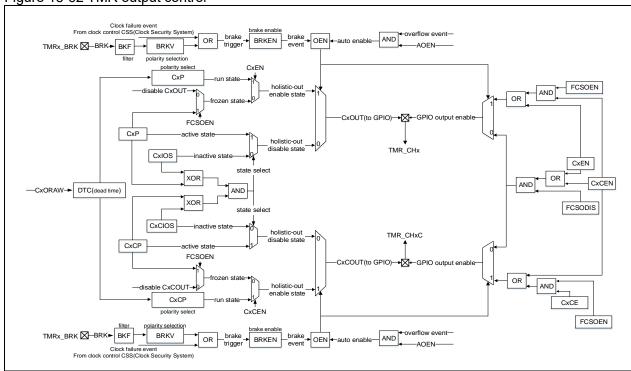
Figure 15-61 Complementary output with dead-time insertion

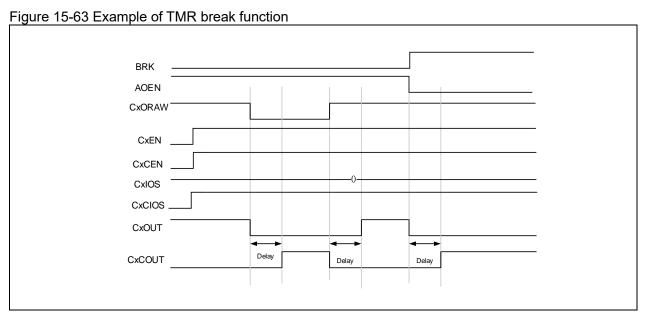
15.3.3.5 TMR break function

When the break function is enabled (BRKEN=1), the CxOUT and CxCOUT are jointly controlled by OEN, FCSODIS, FCSOEN, CxIOS and CxCIOS. But, CxOUT and CxCOUT cannot be set both to active level at the same time. Please refer to 15-9 for more details.

The break source can be a break input pin or a clock failure event. The polarity is controlled by BRKV bit.

When a break event occurs, there are the following actions:

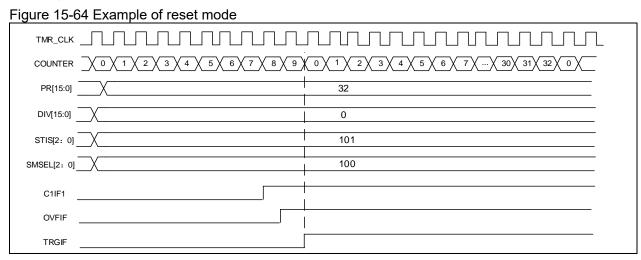

- The OEN bit is cleared asynchronously, and the channel output state is selected by setting the FCSODIS bit. This function works even if the MCU oscillator is off.
- Once OEN=0, the channel output level is defined by the CxIOS bit. If FCSODIS=0, the timer output is disabled, otherwise, the output enable remains high.
- When complementary outputs are used:
 - The outputs are first put in reset state, that is, inactive state (depending on the polarity). This
 is done asynchronously so that it works even if no clock is provided to the timer.
 - If the timer clock is still active, then the dead-time generator is activated. The CxIOS and CxCIOS bits are used to program the level after dead-time. Even in this case, the CxIOS and CxCIOS cannot be driven to their active level at the same time.


Note: The dead-time duration is usually longer than usual (around 2 clk_tmr clock cycles) due to OEN synchronization logic.

- If FCSODIS=0, the timer releases the enable output, otherwise, it keeps the enable output; the
 enable output becomes high as soon as one of the CxEN and CxCEN bits becomes high.
- If the break interrupt or DMA request is enabled, the break statue flag is set, and a break interrupt or DMA request can be generated.
- If AOEN=1, the OEN bit is automatically set again at the next overflow event.

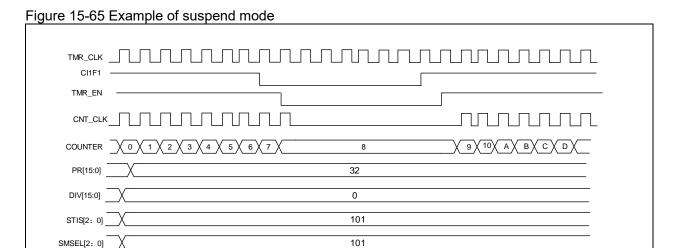
Note: When the break input is active, the OEN cannot be set, nor the status flag, BRKIF can be cleared.

Figure 15-62 TMR output control

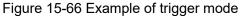

15.3.3.6 TMR synchronization

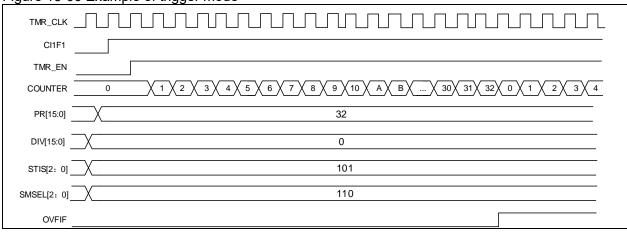
The master and slave timers are linked together internally for timer synchronization. Master mode timer is selected by setting the PTOS[2: 0] bit; Slave timer is selected by setting the SMSEL[2: 0] bit.

Slave modes include:


Slave mode: Reset mode

The counter and its prescaler can be reset by a selected trigger signal. An overflow event can be generated when OVFS=0.


Slave mode: Suspend mode


In this mode, the counter is controlled by a selected trigger input. The counter starts counting when the trigger input is high and stops as soon as the trigger input is low.

Slave mode: Trigger mode

The counter can start counting on the rising edge of a selected trigger input (TMR_EN=1)

See *Chapter 15.2.3.5* for more information about timer synchronization.

15.3.3.7 Debug mode

When the microcontroller enters debug mode (Cortex®-M4F core halted), the TMRx counter stops counting by setting the TMR9_PAUSE in the DEBUG module.

15.3.4 TMR9 registers

Table 15-9 TMR9 register map and reset value

Register name	Register	Reset value	
TMRx_CTRL1	0x00	0x0000	
TMRx_CTRL2	0x04	0x0000	
TMRx_STCTRL	0x08	0x0000	
TMRx_IDEN	0x0C	0x0000	
TMRx_ISTS	0x10	0x0000	
TMRx_SWEVT	0x14	0x0000	
TMRx_CM1	0x18	0x0000	
TMRx_CCTRL	0x20	0x0000	
TMRx_CVAL	0x24	0x0000	
TMRx_DIV	0x28	0x0000	

TMRx_PR	0x2C	0x0000	
TMRx_RPR	0x30	0x0000	
TMRx_C1DT	0x34	0x0000	
TMRx_C2DT	0x38	0x0000	
TMRx_BRK	0x44	0x0000	
TMRx_DMACTRL	0x48	0x0000	
TMRx_DMADT	0x4C	0x0000	

15.3.4.1 TMR9 control register1 (TMRx_CTRL1)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at default value
Bit 9: 8	CLKDIV	0x0	rw	Clock divider This field is used to define the division ratio between digital filter sampling frequency (f_{DTS}) and the timer clock frequency (f_{CK_INT}). it is also used to set the division ratio between dead time base (T_{DTS}) and timer clock period (T_{CK_INT}) 00: No division, f_{DTS} = f_{CK_INT} 01: Divided by 2, f_{DTS} = $f_{CK_INT}/2$ 10: Divided by 4, f_{DTS} = $f_{CK_INT}/4$ 11: Reserved
Bit 7	PRBEN	0x0	rw	Period buffer enable 0: Period buffer is disabled 1: Period buffer is enabled
Bit 6: 5	TWCMSEL	0x0	resd	Two-way counting mode selection 00: One-way counting mode, depending on the OWCDIR bit 01: Two-way counting mode 1. The counter counts up and down alternately, the CxIF bit is set only when the counter is counting down 10: Two-way counting mode 2. The counter counts up and down alternately, the CxIF bit is set only when the counter is counting up 11: Two-way counting mode 3. The counter counts up and down alternately, the CxIF bit is set when the counter is counting up or down
Bit 4	OWCDIR	0x0	rw	One-way count direction 0: Up 1: Down
Bit 3	OCMEN	0x0	rw	One cycle mode enable This bit is use to select whether to stop counting at an overflow event 0: The counter does not stop at an overflow event 1: The counter stops at an overflow event
Bit 2	OVFS	0x0	rw	Overflow event source This bit is used to select overflow event or DMA request sources. 0: Counter overflow, setting the OVFSWTR bit or overflow event generated by slave timer controller 1: Only counter overflow generates an overflow event
Bit 1	OVFEN	0x0	rw	Overflow event enable 0: Enabled 1: Disabled
Bit 0	TMREN	0x0	rw	TMR enable 0: Enabled 1: Disabled

2023.08.31 Page 272 Rev 2.00

15.3.4.2 TMR9 control register 2 (TMRx_CTRL2)

tate tate me: me:
tate ne: me:
me:
me:
me:
nal sent to the
ontrol bits are
e HALL bit
e HALL bit or a
plementary
e not buffered.
e not buffered.
1

15.3.4.3 TMR9 slave timer control register (TMRx_STCTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
				Subordinate TMR synchronization
Bit 7	STS	0v0	m	If enabled, master and slave timer can be synchronized.
DIL 1	313	0x0	IVV	0: Disabled
				1: Enabled
				Subordinate TMR input selection
			resd Kept at default value. Subordinate TMR synchronization If enabled, master and slave timer can be 0: Disabled 1: Enabled Subordinate TMR input selection This field is used to select the subordinate 000: Internal selection 0 (IS0) 001: Internal selection 1 (IS1) 010: Internal selection 2 (IS2) 011: Internal selection 3 (IS3) rw 100: C1IRAW input detector (C1INC) 101: Filtered input 1 (C1IF1) 110: Filtered input 2 (C1IF2) 111: External input (EXT)	This field is used to select the subordinate TMR input.
				000: Internal selection 0 (IS0)
				001: Internal selection 1 (IS1)
				010: Internal selection 2 (IS2)
Bit 6: 4	STIS	0x0		011: Internal selection 3 (IS3)
DIL 0. 4	3113	UXU	IVV	100: C1IRAW input detector (C1INC)
				101: Filtered input 1 (C1IF1)
				110: Filtered input 2 (C1IF2)
				111: External input (EXT)
				Please refer to Table 14-12 for more information on ISx
				for each timer.

Bit 3	Reserved	0x0	resd	Kept at default value.
				Subordinate TMR mode selection
				000: Slave mode is disabled
				001: Encoder mode A
				010: Encoder mode B
				011: Encoder mode C
				100: Reset mode —Rising edge of the TRGIN input
				reinitializes the counter
Bit 2: 0	SMSEL	0x0	rw	101: Suspend mode — The counter starts counting when
				the TRGIN is high
				110: Trigger mode — A trigger event is generated at the
				rising edge of the TRGIN input
				111: External clock mode A — Rising edge of the TRGIN
				input clocks the counter
				Note: Please refer to count mode section for the details
				on encoder mode A/B/C.

15.3.4.4 TMR9 DMA/interrupt enable register (TMRx_IDEN)

Bit	Abbr.	Reset value	Type	Description	
Bit 15	Reserved	0x0	resd	Kept at default value.	
				Trigger DMA request enable	
Bit 14	TDEN	0x0	rw	0: Disabled	
				1: Enabled	
				HALL DMA request enable	
Bit 13	HALLDE	0x0	rw	0: Disabled	
				1: Enabled	
Bit 12: 11	Reserved	0x0	resd	Kept at default value.	
				Channel 2 DMA request enable	
Bit 10	C2DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 DMA request enable	
Bit 9	C1DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow event DMA request enable	
Bit 8	OVFDEN	0x0	rw	0: Disabled	
Dit 0	OV. DZ.V	OXO		1: Enabled	
				Break interrupt enable	
Bit 7	BRKIE	0x0	rw	0: Disabled	
				1: Enabled	
				Trigger interrupt enable	
Bit 6	TIEN	0x0	rw	0: Disabled	
				1: Enabled	
				HALL interrupt enable	
Bit 5	HALLIEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 4: 3	Reserved	0x00	resd	Kept at default value.	
				Channel 2 interrupt enable	
Bit 2	C2IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 interrupt enable	
Bit 1	C1IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

15.3.4.5 TMR9 interrupt status register (TMRx_ISTS)

Bit	Abbr.	Reset value	Type	Description	
Bit 15: 11	Reserved	0x00	resd	Kept at default value.	
Bit 10	C2RF	0x0	rw0c	Channel 2 recapture flag Please refer to C1RF description.	
Bit 9	C1RF	0x0	rw0c	Channel 1 recapture flag	

2023.08.31 Page 274 Rev 2.00

				This bit indicates whether a recapture is detected when C1IF=1. This bit is set by hardware, and cleared by writing "0". 0: No capture is detected 1: Capture is detected.
Bit 8	Reserved	0x0	resd	Default value
Bit 7	BRKIF	0x0	rw0c	Break interrupt flag This bit indicates whether the break input is active or not. It is set by hardware and cleared by writing "0" 0: Inactive level 1: Active level
Bit 6	TRGIF	0x0	rw0c	Trigger interrupt flag This bit is set by hardware on a trigger event. It is cleared by writing "0". 0: No trigger event occurs 1: Trigger event is generated. Trigger event: an active edge is detected on TRGIN input, or any edge in suspend mode.
Bit 5	HALLIF	0x0	rw0c	HALL interrupt flag This bit is set by hardware on HALL event. It is cleared by writing "0". 0: No Hall event occurs. 1: Hall event is detected. HALL even: CxEN, CxCEN and CxOCTRL are updated.
Bit 4: 3	Reserved	0x0	resd	Kept at its default value.
Bit 2	C2IF	0x0	rw0c	Channel 2 interrupt flag Please refer to C1IF description.
Bit 1	C1IF	0x0	rw0c	Channel 1 interrupt flag If the channel 1 is configured as input mode: This bit is set by hardware on a capture event. It is cleared by software or read access to the TMRx_C1DT 0: No capture event occurs 1: Capture event is generated If the channel 1 is configured as output mode: This bit is set by hardware on a compare event. It is cleared by software. 0: No compare event occurs 1: Compare event is generated
Bit 0	OVFIF	0x0	rw0c	Overflow interrupt flag This bit is set by hardware on an overflow event. It is cleared by software. 0: No overflow event occurs 1: Overflow event is generated. If OVFEN=0 and OVFS=0 in the TMRx_CTRL1 register: - An overflow event is generated when OVFG= 1 in the TMRx_SWEVE register; - An overflow event is generated when the counter CVAL is reinitialized by a trigger event.

15.3.4.6 TMR9 software event register (TMRx_SWEVT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
Bit 7	BRKSWTR	0x0	wo	Break event triggered by software This bit is set by software to generate a break event. 0: No effect 1: Generate a break event.
Bit 6	TRGSWTR	0x0	rw	Trigger event triggered by software This bit is set by software to generate a trigger event. 0: No effect 1: Generate a trigger event.
Bit 5	HALLSWTR	0x0	wo	HALL event triggered by software This bit is set by software to generate a HALL event. 0: No effect

				1: Generate a HALL event.
				Note: This bit acts only on channels that have
				complementary output.
Bit 4: 3	Reserved	0x0	resd	Kept at its default value.
Bit 2	C2SWTR	0x0	wo	Channel 2 event triggered by software
		UXU		Please refer to C1M description
		0x0	wo	Channel 1 event triggered by software
Bit 1	C1SWTR			This bit is set by software to generate a channel 1 event.
DILI	CISWIR			0: No effect
				1: Generate a channel 1 event.
-				Overflow event triggered by software
Bit 0	OVECMED	0.40	14/0	This bit is set by software to generate an overflow event.
	OVFSWTR	0x0	wo	0: No effect
				1: Generate an overflow event.

15.3.4.7 TMR9 channel mode register 1 (TMRx_CM1)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bit. All the other bits of this register have different functions in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	ompare mode: Abbr.	Reset value	Type	Description
				·
Bit 15	Reserved	0x0	resd	Kept at default value.
Bit 14: 12	C2OCTRL	0x0	rw	Channel 2 output control
Bit 11	C2OBEN	0x0	rw	Channel 2 output buffer enable
Bit 10	C2OIEN	0x0	rw	Channel 2 output enable immediately
				Channel 2 configuration
				This field is used to define the direction of the channel 2
				(input or output), and the selection of input pin when
				C2EN='0':
Bit 9: 8	C2C	0x0	rw	00: Output
				01: Input, C2IN is mapped on C2IFP2
				10: Input, C2IN is mapped on C1IFP2
				11: Input, C2IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS
D:: 7	D 1	0.0		register.
Bit 7	Reserved	0x0	resd	Kept at default value.
				Channel 1 output control
				This field defines the behavior of the original signal
				C10RAW.
				000: Disconnected. C1ORAW is disconnected from
				C1OUT;
				001: C1ORAW is high when TMRx_CVAL=TMRx_C1DT
				010: C1ORAW is low when TMRx_CVAL=TMRx_C1DT
				011: Switch C10RAW level when
				TMRx_CVAL=TMRx_C1DT
				100: C10RAW is forced low
				101: C1ORAW is forced high.
Bit 6: 4	C10CTRL	0x0	rw	110: PWM mode A
				OWCDIR=0, C10RAW is high once
				TMRx_C1DT>TMRx_CVAL, else low;
				OWCDIR=1, C1ORAW is low once TMRx_ C1DT
				<tmrx_cval, else="" high;<="" td=""></tmrx_cval,>
				111: PWM mode B
				 OWCDIR=0, C1ORAW is low once TMRx_ C1DT
				>TMRx_CVAL, else high;
				 OWCDIR=1, C1ORAW is high once TMRx_ C1DT
				<tmrx_cval, else="" low.<="" td=""></tmrx_cval,>
				Note: In the configurations other than 000', the C10UT is
				connected to C1ORAW. The C1OUT output level is not

				only subject to the changes of C10RAW, but also the
Bit 3	C1OBEN	0x0	rw	output polarity set by CCTRL. Channel 1 output buffer enable 0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately. 1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
Bit 2	C10IEN	0x0	rw	Channel 1 output enable immediately In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event. 0: Need to compare the CVAL with C1DT before generating an output 1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
Bit 1: 0	C1C	0x0	rw	Channel 1 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IFP1 10: Input, C1IN is mapped on C2IFP1 11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

Input cap	oture mode:			
Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	C2DF	0x0	rw	Channel 2 digital filter
Bit 11: 10	C2IDIV	0x0	rw	Channel 2 input divider
				Channel 2 configuration
				This field is used to define the direction of the channel 2
				(input or output), and the selection of input pin when C2EN='0':
Bit 9: 8	C2C	0x0	rw	00: Output
				01: Input, C2IN is mapped on C2IFP2
				10: Input, C2IN is mapped on C1IFP2
				11: Input, C2IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.
	C1DF			Channel 1 digital filter
				This field defines the digital filter of the channel 1. N
				stands for the number of filtering, indicating that the input
				edge can pass the filter only after N sampling events.
				0000: No filter, sampling is done at f_{DTS}
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
		00		0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
Bit 7: 4				1010: f _{SAMPLING} =f _{DTS} /16, N=5
		0x0	rw	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				0100: $f_{SAMPLING} = f_{DTS}/2$, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				0101: f _{SAMPLING} =f _{DTS} /2, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				0110: $f_{SMPLING} = f_{DTS}/4$, N=6
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				0111: f _{SAMPLING} =f _{DTS} /4, N=8
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Channel 1 input divider
Bit 3: 2	CAIDIV	0v0	F1.47	This field defines Channel 1 input divider.
DII 3. Z	C1IDIV	0x0	rw	00: No divider. An input capture is generated at each
				active edge.

				01: An input compare is generated every 2 active edges
				10: An input compare is generated every 4 active edges
				11: An input compare is generated every 8 active edges
				Note: the divider is reset once C1EN='0'
				Channel 1 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
				C1EN='0':
Bit 1: 0	C1C	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IFP1
				10: Input, C1IN is mapped on C2IFP1
				11: Input, C1IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.

15.3.4.8 TMR9 channel control register (TMRx_CCTRL)

Abbr.	Reset value	Type	Description
Reserved	0x00	resd	Kept at default value.
COCD	0.40		Channel 2 complementary polarity
CZCP	UXU	I VV	Please refer to C1P description.
COCEN	0v0	r\A/	Channel 2 complementary enable
GZCEN	UXU	I W	Please refer to C1EN description.
Cab	0×0	r\A/	Channel 2 polarity
021	0.00	I VV	Please refer to C1P description.
C2EN	0×0	r\A/	Channel 2 enable
OZLIN	0.00	I VV	Please refer to C1EN description.
			Channel 1 complementary polarity
C1CP	0x0	rw	0: C1COUT is active high.
			1: C1COUT is active low.
	0x0	rw	Channel 1 complementary enable
C1CEN			0: Output is disabled.
			1: Output is enabled.
			Channel 1 polarity
			When the channel 1 is configured as output mode:
			0: C1OUT is active high
			1: C1OUT is active low
			When the channel 1 is configured as input mode:
	0x0		00: C1IN active edge is on its rising edge. When used as
C1P		rw	external trigger, C1IN is not inverted.
			01: C1IN active edge is on its falling edge. When used
			as external trigger, C1IN is inverted.
			10: Reserved
			11: C1IN active edge is on its rising edge and falling
			edge. When used as external trigger, C1IN is not
			inverted.
			Channel 1 enable
C1EN	0x0	rw	0: Input or output is disabled
	OAO	1 VV	1: Input or output is enabled
	Reserved C2CP C2CEN C2P C2EN C1CP C1CP	Reserved 0x00 C2CP 0x0 C2EN 0x0 C2EN 0x0 C1CP 0x0 C1CEN 0x0 C1CEN 0x0	Reserved 0x00 resd C2CP 0x0 rw C2CEN 0x0 rw C2P 0x0 rw C2EN 0x0 rw C1CP 0x0 rw C1CEN 0x0 rw

2023.08.31 Page 278 Rev 2.00

Table 15-10 Complementary output channel CxOUT and CxCOUT control bits with break function

		Control bit			Output	state ⁽¹⁾
OEN bit	FCSODIS bit	FCSOEN bit	CxEN bit	CxCEN bit	CxOUT output state	CxCOUT output state
		0	0	0	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0
		0	0	1	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1
		0	1	0	CxORAW+ polarity CxOUT= CxORAW xor CxP, Cx_EN=1	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0
1		0	1	1	CxORAW+polarity+dead- time, Cx_EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1
	X	1	0	0	Output disabled (no driven by the timer) CxOUT=CxP, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=CxCP, CxCEN=0
		1	0	1	Off-state (Output enabled with inactive level) CxOUT=CxP, Cx_EN=1	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1
		1	1	0	CxORAW + polarity, CxOUT= CxORAW xor CxP, Cx_EN=1	Off-state (Output enabled with inactive level) CxCOUT=CxCP, CxCEN=1
		1	1	1	CxORAW+ polarity+dead- time, Cx_EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1
	0		0	0	Output disabled (the corresponding IO disco	
	0		0	1	floating) Asynchronously: CxOUT=C	
	0		1	0	CxCOUT=CxCP, CxCEN=0;lf the clock is present: after	_ · ·
0	О	x -	1	1	CxOUT=CxIOS, CxCOUT=0 CxIOS and CxCIOS do not of CxCOUT active level.	CxCIOS, assuming that
	1		0	0	CxEN=CxCEN=0: output dis IO disconnected from timer,	
	1		0	1	Other: Off-state (the corresp inactive level)	
	1	1	1	0	Asynchronously: CxOUT =C CxCOUT=CxCP, CxCEN=1;	xP, Cx_EN=1,
	1		1	1	If the clock is present: after a CxOUT=CxIOS, CxCOUT=CxIOS and CxCIOS do not concount active level.	a dead-time, CxCIOS, assuming that

Note: If the two outputs of a channel are not used (CxEN = CxCEN = 0), CxIOS, CxCIOS, CxP and CxCP must be cleared.

Note: The state of the external I/O pins connected to the complementary CxOUT and CxCOUT channels depends on the CxOUT and CxCOUT channel state and the GPIO and the IOMUX registers.

15.3.4.9 TMR9 counter value (TMRx_CVAL)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	CVAL	0x0000	rw	Counter value

15.3.4.10 TMR9 division value (TMRx_DIV)

Bit	Abbr.	Reset value	Туре	Description
Bit 15: 0	DIV	0x0000	rw	Divider value The counter clock frequency f _{CK_CNT} = f _{TMR_CLK} / (DIV[15: 0]+1). The value of this register is transferred to the actual prescaler register when an overflow event occurs.

15.3.4.11 TMR9 period register (TMRx_PR)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	PR	0x0000	rw	Period value This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

15.3.4.12 TMR9 repetition period register (TMRx_RPR)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
Bit 7: 0	RPR	0x0000	rw	Repetition of period value This field is used to reduce the generation rate of overflow events. An overflow event is generated when the repetition counter reaches 0.

15.3.4.13 TMR9 channel 1 data register (TMRx_C1DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C1DT	0x0000	rw	Channel 1 data register When the channel 1 is configured as input mode: The C1DT is the CVAL value stored by the last channel 1 input event (C1IN) When the channel 1 is configured as output mode: C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

15.3.4.14 TMR9 channel 2 data register (TMRx_C2DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C2DT	0x0000	rw	Channel 2 data register When the channel 2 is configured as input mode: The C2DT is the CVAL value stored by the last channel 2 input event (C1IN) When the channel 2 is configured as output mode: C2DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C2OBEN bit, and the corresponding output is generated on C2OUT as configured.

15.3.4.15 TMR9 break register (TMRx_BRK)

Bit	Abbr.	Reset value	Type	Description
Bit 19: 16	BKF	0x0	rw	Break input filter This field is used to set the filter for break input. The filter number N indicates that the input edge can pass through filter only after N sampling events. 0000: fsampling=fdts (no filtering) 1000: fsampling = fdts /8, N=6 0001: fsampling =fck_int, N=2 1001: fsampling =fdts/8, N=8

				0010: fsampling = fck_int, N=4
				1010: fsampling = fdts /16, N=5
				0011: fsampling = fck_int, N=8
				1011: fsampling = fdts /16, N=6
				0100: fsampling = fbts /2, N=6
				1100: fsampling = fbts /16, N=8
				0101: f _{SAMPLING} = f _{DTS} /2, N=8
				1101: fsampling = fdts /32, N=5
				0110: $f_{SAMPLING} = f_{DTS}/4$, N=6
				1110: $f_{SAMPLING} = f_{DTS}/32$, N=6
				0111: $f_{SAMPLING} = f_{DTS} / 4$, N=8
				1111: fsampling = fdts /32, N=8
				Output enable
				This bit acts on the channels as output. It is used to
Bit 15	OEN	0x0	rw	enable CxOUT and CxCOUT outputs.
Dit 10	OLIN	OXO	1 44	0: Disabled
				1: Enabled
				Automatic output enable
Bit 14	AOEN	0x0	rw	OEN is set automatically at an overflow event.
DIL 14	AOLIN	UXU	1 44	0: Disabled
				1: Enabled
				Break input validity
				This bit is used to select the active level of a break input.
Bit 13	BRKV	0x0	rw	0: Break input is active low.
				1 Break input is active high.
				Break enable
Bit 12	BRKEN	0x0	rw	This bit is used to enable break input.
Dit 12	DITTELL	OXO	1 44	0: Break input is disabled.
				1: Break input is enabled.
				Frozen channel status when holistic output enable
				This bit acts on the channels that have complementary
				output. It is used to set the channel state when the timer
D:4.4.4	FCSOEN	0x0	F147	is inactive and OEN=1.
Bit 11		UXU	rw	
				0: CxOUT/CxCOUT outputs are disabled.
				1: CxOUT/CxCOUT outputs are enabled. Output inactive
				level.
				Frozen channel status when holistic output disable
				This bit acts on the channels that have complementary
	FCSODIS			output. It is used to set the channel state when the timer
Bit 10		0x0	rw	is inactive and OEN=0.
2.0.10		07.0		0: CxOUT/CxCOUT outputs are disabled.
				CxOUT/CxCOUT outputs are enabled. Output idle
				level.
				Write protection configuration
				This field is used to enable write protection.
				00: Write protection is OFF.
	WPC			01: Write protection level 3, and the following bits are
				write protected:
				TMRx_BRK: DTC, BRKEN, BRKV and AOEN
				TMRx_CTRL2: CxIOS and CxCIOS
Bit 9: 8		0x0	rw	10: Write protection level 2. The following bits and all bits
				in level 3 are write protected:
				TMRx_CCTRL: CxP and CxCP
				TMRx_BRK: FCSODIS and FCSOEN
				11: Write protection level 1. The following bits and all bits
				in level 2 are write protected:
				TMRx_CMx: C2OCTRL and C2OBEN
				Note: Once WPC>0, its content remains frozen until the
				next system reset.
				Dead-time configuration
5 = -	D.T.O.			This field defines the duration of the dead-time insertion.
Bit 7: 0	DTC	0x00	rw	The 3-bit MSB of DTC[7: 0] is used for function selection:
				0xx: DT = DTC [7: 0] * TDTS
				10x: DT = (64+ DTC [5: 0]) * TDTS * 2

110: DT = (32+ DTC [4: 0]) * TDTS * 8 111: DT = (32+ DTC [4: 0]) * TDTS * 16

15.3.4.16 TMR9 DMA control register (TMRx_DMACTRL)

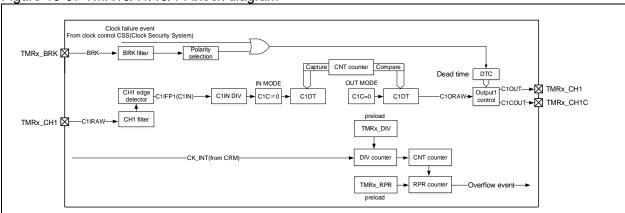
Bit	Abbr.	Reset value	Type	Description	
Bit 15:13	Reserved	0x0	resd	Kept at default value.	
Bit 12:8	DTB	0x00	rw	DMA transfer bytes This field defines the number of DMA transfers: 00000: 1 byte 00001: 2 bytes 00010: 3 bytes 00011: 4 bytes 10000: 17 bytes 10001: 18 bytes	
Bit 7:5	Reserved	0x0	resd	Kept at default value.	
Bit 4: 0	ADDR	0x00	rw	DMA transfer address offset ADDR is defined as an offset starting from the add of the TMRx_CTRL1 register: 00000: TMRx_CTRL1 00001: TMRx_CTRL2 00010: TMRx_STCTRL	dress

15.3.4.17 TMR9 DMA data register (TMRx_DMADT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DMADT	0x0000	rw	DMA data register A write/read operation to the DMADT register accesses any TMR register located at the following address: TMRx peripheral address + ADDR*4 to TMRx peripheral address + ADDR*4 + DTB*4

2023.08.31 Page 282 Rev 2.00

15.4 General-purpose timer (TMR10/11/13/14)

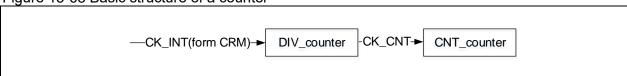

15.4.1 TMRx introduction

The general-purpose timers (TMR10/11/13/14) consist of a 16-bit upcounter, one capture/compare register, and one independent channel. They can be used for dead-time insertion, input capture and programmable PWM output.

15.4.2 TMRx main features

- Counter clock source: internal clock, external input and internal trigger inputs
- 16-bit upcounter, and 8-bit repetition counter
- One independent channel for input capture, output compare, PWM generation, one-pulse mode output and dead-time insertion
- One independent channel for complementary output
- TMR break function
- Synchronization control between master and slave timers
- Interrupt/DMA generation at overflow event, break signal input and channel events
- Support TMR burst DMA transfer

Figure 15-67 TMR10/11/13/14 block diagram

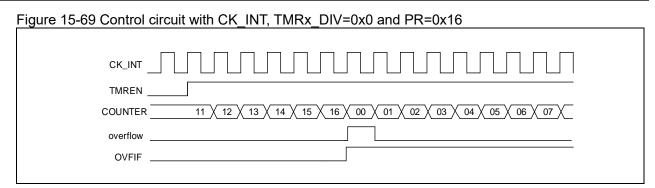


15.4.3 TMRx functional overview

15.4.3.1 Counting clock

The count clock of TMR10/11/13/14 can be provided by the internal clock (CK_INT).

Figure 15-68 Basic structure of a counter



Internal clock (CK_INT)

By default, the CK_INT, which is divided by the prescaler, is used to drive the counter to start counting. When TMR's APB clock prescaler factor is 1, the CK_INT frequency is equal to APB, otherwise, it doubles the APB clock frequency.

- Select counting mode by setting the TWCMSEL[1:0] in TMRx_CTRL1 register. If a unidirectional aligned counting mode is selected, there is a need to select counting direction through the OWCDIR in TMRx_CTRL1 register.
- Set counting frequency through TMRx DIV register
- Set counting cycles through TMRx_PR register
- Enable a counter by setting the TMREN bit in the TMRx_CTRL1 register

15.4.3.2 Counting mode

The TMR10/11/13/14 supports multiple counting modes to meet various application scenarios. Each consists of a 16-bit upcounter.

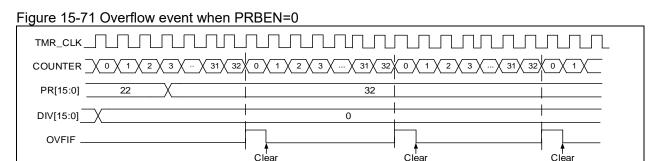
The TMRx_PR register is used to define counting period of counter. The value in the TMRx_PR is immediately moved to the shadow register by default. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event.

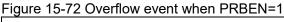
TMRx_DIV register is used to define the counter frequency of the counter. The counter counts once every DIV[15:0]+1 clock cycle. Similar to TMRx_PR register, after enabling periodic buffer, the value of the TMRx_DIV register are transferred into the shadow register at each overflow event.

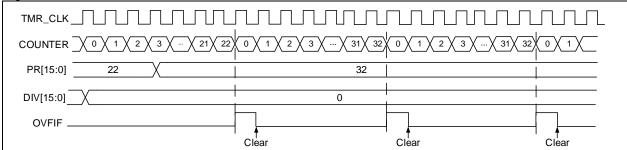
Reading the TMRx_CNT register returns the current counter value. Writing the TMRx_CNT register will update the current counter value.

An overflow event is enabled by default. It can be disabled by setting OVFEN=1 in the TMRx_CTRL1 register. The OVFS bit in the TMRx_CTRL1 register is used to select the source of an overflow event, which is, by default, counter overflow or underflow, setting OVFSWTR, reset signal generated by slave mode timer controller in reset mode. Once the OVFS is set, an overflow event is generated only when overflow or underflow occurs.

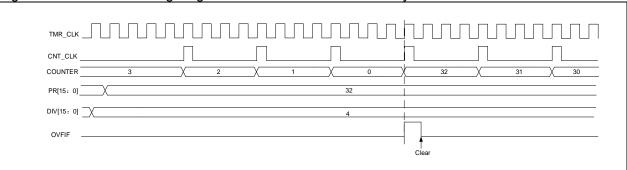
Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR EN is set 1 clock cycle after the TMREN is set.


PRBEN DIV shadow TMRx RPR Preload RPR shadow TMR_x DIV Preload CNT overflow Overflow event-Overflow event (RPR_overflow) DIV_counter CNT_counter RPR_counter TMR CLK Overflow event-TMRx PR Preload PR_shadow PRBEN


Figure 15-70 Basic structure of a counter


Upcounting mode

This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b0 in the TMRx_CTRL1 register. In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, restarts from 0, and generates a counter overflow event, with setting OVFIF bit to 1. If the overflow event is disabled, the counter is no longer reloaded with the prescaler and period value on counter overflow, otherwise, the prescaler and period value will be updated on an overflow event.

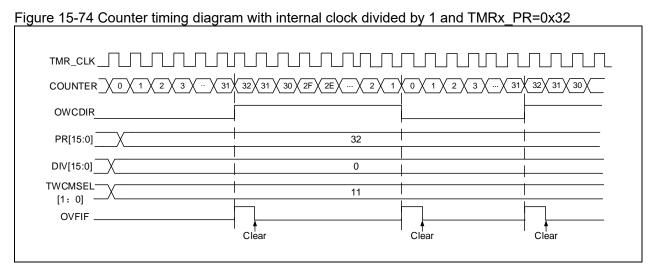


Downcounting mode

This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b1 in the TMRx_CTRL1 register. In downcounting mode, the counter counts from the value programmed in the TMRx_PR register down to 0, and restarts from the value programmed, and generates a counter underflow event.

Figure 15-73 Counter timing diagram with internal clock divided by 4

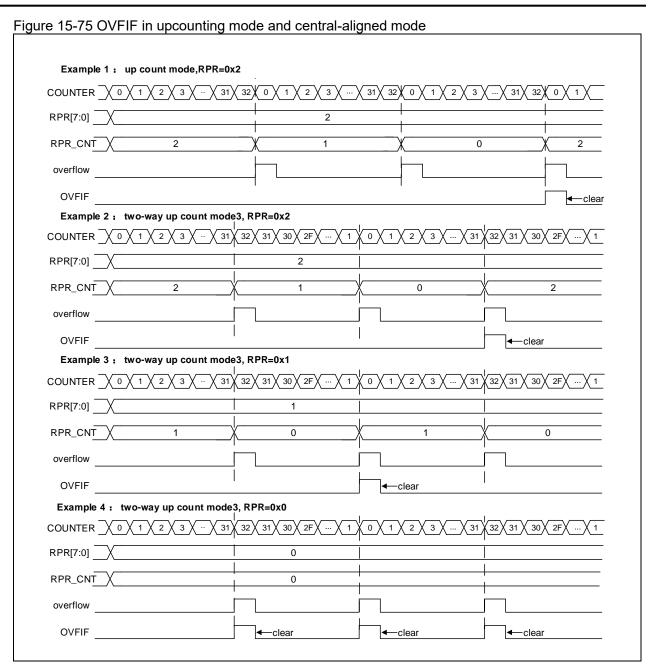
Up/down counting mode (center-aligned mode)


This mode is selected by setting CMSEL[1:0]≠2'b00 in the TMRx CTRL1 register.

In up/down counting mode, the counter counts up/down alternatively. When the counter counts from the value programmed in the TMRx_PR register down to 1, an underflow event is generated, and then restarts counting from 0; When the counter counts from 0 to the value of the TMRx_PR register -1, an overflow event is generated, and then restarts counting from the value of the TMRx_PR register. The OWCDIR bit indicates the current counting direction.

The TWCMSEL[1:0] bit in the TMRx_CTRL1 register is used to select the condition under which the CxIF flag is set in two-way counting mode. In other words, when TWCMSEL[1:0]=2'b01 (counting mode 1) is selected, the CxIF flag is set only when the counter counts down; when TWCMSEL[1:0]=2'b10 (counting mode 2) is selected, the CxIF flag is set only when the counter counts up; when TWCMSEL[1:0]=2'b11 (counting mode 3) is selected, the CxIF flag is set when the counter counts up and down.

Note: The OWCDIR is ready-only in up/down counting mode.



Repetition counter mode:

The TMRx_RPR register is used to enable repetition counting mode. This mode is enabled when the repetition counter value is not equal to 0. In this mode, an overflow event is generated when a counter overflow occurs (RPR[7:0]+1). The repetition counter is decremented at each counter overflow. An overflow event is generated when the repetition counter reaches 0. The frequency of the overflow event generation can be adjusted by setting the repetition counter value.

2023.08.31 Page 286 Rev 2.00

15.4.3.3 TMR input function

Each of TMR10/11/13/14 has an independent channel that can be configured in input or output mode. As input, the channel input signal is processed as follows:

- TMRx_CHx outputs the pre-processed CxIRAW. The C1INSE bit is used to select TMRx_CHx as the source of C1IRAW
- CxIRAW goes through digital filter and generates the filtered CxIF signal. The digital filter uses the CxDF bit to program sampling frequency and sampling times.
- CxIF goes through edge detector and generates the CxIFPx signal after edge selection. The edge selection depends on both CxP and CxCP bits. It is possible to select input rising edge, falling edge or both edges.
- CxIFPx goes through capture signal selector and generates the CxIN signal after capture signal selection. The capture signal selection is defined by CxC bits. The CxIFPx can be used as a source of CxIN source.
- CxIN goes through input divider and generates the CxIPS signal. The divider factor can be defined as No division, /2, /4 or /8 by setting the CxIDIV bit.

Figure 15-76 Input/output channel 1 main circuit

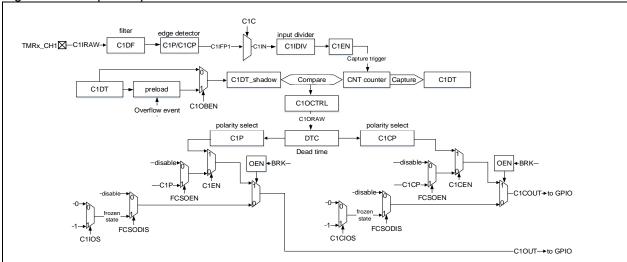
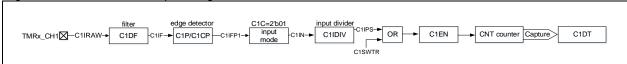
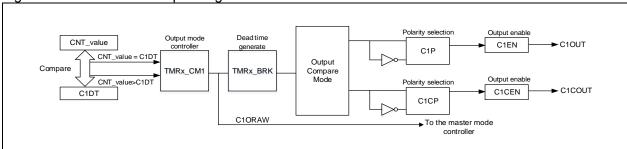



Figure 15-77 Channel 1 input stage

Input mode

In input mode, the TMRx_CxDT registers latches the current counter values after the selected trigger signal is detected, and the capture compare interrupt flag bit (CxIF) is set to 1. An interrupt/DMA request will be generated if the CxIEN bit and CxDEN bit are enabled. If the selected trigger signal is detected when the CxIF is set to 1, a capture overflow event is generated, the previous counter value will be overwritten with the current counter value, and the CxRF is set to 1.


To capture the rising edge of C1IN input, following the procedure below:

- Set C1C=01 in the TMRx_CM1 register to select the C1IN as channel 1 input
- Set C1IN signal filter bandwidth (CxDF[3: 0])
- Set the active edge of C1IN channel by writing C1P=0 (rising edge) in the TMRx_CCTRL register
- Program C1IN signal capture frequency divider (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt or DMA request by setting the C1IEN bit in the TMRx IDEN register or the C1DEN bit in the TMRx IDEN register

15.4.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal.

Figure 15-78 Channel 1 output stage

Output mode

Write CxC[1: 0]#2'b00 to configure the channel as output to implement multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent

to IO after being processed by the output control circuit. The period of the output signal is configured by the TMR15 PR register, while the duty cycle by the TMRx CxDT register.

PWM mode A:

Enable PWM mode A by setting CxOCTRL=3'b110. In upcounting mode, C1ORAW outputs high when TMRx_C1DT>TMRx_CVAL, otherwise, it is low; in downcounting mode, C1ORAW outputs low when TMRx_C1DT<TMRx_CVAL, otherwise, it is high.

To use PWM mode A, the following procedures are recommended:

- Set PWM periods through TMRx PR register
- Set PWM duty cycles through TMRx CxD
- Select PWM mode A by setting CxOCTRL=3'b110 in the TMRx CM1/CM2 register
- Set counting frequency through TMRx DIV register
- Select counting mode by setting the TWCMSEL[1:0] bit in the TMRx_CTRL1 register
- Select output polarity through the CxP and CxCP bits in the TMRx_CCTRL register
- Enable channel output through the CxEN and CxCEN bits in the TMRx CCTRL register
- Enable TMRx output through the OEN bit in the TMRx_BRK register
- Configure GPIOs corresponding to TMR output channels as multiplexed mode
- Enable TMRx to start counting through the TMREN bit in the TMRx CTRL1 register.

PWM mode B:

Enable PWM mode B by setting CxOCTRL=3'b111. In upcounting mode, C1ORAW outputs low when TMRx_C1DT>TMRx_CVAL, otherwise, it is high; in downcounting mode, C1ORAW outputs high when TMRx_C1DT<TMRx_CVAL, otherwise, it is low.

Forced output mode:

Enable forced output mode by setting CxOCTRL=3'b100/101. In this case, the CxORAW is forced to be the programmed level, regardless of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.

Output compare mode:

Enable output compare mode by setting CxOCTRL=3'b001/010/011. In this case, when the counter value matches the value of the CxDT register, the CxORAW is forced high (CxOCTRL=3'b001), low (CxOCTRL=3'b010) or toggling (CxOCTRL=3'b011).

One-pulse mode:

This is a particular case of PWM mode. Enable one-pulse by setting OCMEN=1. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When in upcounting mode, the configuration must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.

Fast output mode:

Enable this mode by setting CxOIEN=1. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but change at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx CxDT register will determine the level of CxORAW in advance.

Figure 15-79 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.

Figure 15-80 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 15-81 gives an example of the combination between upcounting mode and one-pulse PWM mode B. The counter only counts only one cycle, and the output signal sends only one pulse.

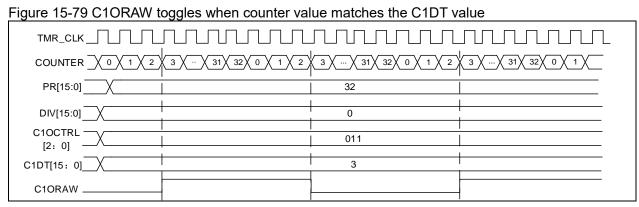


Figure 15-80 Upcounting mode and PWM mode A

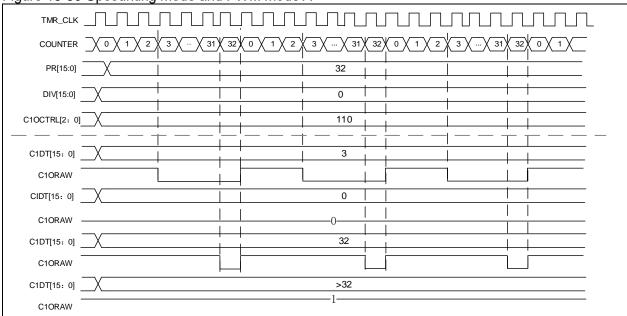
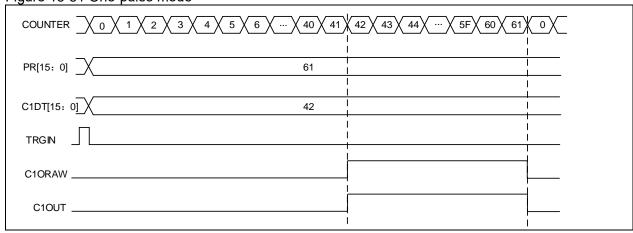
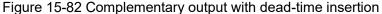
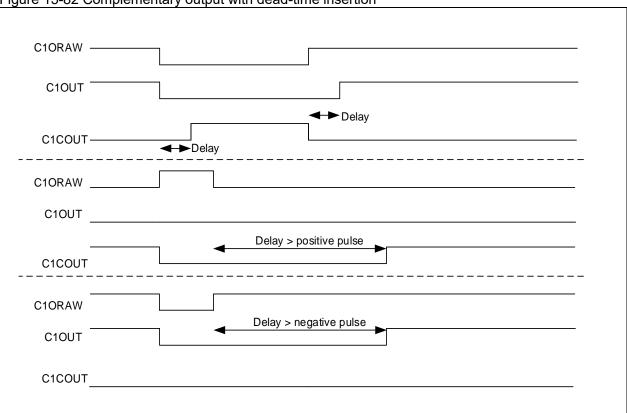



Figure 15-81 One-pulse mode

Dead-time insertion

The TMRx contains a set of reverse channel output. This function is enabled by the CxCEN bit and its polarity is selected by CxCP. Refer to Table 15-16 for more information about the output state of CxOUT and CxCOUT.


The dead-time is activated when switching to IDLEF state (OEN falling down to 0).


Setting both CxEN and CxCEN bits, and using DTC[7:0] bit to insert dead-time of different durations. After the dead-time insertion, the rising edge of the CxOUT is delayed compared to the rising edge of the reference signal; the rising edge of the CxCOU is delayed compared to the falling edge of the reference signal.

If the delay is greater than the width of the active output, C1OUT and C1COUT will not generate corresponding pulses. Therefore, the dead-time should be less than the width of the active output.

Figure 15-82 gives an example of dead-time insertion when CxP=0, CxCP=0, OEN=1, CxEN=1 and CxCEN=1.

15.4.3.5 TMR break function

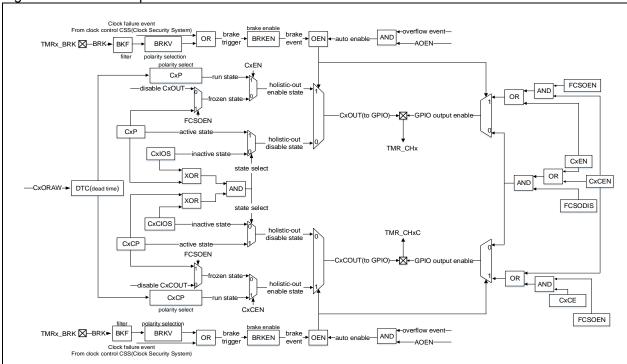
When the break function is enabled (BRKEN=1), the CxOUT and CxCOUT are jointly controlled by OEN, FCSODIS, FCSOEN, CxIOS and CxCIOS. But, CxOUT and CxCOUT cannot be set both to active level at the same time. Please refer to Table 15-16 for more details.

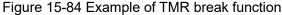
The break source can be a break input pin or a clock failure event. The polarity is controlled by BRKV bit.

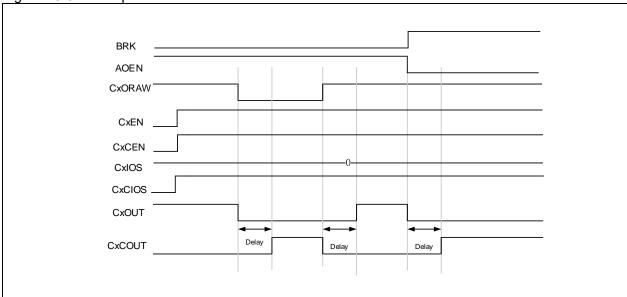
When a break event occurs, there are the following actions:

- The OEN bit is cleared asynchronously, and the channel output state is selected by setting the FCSODIS bit. This function works even if the MCU oscillator is off.
- Once OEN=0, the channel output level is defined by the CxIOS bit. If FCSODIS=0, the timer output is disabled, otherwise, the output enable remains high.
- When complementary outputs are used:
 - The outputs are first put in reset state, that is, inactive state (depending on the polarity). This
 is done asynchronously so that it works even if no clock is provided to the timer.
 - If the timer clock is still active, then the dead-time generator is activated. The CxIOS and CxCIOS bits are used to program the level after dead-time. Even in this case, the CxIOS and CxCIOS cannot be driven to their active level at the same time.

Note: Because of synchronization logic on OEN bit, the dead-time duration is usually longer than usual (around 2 clk_tmr clock cycles)


- If FCSODIS=0, the timer releases the enable output, otherwise, it keeps the enable output; the
 enable output becomes high as soon as one of the CxEN and CxCEN bits becomes high.
- If the break interrupt or DMA request is enabled, the break statue flag is set, and a break interrupt or DMA request can be generated.




If AOEN=1, the OEN bit is automatically set again at the next overflow event.

Note: When the break input is active, the OEN cannot be set, nor the status flag, BRKIF can be cleared.

Figure 15-83 TMR output control

15.4.3.6 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the TMRx counter stops counting by setting the TMRx_PAUSE in the DEBUG module.

2023.08.31 Page 292 Rev 2.00

15.4.4 TMRx registers

Table 15-11 TMR10/11/13/14 register map and reset value

Register	Offset	Reset value
TMRx_CTRL1	0x00	0x0000
TMRx_CTRL2	0x04	0x0000
TMRx_IDEN	0x0C	0x0000
TMRx_ISTS	0x10	0x0000
TMRx_SWEVT	0x14	0x0000
TMRx_CM1	0x18	0x0000
TMRx_CCTRL	0x20	0x0000
TMRx_CVAL	0x24	0x0000
TMRx_DIV	0x28	0x0000
TMRx_PR	0x2C	0x0000
TMRx_RPR	0x30	0x0000
TMRx_C1DT	0x34	0x0000
TMRx_BRK	0x44	0x0000
TMRx_DMACTRL	0x48	0x0000
TMRx_DMADT	0x4C	0x0000
TMR14_RMP	0x50	0x0000

15.4.4.1 TMRx control register1 (TMRx_CTRL1) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at default value
Bit 9: 8	CLKDIV	0x0	rw	Clock divider This field is used to define the division ratio between digital filter sampling frequency (f_{DTS}) and timer clock frequency (f_{CK_INT}). it is also used to set the division ratio between dead time base (T_{DTS}) and timer clock period
DIL 9. O	CLRDIV	UXU	TW	(T _{CK_INT}) 00: No division, f _{DTS} =f _{CK_INT} 01: Divided by 2, f _{DTS} =f _{CK_INT} /2 10: Divided by 4, f _{DTS} =f _{CK_INT} /4 11: Reserved
Bit 7	PRBEN	0x0	rw	Period buffer enable 0: Period buffer is disabled 1: Period buffer is enabled
Bit 6: 5	TWCMSEL	0x0	rw	Two-way counting mode selection 00: One-way counting mode, depending on the OWCDIR bit 01: Two-way counting mode 1, The counter counts up and down alternately, the CxIF bit is set only when the counter is counting down 10: Two-way counting mode 2, The counter counts up and down alternately, the CxIF bit is set only when the counter is counting up 11: Two-way counting mode 3, The counter counts up and down alternately, the CxIF bit is set when the counter is counting up or down
Bit 4	OWCDIR	0x0	rw	One-way count direction 0: Up 1: Down
Bit 3	OCMEN	0x0	rw	One cycle mode enable

2023.08.31 Page 293 Rev 2.00

				This bit is use to select whether to stop counting at an update event 0: The counter does not stop at an update event
				1: The counter stops at an update event
				Overflow event source This bit is used to select overflow event or DMA request
Bit 2	OVFS	0x0	rw	sources. 0: Counter overflow, setting the OVFSWTR bit or overflow event generated by slave timer controller 1: Only counter overflow generates an overflow event
Bit 1	OVFEN	0x0	rw	Overflow event enable 0: Enabled 1: Disabled
Bit 0	TMREN	0x0	rw	TMR enable 0: Enabled 1: Disabled

15.4.4.2 TMRx control register 2 (TMRx_CTRL2) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at default value.
				Channel 1 complementary idle output state
Bit 9	C1CIOS	0x0	F14/	Output disabled (OEN = 0), after dead-time:
טונ פ	CICIOS	UXU	rw	0: C1OUTL=0
				1: C1OUTL=1
				Channel 1 idle output state
Bit 8	C1IOS	0x0	rw	Output disabled (OEN = 0), after dead-time:
Dit 0	01103	UXU	I VV	0: C1OUT=0
				1: C1OUT=1
Bit 7:4	Reserved	0x0	resd	Kept at default value.
				DMA request source
Bit 3	DRS	0x0	rw	0: Capture/compare event
				1: Overflow event
				Channel control bit flash selection
				This bit only acts on channels with
				complementary output. If the channel control bits are
Bit 2	CCFS	0x0	rw	buffered:
				0: Control bits are updated by setting the HALL bit
				1: Control bits are updated by setting the HALL bit or a
				rising edge on TRGIN.
Bit 1	Reserved	0x0	resd	Kept at default value.
				Channel buffer control
				This bit acts on channels that have complementary
Bit 0	CBCTRL	0x0	rw	output.
				0: CxEN, CxCEN and CxOCTRL bits are not buffered.
				1: CxEN, CxCEN and CxOCTRL bits are not buffered.

15.4.4.3 TMRx DMA/interrupt enable register (TMRx_IDEN) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15:10	Reserved	0x00	resd	Kept at default value.
Bit 9	C1DEN	0x0	rw	Channel 1 DMA request enable 0: Disabled 1: Enabled
Bit 8	OVFDEN	0x0	rw	Overflow event DMA request enable 0: Disabled 1: Enabled
Bit 7	BRKIE	0x0	rw	Break interrupt enable 0: Disabled 1: Enabled
Bit 6	Reserved	0x0	resd	Kept at default value.
Bit 5	HALLIEN	0x0	rw	HALL interrupt enable 0: Disabled 1: Enabled

2023.08.31 Page 294 Rev 2.00

Bit 4: 2	Reserved	0x0	resd	Kept at default value.	_
				Channel 1 interrupt enable	
Bit 1	C1IEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

15.4.4.4 TMRx interrupt status register (TMRx_ISTS) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at default value.
				Channel 1 recapture flag
				This bit indicates whether a recapture is detected when
Bit 9	C1RF	0x0	rw0c	C1IF=1. This bit is set by hardware, and cleared by
ыгэ	CIKI	OXO	TWOC	writing "0".
				0: No capture is detected
				1: Capture is detected.
Bit 8	Reserved	0x0	resd	Kept at default value.
				Break interrupt flag
				This bit indicates whether the break input is active or not.
Bit 7	BRKIF	0x0	rw0c	It is set by hardware and cleared by writing "0"
				0: Inactive level
				1: Active level
Bit 6	Reserved	0x0	resd	Kept at default value.
				HALL interrupt flag
				This bit is set by hardware on HALL event. It is cleared by
Di+ E	LALLE	0v0	nu0o	writing "0".
Bit 5	HALLIF	0x0	rw0c	0: No Hall event occurred.
				1: Hall event is detected.
				HALL even: CxEN, CxCEN and CxOCTRL are updated.
Bit 4: 2	Reserved	0x0	resd	Kept at default value.
				Channel 1 interrupt flag
				If the channel 1 is configured as input mode:
				This bit is set by hardware on a capture event. It is
				cleared by software or read access to the TMRx_C1DT
				0: No capture event occurred
Bit 1	C1IF	0x0	rw0c	1: Capture event is generated
				If the channel 1 is configured as output mode:
				This bit is set by hardware on a compare event. It is
				cleared by software.
				0: No compare event occurred
				1: Compare event is generated
				Overflow interrupt flag
				This bit is set by hardware on an overflow event. It is
				cleared by software.
				0: No overflow event occurred
D:: 0	0)/515	0.0	0	1: Overflow event is generated. If OVFEN=0 and
Bit 0	OVFIF	0x0	rw0c	OVFS=0 in the TMRx_CTRL1 register:
				- An overflow event is generated when OVFG= 1 in the
				TMRx_SWEVE register;
				 An overflow event is generated when the counter
				CVAL is reinitialized by a trigger event.

15.4.4.5 TMRx software event register (TMRx_SWEVT) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
				Break event triggered by software
Bit 7	BRKSWTR	0x0	wo	This bit is set by software to generate a break event.
DIL 1	DRAGWIK			0: No effect
				1: Generate a break event.
Bit 6	Reserved	0x0	resd	Kept at default value.
D:+ C	LIALL OVA/TD	0x0	wo	HALL event triggered by software
Bit 5	HALLSWTR			This bit is set by software to generate a HALL event.

2023.08.31 Page 295 Rev 2.00

				0: No effect
				1: Generate a HALL event.
				Note: This bit acts only on channels with complementary
				output.
Bit 4: 2	Reserved	0x0	resd	Kept at default value.
		0x0		Channel 1 event triggered by software
Bit 1	C1SWTR		wo	This bit is set by software to generate a channel 1 event.
DILI	CISWIR			0: No effect
				1: Generate a channel 1 event.
				Overflow event triggered by software
Bit 0	OVFSWTR	0x0	W0	This bit is set by software to generate an overflow event.
DIL U	OVESWIK	UXU	WO	0: No effect
				1: Generate an overflow event.

15.4.4.6 TMRx channel mode register1 (TMRx_CM1) (x=10/11/13/14)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functions in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15:7	Reserved	0x000	resd	Kept at default value.
Bit 6: 4	C10CTRL	0x0	rw	Channel 1 output control This field defines the behavior of the original signal C1ORAW. 000: Disconnected. C1ORAW is disconnected from C1OUT; 001: C1ORAW is high when TMRx_CVAL=TMRx_C1DT 010: C1ORAW is low when TMRx_CVAL=TMRx_C1DT 011: Switch C1ORAW level when TMRx_CVAL=TMRx_C1DT 100: C1ORAW is forced low 101: C1ORAW is forced high. 110: PWM mode A -OWCDIR=0, C1ORAW is high once TMRx_C1DT>TMRx_CVA, else low; -OWCDIR=1, C1ORAW is low once TMRx_C1DT <tmrx_cva, -="" 111:="" b="" c1oraw="" else="" high;="" is="" low="" mode="" once="" owcdir="0," pwm="" tmrx_c1dt="">TMRx_CVAL, else high; -OWCDIR=1, C1ORAW is low once TMRx_C1DT >TMRx_CVAL, else high; -OWCDIR=1, C1ORAW is high once TMRx_C1DT <tmrx_cval, -owcdir="1," 000',="" <tmrx_cval,="" also="" but="" by="" c1oraw="" c1oraw,="" c1oraw.="" c1out="" cctrl.<="" changes="" configurations="" connected="" else="" high="" high;="" in="" is="" level="" low.="" not="" note:="" of="" once="" only="" other="" output="" polarity="" set="" subject="" td="" than="" the="" tmrx_c1dt="" to=""></tmrx_cval,></tmrx_cva,>
Bit 3	C1OBEN	0x0	rw	Channel 1 output buffer enable 0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately. 1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
Bit 2	C10IEN	0x0	rw	Channel 1 output enable immediately In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event. 0: Need to compare the CVAL with C1DT before generating an output

2023.08.31 Page 296 Rev 2.00

				1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
Bit 1: 0	C1C	0x0	rw	Channel 1 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IFP1 10: Reserved 11: Reserved

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
Bit 7: 4	C1DF	0x0	rw	Channel 1 digital filter This field defines the digital filter of the channel 1. "N" stands for the number of filtering, indicating that the input edge can pass the filter only after N sampling events. 0000: No filter, sampling is done at f_{DTS} 1000: $f_{SAMPLING} = f_{DTS}/8$, N=6 0001: $f_{SAMPLING} = f_{CK_INT}$, N=2 1001: $f_{SAMPLING} = f_{CK_INT}$, N=8 0010: $f_{SAMPLING} = f_{CK_INT}$, N=8 1010: $f_{SAMPLING} = f_{CK_INT}$, N=8 1011: $f_{SAMPLING} = f_{CK_INT}$, N=6 0100: $f_{SAMPLING} = f_{DTS}/16$, N=6 0100: $f_{SAMPLING} = f_{DTS}/2$, N=6 1100: $f_{SAMPLING} = f_{DTS}/2$, N=8 1011: $f_{SAMPLING} = f_{DTS}/2$, N=8 1101: $f_{SAMPLING} = f_{DTS}/2$, N=5 0110: $f_{SAMPLING} = f_{DTS}/4$, N=6 1110: $f_{SAMPLING} = f_{DTS}/4$, N=6 1110: $f_{SAMPLING} = f_{DTS}/3$ 2, N=6 0111: $f_{SAMPLING} = f_{DTS}/3$ 2, N=8 1111: $f_{SAMPLING} = f_{DTS}/4$, N=8 1111: $f_{SAMPLING} = f_{DTS}/4$, N=8
Bit 3: 2	C1IDIV	0x0	rw	Channel 1 input divider This field defines Channel 1 input divider. 00: No divider. An input capture is generated at each active edge. 01: An input compare is generated every 2 active edges 10: An input compare is generated every 4 active edges 11: An input compare is generated every 8 active edges Note: the divider is reset once C1EN='0'
Bit 1: 0	C1C	0x0	rw	Channel 1 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IFP1 10: Reserved 11: Reserved.

15.4.4.7 TMRx Channel control register (TMRx_CCTRL) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 4	Reserved	0x000	resd	Kept at default value.
				Channel 1 complementary polarity
Bit 3	C1CP	0x0	rw	0: C1COUT is active high.
				1: C1COUT is active low.
				Channel 1 complementary enable
Bit 2	C1CEN	0x0	rw	0: Output is disabled.
				1: Output is enabled.
				Channel 1 polarity
Bit 1	C1P	0x0	rw	When the channel 1 is configured in output mode:
				0: C1OUT is active high

2023.08.31 Page 297 Rev 2.00

				1: C1OUT is active low
				When the channel 1 is configured in input mode:
				The active edge of the input signal is defined by
				C1CP/C1P.
				00: C1IN active edge is on its rising edge. When used as
				external trigger, C1IN is not inverted.
				01: C1IN active edge is on its falling edge. When used
				as external trigger, C1IN is inverted.
				10: Reserved
				11: C1IN active edge is on its falling edge and rising
				edge. When used as external trigger, C1IN is not
				inverted.
				Channel 1 enable
Bit 0	C1EN	0x0	rw	0: Input or output is disabled
				1: Input or output is enabled

2023.08.31 Page 298 Rev 2.00

Table 15-12 Complementary output channel CxOUT and CxCOUT control bits with break function

		Control bit			Output	state ⁽¹⁾
OEN bit	FCSODIS bit	FCSOEN bit	CxEN bit	CxCEN bit	CxOUT output state	CxCOUT output state
		0	0	0	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0
		0	0	1	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1
		0	1	0	CxORAW+ polarity CxOUT= CxORAW xor CxP, Cx_EN=1	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0
		0	1	1	CxORAW+polarity+ dead-time, Cx_EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1
1	X	1	0	0	Output disabled (no driven by the timer) CxOUT=CxP, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=CxCP, CxCEN=0
		1	0	1	Off-state (Output enabled with inactive level) CxOUT=CxP, Cx_EN=1	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1
		1	1	0	CxORAW + polarity, CxOUT= CxORAW xor CxP, Cx_EN=1	Off-state (Output enabled with inactive level) CxCOUT=CxCP, CxCEN=1
		1	1	1	CxORAW+ polarity+dead- time, Cx_EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1
	0		0	0	Output disabled (correspond timer, IO floating)	
	0	1	0	1	Asynchronously: CxOUT=C	
	0	1	1	0	CxCOUT=CxCP, CxCEN=0; If the clock is present: after	a dead-time,
	0	-	1	1	CxOUT=CxIOS, CxCOUT=0 CxIOS and CxCIOS do not o	
	<u> </u>	 X - - -			CxCOUT active level. CxEN=CxCEN=0: output dis	cabled (corresponding IO is
0	1		0	0	not driven by the timer, IO fle	oating)
	1		0	1	In other cases: off-state (cor invalid level)	responding channel output
	1		1	0	Asynchronously: CxOUT =C CxCOUT=CxCP, CxCEN=1;	
	1		1	1	If the clock is present: after a CxOUT=CxIOS, CxCOUT=CxIOS and CxCIOS do not c CxCOUT active level.	a dead-time, CxCIOS, assuming that

Note: If the two outputs of a channel are not used (CxEN = CxCEN = 0), CxIOS, CxCIOS, CxP and CxCP must be cleared.

Note: The state of the external I/O pins connected to the complementary CxOUT and CxCOUT channels depends on the CxOUT and CxCOUT channel state and the GPIO and the IOMUX registers.

2023.08.31 Page 299 Rev 2.00

15.4.4.8 TMRx counter value (TMRx_CVAL) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	CVAL	0x0000	rw	Counter value

15.4.4.9 TMRx division value (TMRx_DIV) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DIV	0x0000	rw	Divider value The counter clock frequency f _{CK_CNT} = f _{TMR_CLK} / (DIV[15: 0]+1). The value of this register is transferred to the actual prescaler register when an overflow event occurs.

15.4.4.10 TMRx period register (TMRx_PR) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	PR	0x0000	rw	Period value This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

15.4.4.11 TMRx repetition period register (TMRx_RPR) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	RPR	0x00	rw	Kept at default value
Bit 7: 0	RPR	0x00	rw	Repetition of period value This field is used to reduce the generation rate of overflow events. An overflow event is generated when the repetition counter reaches 0.

15.4.4.12 TMRx channel 1 data register (TMRx_C1DT) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C1DT	0x0000	rw	Channel 1 data register When the channel 1 is configured as input mode: The C1DT is the CVAL value stored by the last channel 1 input event (C1IN) When the channel 1 is configured as output mode: C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

15.4.4.13 TMRx break register (TMRx_BRK) (x=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 19: 16	BKF	0x0	rw	Break input filter This field is used to set the filter for break input. The filter number N indicates that the input edge can pass through filter only after N sampling events. 0000: fsampling=fdts (no filter) 1000: fsampling=fdts/8, N=6 0001: fsampling=fdts/8, N=8 0010: fsampling=fdts/8, N=8 0010: fsampling= fdts/8, N=8 0010: fsampling= fdts/16, N=5 0011: fsampling= fdts/16, N=5 0011: fsampling= fdts/16, N=6 1010: fsampling= fdts/16, N=6 1100: fsampling= fdts/2, N=6 1100: fsampling= fdts/2, N=8 1101: fsampling= fdts/2, N=8 1101: fsampling= fdts/32, N=5 0110: fsampling= fdts/4, N=6 1110: fsampling= fdts/4, N=6 1111: fsampling= fdts/32, N=8 1111: fsampling= fdts/32, N=8

Bit 15	OEN	0x0	rw	Output enable This bit acts on the channels as output. It is used to enable CxOUT and CxCOUT outputs. 0: Disabled 1: Enabled
Bit 14	AOEN	0x0	rw	Automatic output enable OEN is set automatically at an overflow event. 0: Disabled 1: Enabled
Bit 13	BRKV	0x0	rw	Break input validity This bit is used to select the active level of a break input. 0: Break input is active low. 1 Break input is active high.
Bit 12	BRKEN	0x0	rw	Break enable This bit is used to enable break input. 0: Break input is disabled. 1: Break input is enabled.
Bit 11	FCSOEN	0x0	rw	Frozen channel status when holistic output enable This bit acts on the channels that have complementary output. It is used to set the channel state when the timer is inactive and OEN=1. 0: CxOUT/CxCOUT outputs are disabled. 1: CxOUT/CxCOUT outputs are enabled. Output inactive level.
Bit 10	FCSODIS	0x0	rw	Frozen channel status when holistic output disable This bit acts on the channels that have complementary output. It is used to set the channel state when the timer is inactive and OEN=0. 0: CxOUT/CxCOUT outputs are disabled. 1: CxOUT/CxCOUT outputs are enabled. Output idle level.
Bit 9: 8	WPC	0x0	rw	Write protection configuration This field is used to enable write protection. 00: Write protection is OFF. 01: Write protection level 3, and the following bits are write protected: TMRx_STOP: DTC, STPEN, STPV and HOAEN TMRx_CTRL2: CxIOS and CxCIOS 10: Write protection level 2. The following bits and all bits in level 3 are write protected: TMRx_CCTRL: CxP and CxCP TMRx_STOP: FCSODIS and FCSOEN 11: Write protection level 1. The following bits and all bits in level 2 are write protected: TMRx_CMx: C2OCTRL and C2OBEN Note: Once WPC>0, its content remains frozen until the next system reset.
Bit 7: 0	DTC	0x00	rw	Dead-time configuration This field defines the duration of the dead-time insertion. The 3-bit MSB of DTC[7: 0] is used for function selection: 0xx: DT = DTC [7: 0] * TDTS 10x: DT = (64+ DTC [5: 0]) * TDTS * 2 110: DT = (32+ DTC [4: 0]) * TDTS * 8 111: DT = (32+ DTC [4: 0]) * TDTS * 16

Note: Based on lock configuration, AOEN, BRKV, BRKEN, FCSODIS, FCSOEN and DTC[7:0] can all be write protected. Thus it is necessary to configure write protection when writing to the TMRx_BRK register for the first time.

2023.08.31 Page 301 Rev 2.00

15.4.4.14 TMRX DMA control register (TMRX_DMACTRL) (X=10/11/13/14)

Bit	Abbr.	Reset value	Type	Description
Bit 15:13	Reserved	0x0	resd	Kept at default value.
Bit 12:8	DTB	0x00	rw	DMA transfer bytes This field defines the number of DMA transfers: 00000: 1 byte 00001: 2 bytes 00010: 3 bytes 00011: 4 bytes 10000: 17 bytes 10001: 18 bytes
Bit 7:5	Reserved	0x0	resd	Kept at default value.
Bit 4: 0	ADDR	0x00	rw	DMA transfer address offset ADDR is defined as an offset starting from the address of the TMRx_CTRL1 register: 00000: TMRx_CTRL1 00001: TMRx_CTRL2 00010: TMRx_STCTRL

15.4.4.15 TMRx DMA data register (TMRx_DMADT) (X=10/11/13/14)

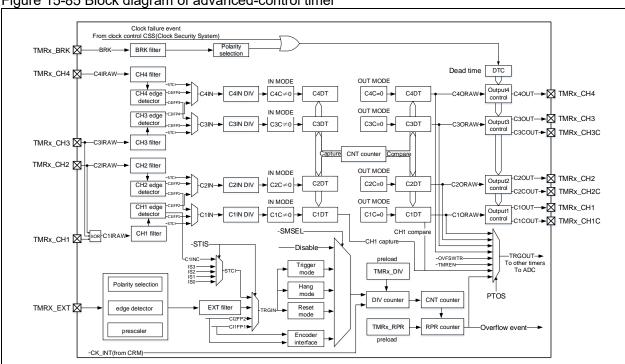
Bit	Abbr.	Reset value	Туре	Description
Bit 15: 0	DMADT	0x0000	rw	DMA data register A write/read operation to the DMADT register accesses any TMR register located at the following address: TMRx peripheral address + ADDR*4 to TMRx peripheral address + ADDR*4 + DTB*4

15.4.4.16 TMR14 channel input remap register (TMRx_RMP)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
				TMR14 channel 1 input remap
				00: TMR14 channel 1 input is connected to GPIO
Bit 7: 6	TMR14_CH1_IRMP	0x0	rw	01: ERTC_CLK
				10: Divided ERTC 32 is used as HEXT
				11: CLK_OUT
Bit 5: 0	Reserved	0x00	resd	Kept at default value.

2023.08.31 Page 302 Rev 2.00

15.5 Advanced-control timers (TMR1)


TMR1 introduction 15.5.1

The advanced-control timer TMR1 consists of a 16-bit counter supporting up and down counting modes, four channel registers, and four independent channels. It can be used for dead-time insertion, input capture and programmable PWM output.

15.5.2 TMR1 main features

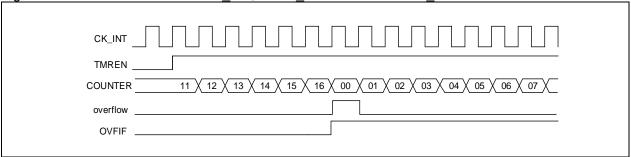
- Clock source of counter clock: internal clock, external clock an internal trigger input
- 16-bit up, down, up/down, repetition and encoder mode counter
- Four independent channels for input capture, output compare, PWM generation, one-pulse mode output and dead-time insertion
- Three independent channels for complementary output
- TMR break function
- Synchronization control between master and slave timers
- Interrupt/DMA generation at overflow event, trigger event, and channel events
- Support TMR burst DMA transfer

Figure 15-85 Block diagram of advanced-control timer

15.5.3 TMR1 functional overview

15.5.3.1 Counting clock

The count clock of TMR1 can be provided by the internal clock (CK_INT), external clock (external clock mode A and B) and internal trigger input (ISx)


Figure 15-86 Counting clock Encoder mode (SMSEL=3'b001/010/011) -CK INT(form CRM)--CI1FP1/CI2FP2-STIS[1:0] External clock mode A (SMSEL=3'b111) STISI21 -IS2 -ISO DIV_counter -CK_CNT- CNT_counter STIS[1:0] TRGIN -C1INC-► polarity edge -C1IFP1→ FSP ernal clock mode B (ECMBEN=1) -C2IPF2-TMRx EXT X ESDIV

Internal clock (CK_INT)

By default, the CK_INT which is divided by the prescaler, is used to drive the counter to start counting. When TMR's APB clock prescaler factor is 1, the CK_INT frequency is equal to APB, otherwise, it doubles the APB clock frequency.

- Set CK_INT frequency through the CLKDIV[1:0] bit in the TMRx_CTRL1 register
- Select a counting mode by setting the TWCMSEL[1:0] in TMRx_CTRL1 register. If a unidirectional aligned counting mode is selected, it is necessary to select a counting direction through the OWCDIR in TMRx_CTRL1 register.
- Set counting frequency through TMRx_DIV register
- Set counting cycles through TMRx_PR register
- Enable a counter by setting the TMREN bit in the TMRx_CTRL1 register

Figure 15-87 Control circuit with CK INT, TMRx DIV=0x0 and TMRx PR=0x16

External clock (TRGIN/EXT)

The counter clock can be provided by two external clock sources, namely, TRGIN and EXT signals.

SMSEL=3'b111: External clock mode A is selected. By setting the STIS[2: 0] bit, select an external clock source TRGIN signal to drive the counter to start counting.

The external clock sources include:

C1INC (STIS=3'b100, channel 1 rising edge and falling edge)

C1IFP1 (STIS=3'b101, a signal after channel 1 filter and polarity selection)

C2IFP2 (STIS=3'b110, a signal after channel 2 filter and polarity selection)

EXT (STIS=3'b111, external input signal after polarity selection, frequency division and filter).

ECMBEN=1: External clock mode B is selected. The counter is driven by external input that has gone through polarity selection, frequency division and filtering. The external clock mode B is equivalent to the external clock mode A, and the EXT signal is used as an external force TRGIN,

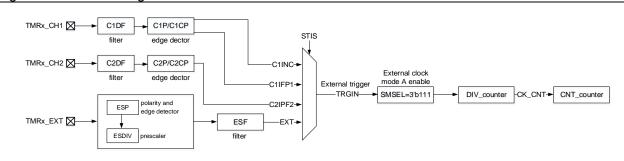
To use external clock mode A, follow the steps below:

Set external source TRGIN parameters

If the TMRx_CH1 is used as a source of TRGIN, it is necessary to configure channel 1 input filter (C1DF[3:0] in TMRx_CM1 register) and channel 1 input polarity (C1P/C1CP in TMRx_CCTRL register);

If the TMRx CH2 is used as source of TRGIN, it is necessary to configure channel 1 input filter

(C2DF[3:0] in TMRx_CM1 register) and channel 2 input polarity (C2P/C2CP in TMRx_CCTR register);


If the TMRx_EXT is used as a source of TRGIN, it is necessary to configure the external signal polarity (ESP in TMRx_STCTRL register), external signal frequency division (ESDIV[1:0] in TMRx_STCTRL) and external signal filter (ESF[3:0] in TMRx_STCTRL register).

- Set TRGIN signal source through the STIS[1:0] bit in TMRx_STCTRL register
- Enable external clock mode A by setting SMSEL=3'b111 in TMRx_STCTR register
- Set counting frequency through the DIV[15:0] in TMRx_DIV register
- Set counting period through the PR[15:0] in TMRx_PR register
- Enable counter through the TMREN bit in TMRx_CTRL1 register

To use external clock mode B, follow the steps below:

- Set external signal polarity through the ESP bit in TMRx_STCTRL register
- Set external signal frequency division through the ESDIV[1:0] bit in TMRx_STCTRL register
- Set external signal filter through the ESF[3:0] bit in TMRx_STCTRL register
- Enable external clock mode B through the ECMBEN bit in TMRx_STCTR register
- Set counting frequency through the DIV[15:0] bit in TMRx_DIV register
- Set counting period through the PR[15:0] bit in TMRx_PR register
- Enable counter through the TMREN in TMRx_CTRL1 register

Figure 15-88 Block diagram of external clock mode A

Note: The delay between the signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Figure 15-89 Counting in external clock mode A, PR=0x32 and DIV=0x0

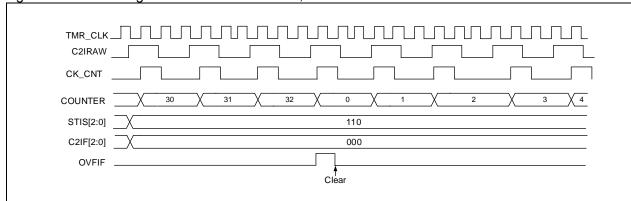
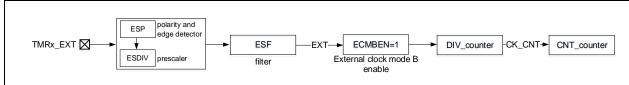
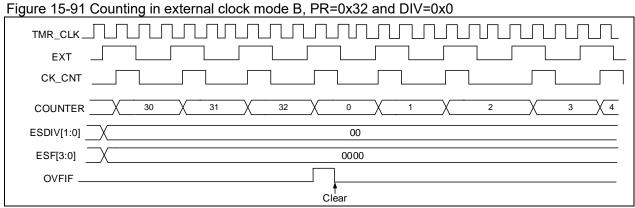




Figure 15-90 Block diagram of external clock mode B

Note: The delay between the EXT signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Internal trigger input (ISx)

Timer synchronization allows interconnection between several timers. The TMR_CLK of one timer can be provided by the TRGOUT signal output by another timer. Set the STIS[2: 0] bit to select internal trigger signal to enable counting.

The advanced-control timer consists of a 16-bit prescaler, which is used to generate the CK_CNT that enables the counter to count. The frequency division relationship between the CK_CNT and TMR_CLK can be adjusted by setting the value of the TMR1_DIV register. The prescaler value can be modified at any time, but it takes effect only when the next overflow event occurs.

Below is the configuration procedure for internal trigger input:

- Set counting cycles through TMRx_PR register
- Set counting frequency through TMRx_DIV register
- Set counting modes through the TWCMSEL[1:0] in TMRx_CTRL1 register
- Select internal trigger by setting STIS[2:0]= 3'b000~3'b011 in TMRx_STCTRL register
- Select external clock mode A by setting SMSEL[2:0]=3'b111 in TMRx_STCTRL register
- Enable TMRx to start counting through the TMREN in TMRx_CTRL1 register

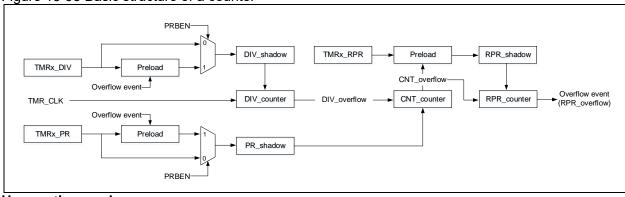
Table 15-13 TMRx internal trigger connection

IS0 (STIS=000)	IS1 (STIS=001)	IS2 (STIS=010)	IS3 (STIS=011)
TMR9	TMR2	TMR3	TMR4
unter timing with preso	caler value changing	from 1 to 4	
COLK	1A X 1B X 1C X	00 X 01	
5: 0]	C		
FIF	Clear		
	TMR9 unter timing with present the present timing with present times with times wi	TMR9 TMR2 unter timing with prescaler value changing CLK CNT TER 17 X 18 X 19 X 1A X 1B X 1C X 5: 0] 0 3 FIF	TMR9 TMR2 TMR3 unter timing with prescaler value changing from 1 to 4 CLK CNT TER 17 \ 18 \ 19 \ 1A \ 1B \ 1C \ 00 \ 01 5: 0] 0 \ 3 5: 0] 1C

15.5.3.2 Counting mode

The advanced-control timer consists of a 16-bit counter supporting up, down, up/down counting modes. The TMRx_PR register is used to define counting period of counter. The value in the TMRx_PR is immediately moved to the shadow register by default. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event.

TMRx_DIV register is used to define the counter frequency of the counter. The counter counts once


every DIV[15:0]+1 clock cycle. Similar to TMRx_PR register, after enabling periodic buffer, the value of the TMRx_DIV register are transferred into the shadow register at each overflow event.

Reading the TMRx_CNT register returns the current counter value. Writing the TMRx_CNT register will update the current counter value.

An overflow event is enabled by default. It can be disabled by setting OVFEN=1 in the TMRx_CTRL1 register. The OVFS bit in the TMRx_CTRL1 register is used to select the source of an overflow event, which is, by default, counter overflow or underflow, setting OVFSWTR, reset signal generated by slave mode timer controller in reset mode. Once the OVFS is set, an overflow event is generated only when overflow or underflow occurs.

Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR_EN is set 1 clock cycle after the TMREN is set.

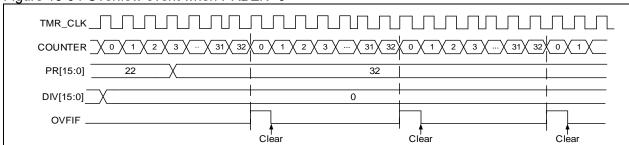
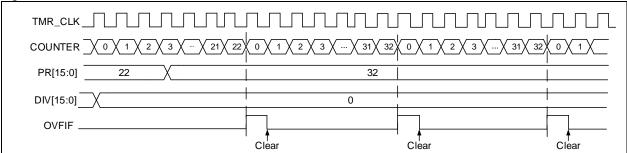
Figure 15-93 Basic structure of a counter

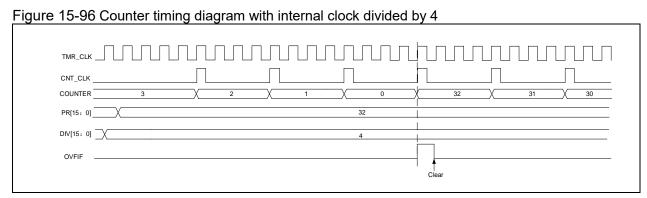
Upcounting mode

This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b0 in the TMRx_CTRL1 register.

In upcounting mode, the counter counts from 0 to the value programmed in the TMR1_PR register, restarts from 0, and generates a counter overflow event, with setting OVFIF bit to 1. If the overflow event is disabled, the counter is no longer reloaded with the prescaler and re-loaded value on counter overflow, otherwise, the prescaler and re-loaded value will be updated on an overflow event.

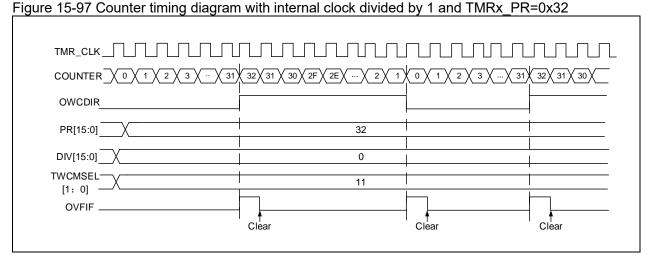
Figure 15-94 Overflow event when PRBEN=0


Figure 15-95 Overflow event when PRBEN=1

Downcounting mode

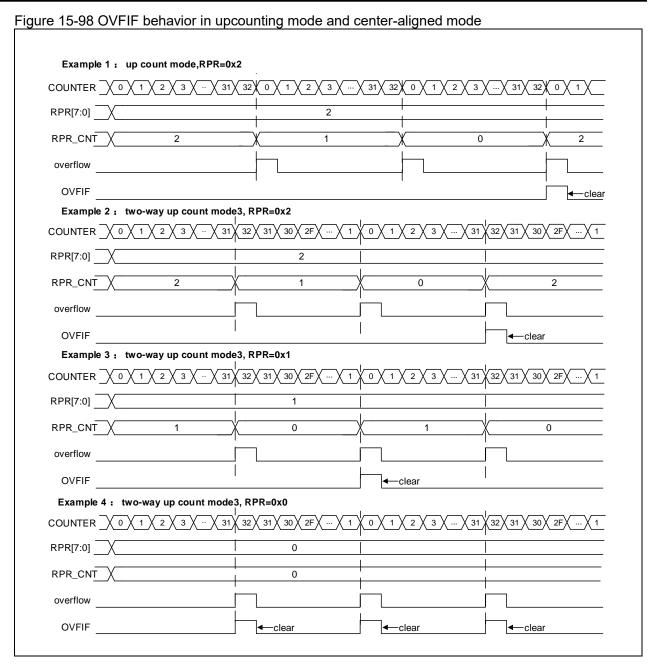
This mode is enabled by setting CMSEL[1:0]=2'b00 and OWCDIR=1'b1 in the TMRx_CTRL1 register. In downcounting mode, the counter counts from the value programmed in the TMRx_PR register down to 0, and restarts from the value programmed in the TMRx_PR register, and generates a counter underflow event.



Up/down counting mode (center-aligned mode)

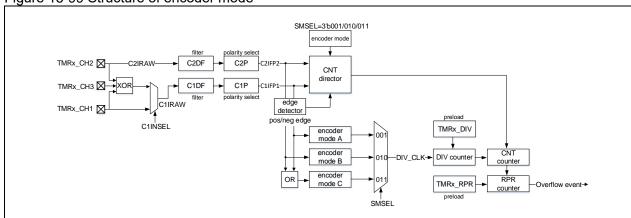
Up/down counting mode can be enabled by setting CMSEL[1:0]≠2'b00 in the TMRx_CTRL1 register. In up/down counting mode, the counter counts up/down alternatively. When the counter counts from the value programmed in the TMRx_PR register down to 1, an underflow event is generated, and then restarts counting from 0; when the counter counts from 0 to the value of the TMRx_PR register -1, an overflow event is generated, and then restarts counting from the value of the TMRx_PR register. The OWCDIR bit indicates the current counting direction.

The TWCMSEL[1:0] bit in the TMRx_CTRL1 register is used to select the condition under which the CxIF flag is set in two-way counting mode. In other words, when TWCMSEL[1:0]=2'b01 (counting mode 1) is selected, the CxIF flag is set only when the counter counts down; when TWCMSEL[1:0]=2'b10 (counting mode 2) is selected, the CxIF flag is set only when the counter counts up; when TWCMSEL[1:0]=2'b11 (counting mode 3) is selected, the CxIF flag is set when the counter counts up and down.


Note: The OWCDIR is ready-only in up/down counting mode.

Repetition counter mode:

The TMRx_RPR register is used to set repetition counting mode. This mode is enabled when the repetition counter value is not equal to 0. In this mode, an overflow event is generated when a counter overflow occurs (RPR[7:0]+1). The repetition counter is decremented at each counter overflow. An overflow event is generated when the repetition counter reaches 0. The frequency of the overflow event can be adjusted by setting the repetition counter value.


2023.08.31 Page 308 Rev 2.00

Encoder interface mode

In this mode, the two inputs (TMRx_CH1/ TMRx_CH2) are required. Depending on the level on one input, the counter counts up or down on the edge of the other input. The OWCDIR bit indicates the direction of the counter, as shown in the figure below:

Encoder mode A: SMSEL=3'b001. The counter counts on the selected C1IFP1 edge (rising and falling edges), and the counting direction is dependent on the edge direction of C1IFP1 and the level of C2IFP2.

Encoder mode B: SMSEL=3'b010. The counter counts on the selected C2IFP2 edge (rising and falling edges), and the counting direction is dependent on the edge direction of C2IFP2 and the level of C1IFP1.

Encoder mode C: SMSEL=3'b011. The counter counts on both C1IFP1 and C2IFP2 edges (rising and falling edges). The counting direction is dependent on the C1IFP1 edge direction and C2IFP2 level, and C2IFP2 edge direction and C1IFP1 level.


To use encoder mode, follow the procedures below:

- Set channel 1 input signal filtering through the C1DF[3:0] bit in the TMRx_CM1 register;
 Set channel 1 input signal active level through the C1P bit in the TMRx_CCTRL register
- Set channel 2 input signal filtering through the C2DF[3:0] bit in the TMRx_CM1 register;
 Set channel 2 input signal active level through the C2P bit in the TMRx_CCTRL register
- Set channel 1 as input mode through the C1C[1:0] bit in the TMRx_CM1 register;
 Set channel 2 as input mode through the C2C[1:0] bit in the TMRx_CM1 register
- Select encoder mode A (SMSEL=3'b001), encoder mode B (SMSEL=3'b010), or encoder mode C (SMSEL=3'b011) by setting the SMSEL[2:0] bit in the TMRx_STCTRL register
- Set counting cycles through the PR[15:0] bit in the TMRx PR register
- Set counting frequency through the DIV[15:0] bit in the TMRx_DIV register
- Configure the corresponding IOs of TMRx_CH1 and TMRx_CH2 as multiplexed mode
- Enable counter through the TMREN bit in the TMRx_CTRL1 register

Table 15-14 Counting direction versus encoder signals

Antivo odno	Level on opposite signal	C1IFP1 signal		C2IFP2 signal	
Active edge	(C1IFP1 to C2IFP2, C2IFP2 to C1IFP1)	Rising	Falling	Rising	Falling
Count on C1IFP1 only	High	Down	Up	No count	No count
Count on Chief Finding	Low	Up	Down	No count	No count
Count on COLEDO only	High	No count	No count	Up	Down
Count on C2IFP2 only	Low	No count	No count	Down	Up
Count on both C1IFP1	High	Down	Up	Up	Down
and C2IFP2	Low	Up	Down	Down	Up

Figure 15-100 Example of encoder interface mode C

15.5.3.3 TMR input function

The TMR1 has four independent channels. Each channel can be configured as input or output. As input, each channel input signal is processed as follows:

- TMRx_CHx outputs the pre-processed CxIRAW. The C1INSE bit is used to select TMRx_CHx, or the XOR-ed TMRx_CH1, TMRx_CH2 and TMRx_CH3 as the source of C1IRAW.
 The sources of C2IRAW, C3IRAW and C4IRAW are TMRx_CH2, TMRx_CH3, TMRx_CH4, respectively.
- CxIRAW goes through digital filter and generates the filtered CxIF signal. The digital filter uses the CxDF bit to program sampling frequency and sampling times.
- CxIF goes through edge detector, and generates the CxIFPx signal after edge selection. The edge selection depends on both CxP and CxCP bits. It is possible to select input rising edge, falling edge or both edges.
- CxIFPx goes through capture signal selector, and generates the CxIN signal after capture signal selection. The capture signal selection is defined by CxC bits. It is possible to select CxIFPx, CyIFPx or STCI as CxIN source. Of those, CyIFPx (x≠y) is the CyIFPy signal that is from Y channel and processed by channel-x edge detector (for example, C1IFP2 is the C1IFP1 signal that is from channel 1 and processed by channel 2 edge detector). The STCI comes from slave timer controller, and its source is selected by STIS bit.
- CxIN goes through input divider and generates the CxIPS signal. The divider factor can be defined as No division, /2, /4 or /8, by the CxIDIV bit.

Figure 15-101 Input/output channel 1 main circuit

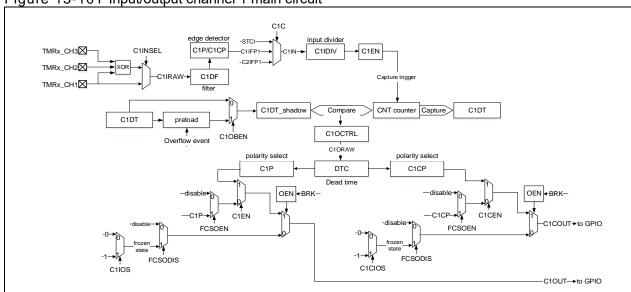
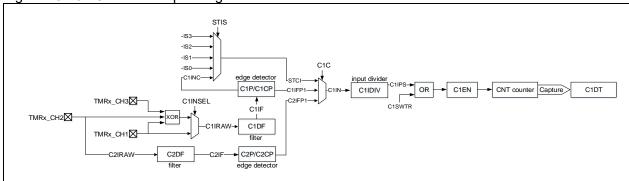



Figure 15-102 Channel 1 input stage

Input mode

In input mode, the TMRx_CxDT registers latch the current counter values after the selected trigger signal is detected, and the capture compare interrupt flag bit (CxIF) is set to 1. An interrupt/DMA request will be generated if the CxIEN bit and CxDEN bit are enabled. If the selected trigger signal is detected when the CxIF is set to 1, a capture overflow event is generated. The previous counter value will be overwritten

with the current counter value, and the CxRF is set to 1.

To capture the rising edge of C1IN input, following the procedure below:

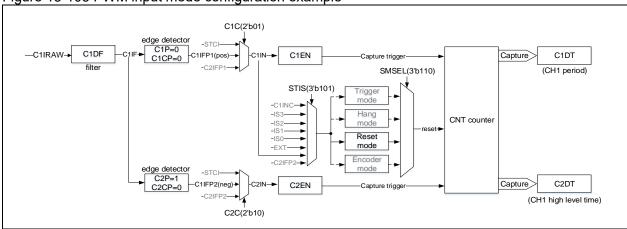
- Set C1C=01 in the TMR1 CM1 register to select the C1IN as channel 1 input
- Set C1IN signal filter bandwidth (CxDF[3: 0])
- Set the active edge on the C1IN channel by writing C1P=0 (rising edge) in the TMR1_CCTRL register
- Program C1IN signal capture frequency divider (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt or DMA request by setting the C1IEN bit in the TMRx_IDEN register or the C1DEN bit in the TMRx_IDEN register

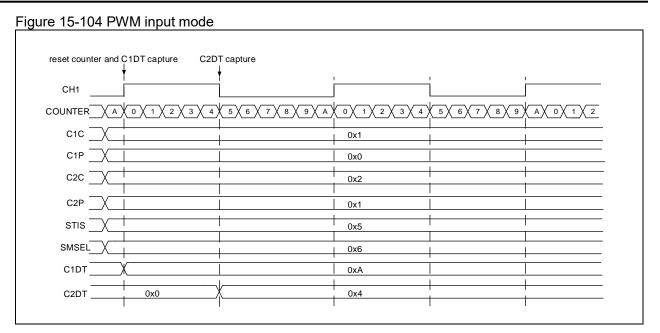
Timer Input XOR function

The timer input pins (TMR1_CH1, TMR1_CH2 and TMR1_CH3) are connected to the channel 1 (selected by setting the C1INSE in the TMR1_CTRL2 register) through an XOR gate.

The XOR gate can be used to connect Hall sensors. For example, connect the three XOR inputs to the three Hall sensors respectively so as to calculate the position and speed of the rotation by analyzing three Hall sensor signals.

PWM input


PWM input mode is applied to channel 1 and 2. To use this mode, both C1IN and C2IN are mapped on the same TMRx_CHx, and the CxIFPx of either channel 1 or channel 2 must be configured as trigger input and slave mode controller is configured in reset mode.


The PWM input mode can be used to measure the period and duty cycle of the PWM input signal. For example, the user can measure the period and duty cycle of the PWM applied on channel 1 using the following procedures:

- Set C1C=2'b01: select C1IN for C1IFP1
- Set C1P=1'b0, select C1IFP1 rising edge active
- Set C2C=2'b10, select C2IN for C1IFP2
- Set C2P=1'b1, select C1IFP2 falling edge active
- Set STIS=3'b101, select the slave mode timer trigger signal as C1IFP1
- Set SMSEL=3'b100: configure the slave mode controller in reset mode
- Set C1EN=1'b1 and C2EN=1'b1. Enable channel 1 and input capture

After above configuration, the rising edge of channel 1 input signal will trigger the capture and stores the capture value into C1DT register, and it will reset the counter at the same time. The falling edge of the channel 1 input signal triggers the capture and stores the capture value into C2DT register. The period of the channel 1 input signal is calculated through C1DT, and its duty cycle through C2DT.

Figure 15-103 PWM input mode configuration example

15.5.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal. The advanced-control timer output function varies from one channel to one channel.

Figure 15-105 Channel output stage (channel 1 to 3)

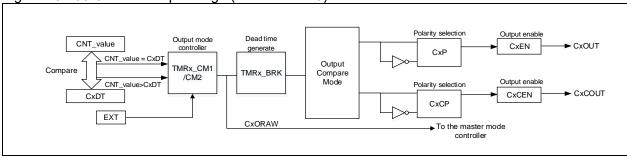
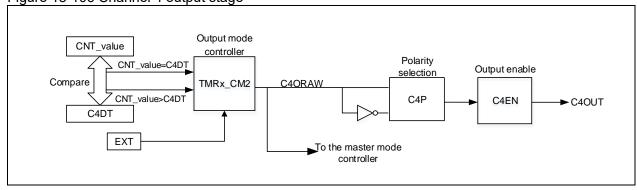



Figure 15-106 Channel 4 output stage

Output mode

Write CxC[1: 0] \$\neq 2'\$ b00 to configure the channel as output to implement multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent to IO after being processed by the output control circuit. The period of the output signal is configured by the TMRx_PR register, while the duty cycle by the TMRx_CxDT register.

Output compare modes include:

PWM mode A:

Enable PWM mode A by setting CxOCTRL=3'b110. In upcounting mode, C1ORAW outputs high when TMRx_C1DT>TMRx_CVAL, otherwise, it is low; In downcounting mode, C1ORAW outputs low when TMRx_C1DT<TMRx_CVAL, otherwise, it is high.

To use PWM mode A, the following procedures are recommended:

- Set PWM periods through TMRx_PR register
- Set PWM duty cycles through TMRx CxD
- Select PWM mode A by setting CxOCTRL=3'b110 in the TMRx_CM1/CM2 register
- Set counting frequency through TMRx DIV register
- Select counting mode by setting the TWCMSEL[1:0] bit in the TMRx CTRL1 register
- Select output polarity through the CxP and CxCP bits in the TMRx CCTRL register
- Enable channel output through the CxEN and CxCEN bits in the TMRx CCTRL register
- Enable TMRx output through the OEN bit in the TMRx_BRK register
- Configure GPIOs corresponding to TMR output channels as multiplexed mode
- Enable TMRx to start counting through the TMREN bit in the TMRx CTRL1 register.

PWM mode B:

Enable PWM mode B by setting CxOCTRL=3'b111. In upcounting mode, C1ORAW outputs low when TMRx_C1DT>TMRx_CVAL, otherwise, it is high; In downcounting mode, C1ORAW outputs high when TMRx_C1DT<TMRx_CVAL, otherwise, it is low.

Forced output mode:

Enable forced output mode by setting CxOCTRL=3'b100/101. In this case, the CxORAW is forced to be the programmed level, regardless of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.

Output compare mode:

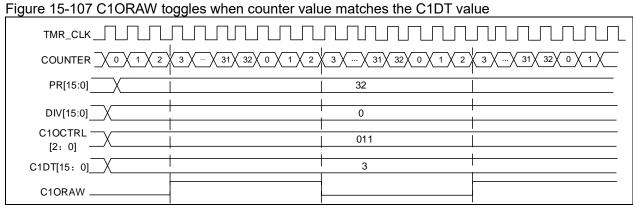
Enable output compare mode by setting CxOCTRL=3'b001/010/011. In this case, when the counter value matches the value of the CxDT register, the CxORAW is forced high (CxOCTRL=3'b001), low (CxOCTRL=3'b010) or toggling (CxOCTRL=3'b011).

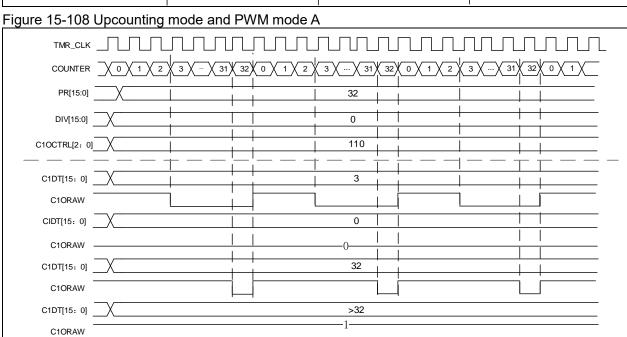
One-pulse mode:

This is a particular case of PWM mode. Enable one-pulse by setting OCMEN=1. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When in upcounting mode, the configuration must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.

Fast output mode:

Enable this mode by setting CxOIEN=1. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but change at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx CxDT register will determine the level of CxORAW in advance.


Figure 15-107 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.


Figure 15-108 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

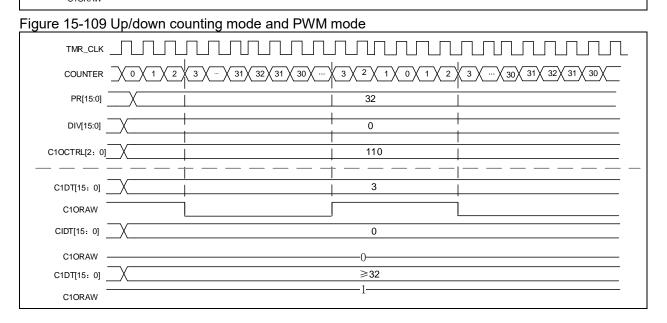
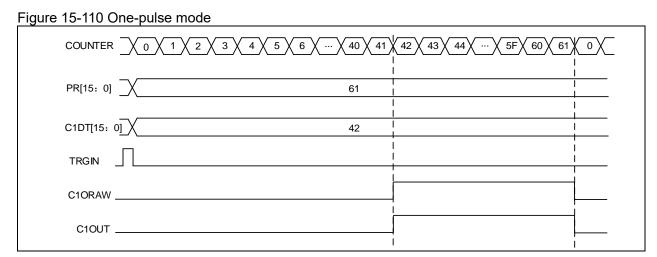
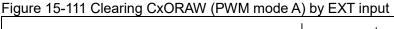
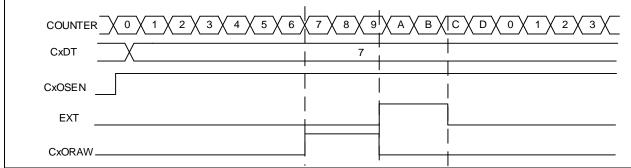

Figure 15-109 gives an example of the combination between up/down counting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 15-110 gives an example of the combination between upcounting mode and one-pulse PWM mode B. The counter only counts only one cycle, and the output signal sends only one pulse.



Master mode timer event output


When TMR is used as a master timer, one of the following source of signals can be selected as TRGOUT output to a slave mode timer. This is done by setting the PTOS bit in the TMRxCTRL2 register.


- PTOS=3'b000, TRGOUT output software overflow event (OVFSWTR bit in TMRx_SWEVT register)
- PTOS=3'b001, TRGOUT output counter enable
- PTOS=3'b010, TRGOUT output counter overflow event
- PTOS=3'b011, TRGOUT output capture and compare event
- PTOS=3'b100, TRGOUT output C1ORAW
- PTOS=3'b101, TRGOUT output C2ORAW
- PTOS=3'b110, TRGOUT output C3ORAW
- PTOS=3'b111, TRGOUT output C4ORAW

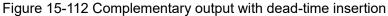
CxORAW clear

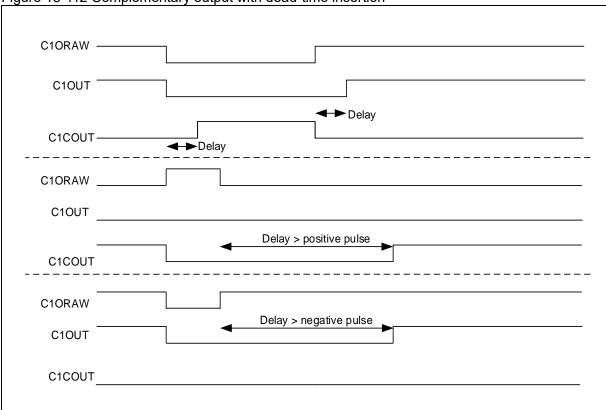
When the CxOSEN bit is set, the CxORAW signal for a given channel is cleared by applying a high level to the EXT input. The CxORAW signal remains unchanged until the next overflow event.

This function can only be used in output capture or PWM modes, and does not work in forced output mode. *Figure 15-111* shows the example of clearing CxORAW. When the EXT input is high, the CxORAW signal, which was originally high, is driven low; when the EXT is low, the CxORAW signal outputs the corresponding level according to the comparison result between the counter value and CxDT value.

Dead-time insertion

The channel 1 to 3 of the advanced-control timers contains a set of reverse channel output. This function is enabled by the CxCEN bit and its polarity is defined by CxCP. Refer to Table 15-16 for more information about the output state of CxCUT and CxCOUT.


The dead-time is activated when switching to IDLEF state (OEN falling down to 0).


Setting both CxEN and CxCEN bits, and using DTC[7:0] bit to insert dead-time of different durations. After the dead-time insertion, the rising edge of the CxOUT is delayed compared to the rising edge of the reference signal; the rising edge of the CxCOU is delayed compared to the falling edge of the reference signal.

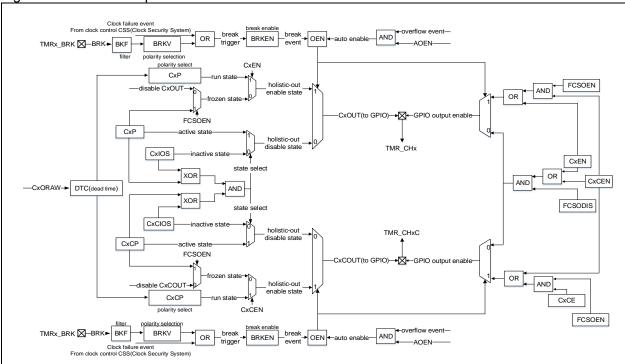
If the delay is greater than the width of the active output, then the C1OUT and C1COUT will not generate corresponding pulses. Therefore the dead-time should be less than the width of the active output.

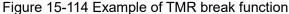
Figure 15-112 gives an example of dead-time insertion when CxP=0, CxCP=0, OEN=1, CxEN=1 and CxCEN=1.

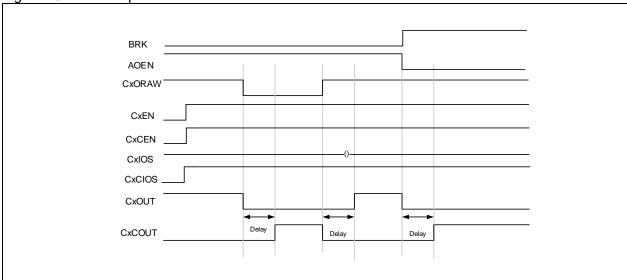
15.5.3.5 TMR break function

When the break function is enabled (BRKEN=1), the CxOUT and CxCOUT are jointly controlled by OEN, FCSODIS, FCSOEN, CxIOS and CxCIOS. But, CxOUT and CxCOUT cannot be set both to active level at the same time. Please refer to 14-14 for more details.

The break source can be the break input pin or a clock failure event. The polarity is controlled by the BRKV bit.


When a break event occurs, there are the following actions:

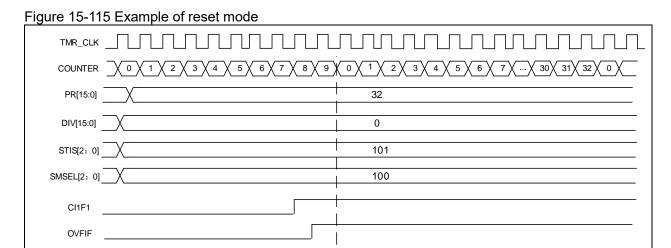

- The OEN bit is cleared asynchronously, and the channel output state is selected by setting the FCSODIS bit. This function works even if the MCU oscillator is off.
- Once OEN=0, the channel output level is defined by the CxIOS bit. If FCSODIS=0, the timer output is disabled, otherwise, the output enable remains high.
- When complementary outputs are used:
 - The outputs are first put in reset state, that is, inactive state (depending on the polarity). This
 is done asynchronously so that it works even if no clock is provided to the timer.
 - If the timer clock is still active, then the dead-time generator is activated. The CxIOS and CxCIOS bits are used to program the level after dead-time. Even in this case, the CxIOS and CxCIOS cannot be driven to their active level at the same time.
 - Note: because of synchronization on OEN, the dead-time duration is usually longer than usual (around 2 clk tmr clock cycles)
 - If FCSODIS=0, the timer releases the enable output, otherwise, it keeps the enable output; the
 enable output becomes high as soon as one of the CxEN and CxCEN bits becomes high.
- If the break interrupt or DMA request is enabled, the break statue flag is set, and a break interrupt or DMA request can be generated.


• If AOEN=1, the OEN bit is automatically set again at the next overflow event.

Note: When the break input is active, the OEN cannot be set, nor the status flag, BRKIF can be cleared.

Figure 15-113 TMR output control

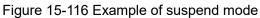
15.5.3.6 TMR synchronization

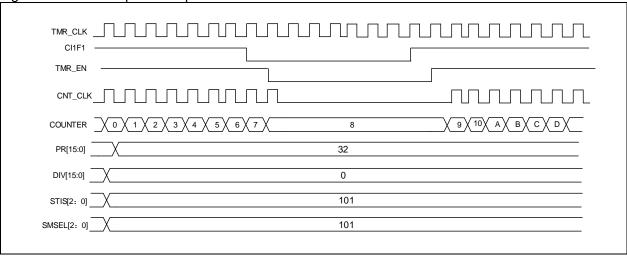

The timers are linked together internally for timer synchronization. Master timer is selected by setting the PTOS[2: 0] bit; Slave timer is selected by setting the SMSEL[2: 0] bit.

Slave modes include:

Slave mode: Reset mode

The counter and its prescaler can be reset by a selected trigger signal. An overflow event can be generated when OVFS=0.

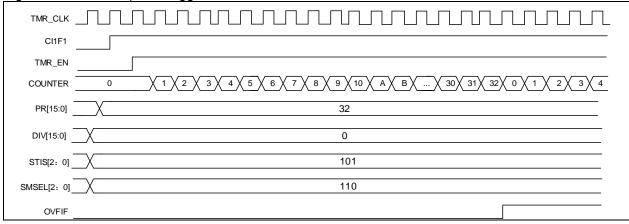




Slave mode: Suspend mode

TRGIF

In this mode, the counter is controlled by a selected trigger input. The counter starts counting when the trigger input is high and stops as soon as the trigger input is low.



Slave mode: Trigger mode

The counter can start counting on the rising edge of a selected trigger input (TMR EN=1)

Figure 15-117 Example of trigger mode

For more examples on timer synchronization, please refer to section 15.2.3.5.

15.5.3.7 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the TMR1 counter stops counting by setting the TMR1_PAUSE in the DEBUG module.

15.5.4 TMR1 registers

These peripheral registers have to be accessed by half words (16 bits) or words (32 bits). TMR1 registers are mapped into a 16-bit addressable space.

Table 15-15 TMR1 register map and reset value

Register	Offset	Reset value	
TMR1_CTRL1	0x00	0x0000	
TMR1_CTRL2	0x04	0x0000	
TMR1_STCTRL	0x08	0x0000	
TMR1_IDEN	0x0C	0x0000	
TMR1_ISTS	0x10	0x0000	
TMR1_SWEVT	0x14	0x0000	
TMR1_CM1	0x18	0x0000	
TMR1_CM2	0x1C	0x0000	
TMR1_CCTRL	0x20	0x0000	
TMR1_CVAL	0x24	0x0000	
TMR1_DIV	0x28	0x0000	
TMR1_PR	0x2C	0x0000	
TMR1_RPR	0x30	0x0000	
TMR1_C1DT	0x34	0x0000	
TMR1_C2DT	0x38	0x0000	
TMR1_C3DT	0x3C	0x0000	
TMR1_C4DT	0x40	0x0000	
TMR1_BRK	0x44	0x0000	
TMR1_DMACTRL	0x48	0x0000	
TMR1_DMADT	0x4C	0x0000	
TMR1_CM3	0x70	0x0000	
TMR1_C5DT	0x74	0x0000	

15.5.4.1 TMR1 control register1 (TMR1_CTRL1)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at default value.
				Clock division
				This field is used to define the division ratio between
				digital filter sampling frequency (f _{DTS}) and timer clock
Bit 9: 8	CLKDIV	0x0	rw	frequency (f_{CK_INT}). it is also used to set the division ratio between dead time base (T_{DTS}) and timer clock period
Dit 3. 0	OLINDIV	0.00	1 44	(Tck_int)
				00: No division, fdts=fcк_INT
				01: Divided by 2, f _{DTS} =f _{CK_INT} /2
				10: Divided by 4, f _{DTS} =fcK_INT/4
				11: Reserved
Bit 7	PRBEN	0x0	rw	Period buffer enable
DIL 1	IIVDLIN	UAU	I VV	0: Period buffer is disabled

				1: Period buffer is enabled
				Two-way counting mode selection
				00: One-way counting mode, depending on the OWCDIR
				bit
				01: Central-aligned counting mode 1, The counter counts
				up and down alternately, the CxIF bit is set only when the counter is counting down
Bit 6: 5	TWCMSEL	0x0	rw	10: Central-aligned counting mode 2, The counter counts
				up and down alternately, the CxlFbit is set only when the
				counter is counting up
				11: Central-aligned counting mode 3, The counter counts
				up and down alternately, the CxIF bit is set when the
				counter is counting up or down
				One-way count direction
Bit 4	OWCDIR	0x0	rw	0: Up
				1: Down
				One cycle mode enable
				This bit is use to select whether to stop counting at an
Bit 3	OCMEN	0x0	rw	update event
				0: The counter does not stop at an update event
Bit 3				1: The counter stops at an update event
				Overflow event source
				This bit is used to select overflow event or DMA request
Bit 2	OVFS	0x0	rw	sources.
				0: Counter overflow, setting the OVFSWTR bit or overflow
				event generated by slave timer controller
				Only counter overflow generates an overflow event Overflow event enable
Bit 1	OVFEN	0x0	rw	0: Enabled
DIC 1	OVILIN	OAO	I VV	1: Disabled
				TMR enable
Bit 0	TMREN	0x0	rw	0: Disabled
-	-			1: Enabled

15.5.4.2 TMR1 control register2 (TMR1_CTRL2)

Bit	Abbr.	Reset value	Type	Description
				TRGOUT2 enable
Bit 31	TRGOUT2EN	0x0	rw	0: TRGOUT2 disabled
				1: TRGOUT2 enabled
Bit 30: 15	Reserved	0x0000	resd	Kept at default value.
Bit 14	C4IOS	0x0	rw	Channel 4 idle output state
Bit 13	C3CIOS	0x0	rw	Channel 3 complementary idle output state
Bit 12	C3IOS	0x0	rw	Channel 3 idle output state
Bit 11	C2CIOS	0x0	rw	Channel 2 complementary idle output state
Bit 10	C2IOS	0x0	rw	Channel 2 idle output state
				Channel 1 complementary idle output state
D:+ 0	C1CIOS	0x0	m	Output disabled (OEN = 0), after dead-time:
BIT 9	CICIOS	UXU	rw	0: C1OUTL=0
				1: C1OUTL=1
				Channel 1 idle output state
Dit 0	C1IOS	0x0	F14/	Output disabled (OEN = 0), after dead-time:
DIL O	CHOS	UXU	rw	0: C1OUT=0
Bit 30: 15 Re Bit 14 C4 Bit 13 C3 Bit 12 C3 Bit 11 C2 Bit 10 C3 Bit 9 C4 Bit 8 C4 Bit 7 C4				1: C1OUT=1
				C1IN selection
Dit 7	C1INSEL	0x0	rw	0: CH1 pin is connected to C1IRAW input
DIL 1	CHNSEL	UXU	IVV	1: The XOR result of CH1, CH2 and CH3 pins is
				connected to C1IRAW input
				Master TMR output selection
				This field is used to select the TMRx signal sent to the
Di+ C+ 4	PTOS	0x0	20.0	slave timer.
DIL 0. 4	F103	UXU	rw	000: Reset
				001: Enable
				010: Update

2023.08.31 Page 321 Rev 2.00

				011: Compare pulse
				100: C1ORAW signal
				101: C2ORAW signal
				110: C3ORAW signal
				111: C4ORAW signal
				DMA request source
Bit 3	DRS	0x0	rw	0: Capture/compare event
				1: Overflow event
,				Channel control bit flash selection
				This bit only acts on channels that have
				complementary output. If the channel control bits are
Bit 2	CCFS	0x0	rw	buffered:
				0: Control bits are updated by setting the HALL bit
				1: Control bits are updated by setting the HALL bit or a
				rising edge on TRGIN.
Bit 1	Reserved	0x0	resd	Kept at default value.
				Channel buffer control
				This bit acts on channels that have complementary
Bit 0	CBCTRL	0x0	rw	output.
				0: CxEN, CxCEN and CxOCTRL bits are not buffered.
				1: CxEN, CxCEN and CxOCTRL bits are not buffered.

15.5.4.3 TMR1 slave timer control register (TMR1_STCTRL)

Bit	Abbr.	Reset value	Type	Description
				External signal polarity
Bit 15	ESP	0x0	rw	0: High or rising edge
				1: Low or falling edge
				External clock mode B enable
Bit 14	ECMBEN	0x0	m	This bit is used to enable external clock mode B
DIL 14	ECIVIDEIN	UXU	rw	0: Disabled
				1: Enabled
				External signal divide
				This field is used to select the frequency division of an
				external trigger
Bit 13: 12	ESDIV	0x0	rw	00: Normal
				01: Divided by 2
				10: Divided by 4
				11: Divided by 8
				External signal filter
				This field is used to filter an external signal. The external
				signal can be sampled only after it has been generated N
				times
				0000: No filter, sampling by f_{DTS}
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
				0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				0100: $f_{SAMPLING} = f_{DTS}/2$, N=6
Bit 11: 8	ESF	0x0	rw	0101: $f_{SAMPLING} = f_{DTS}/2$, N=8
Dit 11. 0	LOI	0.00	1 44	0110: $f_{SAMPLING} = f_{DTS}/4$, N=6
				0111: f _{SAMPLING} =f _{DTS} /4, N=8
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Subordinate TMR synchronization
Bit 7	STS	0x0	rw	If enabled, master and slave timer can be synchronized.
טונ ו	010	UAU	1 VV	0: Disabled
				1: Enabled
Bit 6: 4	STIS	0x0	rw	Subordinate TMR input selection

2023.08.31 Page 322 Rev 2.00

				This field is used to select the subordinate TMR input.
				000: Internal selection 0 (IS0)
				001: Internal selection 1 (IS1)
				010: Internal selection 2 (IS2)
				011: Internal selection 3 (IS3)
				100: C1IRAW input detector (C1INC)
				101: Filtered input 1 (C1IF1)
				110: Filtered input 2 (C1IF2)
				111: External input (EXT)
				Please refer to Table 14-11 for more information on ISx
				for each timer.
Bit 3	Reserved	0x0	resd	Kept at its default value.
				Subordinate TMR mode selection
				000: Slave mode is disabled
				001: Encoder mode A
				010: Encoder mode B
				011: Encoder mode C
				100: Reset mode —Rising edge of the TRGIN input
				reinitializes the counter
Bit 2: 0	SMSEL	0x0	rw	101: Suspend mode — The counter starts counting when
				the TRGIN is high
				110: Trigger mode — A trigger event is generated at the
				rising edge of the TRGIN input
				• •
				·
				111: External clock mode A — Rising edge of the TRGIN input clocks the counter Note: Please refer to count mode section for the details on encoder mode A/B/C.

15.5.4.4 TMR1 DMA/interrupt enable register (TMR1_IDEN)

Bit	Abbr.	Reset value	Type	Description	
Bit 15	Reserved	0x0	resd	Kept at default value.	
				Trigger DMA request enable	
Bit 14	TDEN	0x0	rw	0: Disabled	
				1: Enabled	
				HALL DMA request enable	
Bit 13	HALLDE	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 4 DMA request enable	
Bit 12	C4DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 3 DMA request enable	
Bit 11	C3DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 2 DMA request enable	
Bit 10	C2DEN	0x0	rw	0: Disabled	
				1: Enabled	
·				Channel 1 DMA request enable	
Bit 9	C1DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow event DMA request enable	
Bit 8	OVFDEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Break interrupt enable	
Bit 7	BRKIE	0x0	rw	0: Disabled	
				1: Enabled	
				Trigger interrupt enable	
Bit 6	TIEN	0x0	rw	0: Disabled	
				1: Enabled	
				HALL interrupt enable	
Bit 5	HALLIEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 4	C4IEN	0x0	rw	Channel 4 interrupt enable	

2023.08.31 Page 323 Rev 2.00

				0: Disabled	
				1: Enabled	
				Channel 3 interrupt enable	
Bit 3	C3IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 2 interrupt enable	
Bit 2	C2IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 interrupt enable	
Bit 1	C1IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

15.5.4.5 TMR1 interrupt status register (TMR1_ISTS)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 13	Reserved	0x0	resd	Kept at default value.
Bit 12	C4RF	0v0	rw0c	Channel 4 recapture flag
		0x0		Please refer to C1RF description.
Bit 11	C3RF	0x0	rw0c	Channel 3 recapture flag
		UXU		Please refer to C1RF description.
Bit 10	C2RF	0x0	rw0c	Channel 2 recapture flag
				Please refer to C1RF description.
Bit 9				Channel 1 recapture flag
				This bit indicates whether a recapture is detected when
	C1RF	0x0	rw0c	C1IF=1. This bit is set by hardware, and cleared by
				writing "0".
				0: No capture is detected
				1: Capture is detected.
Bit 8	Reserved	0x0	resd	Kept at default value.
Bit 7				Break interrupt flag
				This bit indicates whether the break input is active or not.
	BRKIF	0x0	rw0c	It is set by hardware and cleared by writing "0"
				0: Inactive level
				1: Active level
Bit 6				Trigger interrupt flag
				This bit is set by hardware on a trigger event. It is
	TRGIF	0x0	rw0c	cleared by writing "0".
				0: No trigger event occurs
				1: Trigger event is generated.
				Trigger event: an active edge is detected on TRGIN
				input, or any edge in suspend mode.
Bit 5	HALLIF	0x0	rw0c	HALL interrupt flag
				This bit is set by hardware on HALL event. It is cleared by
				writing "0".
				0: No Hall event occurs.
				1: Hall event is detected.
				HALL even: CxEN, CxCEN and CxOCTRL are updated.
Bit 4	C4IF	0x0	rw0c	Channel 4 interrupt flag
	O+II	0.00	10000	Please refer to C1IF description.
Bit 3	C3IF	0x0	rw0c	Channel 3 interrupt flag
Dit 5	Oon	0.00	10000	Please refer to C1IF description.
Bit 2	C2IF	0x0	rw0c	Channel 2 interrupt flag
DIL 2	OZII	0.00	1 4400	Please refer to C1IF description.
Bit 1	C1IF		rw0c	Channel 1 interrupt flag
				If the channel 1 is configured as input mode:
				This bit is set by hardware on a capture event. It is
		0x0		cleared by software or read access to the TMRx_C1DT
				0: No capture event occurs
				1: Capture event is generated
				If the channel 1 is configured as output mode:

2023.08.31 Page 324 Rev 2.00

				This bit is set by hardware on a compare event. It is cleared by software. 0: No compare event occurs
Bit 0	OVFIF	0x0	rw0c	1: Compare event is generated Overflow interrupt flag This bit is set by hardware on an overflow event. It is cleared by software. 0: No overflow event occurs 1: Overflow event is generated. If OVFEN=0 and OVFS=0 in the TMRx_CTRL1 register: - An overflow event is generated when OVFG= 1 in the TMRx_SWEVE register; - An overflow event is generated when the counter CVAL is reinitialized by a trigger event.

15.5.4.6 TMR1 software event register (TMR1_SWEVT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at default value.
				Break event triggered by software
Bit 7	BRKSWTR	0x0	wo	This bit is set by software to generate a break event.
Dit 1	DICKOW IIC	OAO	WO	0: No effect
				1: Generate a break event.
				Trigger event triggered by software
Bit 6	TRGSWTR	0x0	rw	This bit is set by software to generate a trigger event.
Dit 0	TROOVER	0.00	1 44	0: No effect
				1: Generate a trigger event.
				HALL event triggered by software
				This bit is set by software to generate a HALL event.
Bit 5	HALLSWTR	0x0		0: No effect
DII O	HALLSWIK		wo	1: Generate a HALL event.
				Note: This bit acts only on channels that have
				complementary output.
Bit 4	C4SWTR	0x0	wo	Channel 4 event triggered by software
DIL 4	C43W1K			Please refer to C1M description.
Bit 3	C3SWTR	0x0	wo	Channel 3 event triggered by software
DIL 3	CSSWIK	UXU		Please refer to C1M description.
Bit 2	C2SWTR	0x0		Channel 2 event triggered by software
DIL Z	C2SW IR	UXU	wo	Please refer to C1M description
				Channel 1 event triggered by software
Bit 1	C1SWTR	0x0		This bit is set by software to generate a channel 1 event.
DILI	CISWIK	UXU	wo	0: No effect
				1: Generate a channel 1 event.
				Overflow event triggered by software
Dit O	OVECMED	00		This bit is set by software to generate an overflow event.
Bit 0	OVFSWTR	0x0	WO	0: No effect
				1: Generate an overflow event.

15.5.4.7 TMR1 channel mode register1 (TMR1_CM1)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functions in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15	C2OSEN	0x0	rw	Channel 2 output switch enable
Bit 14: 12	C2OCTRL	0x0	rw	Channel 2 output control
Bit 11	C2OBEN	0x0	rw	Channel 2 output buffer enable
Bit 10	C2OIEN	0x0	rw	Channel 2 output enable immediately
Bit 9: 8	C2C	0x0	rw	Channel 2 configuration

				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0': 00: Output 01: Input, C2IN is mapped on C2IFP2 10: Input, C2IN is mapped on C1IFP2 11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS register.
Bit 7	C1OSEN	0x0	rw	Channel 1 output switch enable 0: C1ORAW is not affected by EXT input. 1: Once a high level is detect on EXT input, clear C1ORAW.
Bit 6: 4	C1OCTRL	0x0	rw	Channel 1 output control This field defines the behavior of the original signal C1ORAW. 000: Disconnected. C1ORAW is disconnected from C1OUT; 001: C1ORAW is high when TMR1_CVAL=TMR1_C1DT 010: C1ORAW is low when TMR1_CVAL=TMR1_C1DT 011: Switch C1ORAW level when TMR1_CVAL=TMR1_C1DT 100: C1ORAW is forced low 101: C1ORAW is forced high. 110: PWM mode A - OWCDIR=0, C1ORAW is high once TMR1_C1DT>TMR1_CVAL, else low; - OWCDIR=1, C1ORAW is low once TMR1_C1DT <tmr1_cval, -="" 111:="" b="" c1oraw="" else="" high;="" is="" low="" mode="" once="" owcdir="0," pwm="" tmr1_c1dt="">TMR1_CVAL, else high; - OWCDIR=1, C1ORAW is high once TMR1_C1DT >TMR1_CVAL, else high; - OWCDIR=1, C1ORAW is high once TMR1_C1DT <tmr1_cval, 000',="" also="" but="" by="" c1oraw,="" c1oraw.="" c1out="" cctrl.<="" changes="" configurations="" connected="" else="" in="" is="" level="" low.="" not="" note:="" of="" only="" other="" output="" polarity="" set="" subject="" td="" than="" the="" to=""></tmr1_cval,></tmr1_cval,>
Bit 3	C1OBEN	0x0	rw	Channel 1 output buffer enable 0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately. 1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
Bit 2	C10IEN	0x0	rw	Channel 1 output enable immediately In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event. 0: Need to compare the CVAL with C1DT before generating an output 1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
Bit 1: 0	C1C	0x0	rw	Channel 1 configuration This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IFP1 10: Input, C1IN is mapped on C2IFP1 11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

Input capture mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	C2DF	0x0	rw	Channel 2 digital filter
Bit 11: 10	C2IDIV	0x0	rw	Channel 2 input divider
				Channel 2 configuration
				This field is used to define the direction of the channel 2
				(input or output), and the selection of input pin when
				C2EN='0':
Bit 9: 8	C2C	0x0	rw	00: Output
				01: Input, C2IN is mapped on C2IFP2
				10: Input, C2IN is mapped on C1IFP2
				11: Input, C2IN is mapped on STCI. This mode works
-				only when the internal trigger input is selected by STIS.
				Channel 1 digital filter
				This field defines the digital filter of the channel 1. N
				stands for the number of filtering, indicating that the input
				edge can pass the filter only after N sampling events.
				0000: No filter, sampling is done at f_{DTS}
				1000: $f_{SAMPLING} = f_{DTS}/8$, N=6
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				1001: $f_{SAMPLING} = f_{DTS}/8$, N=8
				0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
Bit 7: 4	C1DF	0x0	rw	1010: f _{SAMPLING} =f _{DTS} /16, N=5
Dit 7. 4	OTDI	OXO	I VV	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				0100: f _{SAMPLING} =f _{DTS} /2, N=6
				1100: f _{SAMPING} =f _{DTS} /16, N=8
				0101: f _{SAMPLING} =f _{DTS} /2, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				0110: $f_{SMPLING} = f_{DTS}/4$, N=6
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				0111: $f_{SAMPLING} = f_{DTS}/4$, N=8
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Channel 1 input divider
				This field defines Channel 1 input divider.
				00: No divider. An input capture is generated at each
Bit 3: 2	C1IDIV	0x0	rw	active edge.
2.00. 2	0			01: An input compare is generated every 2 active edges
				10: An input compare is generated every 4 active edges
				11: An input compare is generated every 8 active edges
				Note: the divider is reset once C1EN='0'
				Channel 1 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
D'(4 - 0	040	0.0		C1EN='0':
Bit 1: 0	C1C	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IFP1
				10: Input, C1IN is mapped on C2IFP1
				11: Input, C1IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.

15.5.4.8 TMR1 channel mode register2 (TMR1_CM2)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functions in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	Abbr.	Reset value	Type	Description			
Bit 15	C4OSEN	0x0	rw	Channel 4 output switch enable			
Bit 14: 12	C4OCTRL	0x0	rw	Channel 4 output control			
Bit 11	C4OBEN	0x0	rw	Channel 4 output buffer enable			

Bit 10	C40IEN	0x0	rw	Channel 4 output enable immediately
				Channel 4 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when C4EN='0':
Bit 9: 8	C4C	0x0	rw	00: Output
				01: Input, C4IN is mapped on C4IFP4
				10: Input, C4IN is mapped on C3IFP4
				11: Input, C4IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.
Bit 7	C3OSEN	0x0	rw	Channel 3 output switch enable
Bit 6: 4	C3OCTRL	0x0	rw	Channel 3 output control
Bit 3	C3OBEN	0x0	rw	Channel 3 output buffer enable
Bit 2	C30IEN	0x0	rw	Channel 3 output enable immediately
				Channel 3 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
				C3EN='0':
Bit 1: 0	C3C	0x0	rw	00: Output
				01: Input, C3IN is mapped on C3IFP3
				10: Input, C3IN is mapped on C4IFP3
				11: Input, C3IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.

Input capture mode:

Bit	Abbr.	Reset value	Type	Description
Bit 15: 12	C4DF	0x0	rw	Channel 4 digital filter
Bit 11: 10	C4IDIV	0x0	rw	Channel 4 input divider
				Channel 4 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
				C4EN='0':
Bit 9: 8	C4C	0x0	rw	00: Output
				01: Input, C4IN is mapped on C4IFP4
				10: Input, C4IN is mapped on C3IFP4
				11: Input, C4IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.
Bit 7: 4	C3DF	0x0	rw	Channel 3 digital filter
Bit 3: 2	C3IDIV	0x0	rw	Channel 3 input divider
				Channel 3 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
				C3EN='0':
Bit 1:0	C3C	0x0	rw	00: Output
				01: Input, C3IN is mapped on C3IFP3
				10: Input, C3IN is mapped on C4IFP3
				11: Input, C3IN is mapped on STCI. This mode works
				only when the internal trigger input is selected by STIS.

15.5.4.9 TMR1 channel control register (TMR1_CCTRL)

Bit	Abbr.	Reset value	Type	Description	
Bit 15: 14	Reserved	0x0	resd	Kept at default value.	
Bit 13	C4P	0x0	rw	Channel 4 polarity Please refer to C1P description.	
Bit 12	C4EN	0x0	rw	Channel 4 enable Please refer to C1EN description.	
Bit 11	C3CP	0x0	rw	Channel 3 complementary polarity Please refer to C1P description.	
Bit 10	C3CEN	0x0	rw	Channel 3 complementary enable Please refer to C1EN description.	
Bit 9	C3P	0x0	rw	Channel 3 polarity Please refer to C1P description.	
Bit 8	C3EN	0x0	rw	Channel 3 enable	

				Please refer to C1EN description.
Bit 7	C2CP	0x0	m.a.	Channel 2 complementary polarity
DIL 1	UZUF	0x0 rw	Please refer to C1P description.	
Bit 6	C2CEN	0x0	rw	Channel 2 complementary enable
DIL 0	CZCEN	UXU	I VV	Please refer to C1EN description.
Bit 5	C2P	0x0	F14/	Channel 2 polarity
ыго	CZP	UXU	rw	Please refer to C1P description.
Bit 4	C2EN	0x0	F14/	Channel 2 enable
DIL 4	CZEN	UXU	rw	Please refer to C1EN description.
<u>, </u>				Channel 1 complementary polarity
Bit 3	C1CP	0x0	rw	0: C1COUT is active high.
				1: C1COUT is active low.
			rw	Channel 1 complementary enable
Bit 2	C1CEN	0x0		0: Output is disabled.
				1: Output is enabled.
				Channel 1 polarity
				When the channel 1 is configured as output mode:
				0: C1OUT is active high
				1: C1OUT is active low
Bit 1	C1P	0x0	rw	When the channel 1 is configured as input mode:
				0: C1IN active edge is on its rising edge. When used as
				external trigger, C1IN is not inverted.
				1: C1IN active edge is on its falling edge. When used as
				external trigger, C1IN is inverted.
-				Channel 1 enable
Bit0	C1EN	0x0	rw	0: Input or output is disabled
				1: Input or output is enabled

Table 15-16 Complementary output channel CxOUT and CxCOUT control bits with break function

		Control bit			Output	state ⁽¹⁾
OEN bit	FCSODIS bit	FCSOEN bit	CxEN bit	CxCEN bit	CxOUT output state	CxCOUT output state
		0	0	0	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0
		0	0	1		CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1
		0	1	0	CxORAW+ polarity CxOUT= CxORAW xor CxP, Cx_EN=1	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0
4	×	0	1	1	CXORAW+polarity+dead- time, Cx EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1
1		1	0	0	(no driven by the timer)	Output disabled (no driven by the timer) CxCOUT=CxCP, CxCEN=0
		1	0	1	(Output enabled with	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1
		1	1	0	CxORAW + polarity, CxOUT= CxORAW xor CxP, Cx_EN=1	Off-state (Output enabled with inactive level) CxCOUT=CxCP, CxCEN=1
		1	1	1	time Cx FN=1	CxORAW inverted+polarity+dead- time,

					CxCEN=1
	0		0	0	Output disabled (corresponding IO is not driven by the timer, IO
	o		o	1	floating) Asynchronously: CxOUT=CxP, Cx EN=0,
	0		1	0	CxCOUT=CxCP, CxCEN=0; If the clock is present: after a dead-time,
	o		1	1	CxOUT=CxIOS, CxCOUT=CxCIOS, assuming that CxIOS and CxCIOS do not correspond to CxOUT and CxCOUT active level.
0	1	X	0	0	CxEN=CxCEN=0: Output disabled (corresponding IO is not driven by the timer, IO
	1		0	1	floating) In other cases: Off-state (Output enabled with inactive
	1		1	0	level) Asynchronously: CxOUT =CxP, Cx EN=1,
	1		1	1	CxCOUT=CxCP, CxCEN=1; If the clock is present: after a dead-time, CxOUT=CxIOS, CxCOUT=CxCIOS, assuming that CxIOS and CxCIOS do not correspond to CxOUT and CxCOUT active level.

Note: If the two outputs of a channel are not used (CxEN = CxCEN = 0), CxIOS, CxCIOS, CxP and CxCP must be cleared.

Note: The state of the external I/O pins connected to the complementary CxOUT and CxCOUT channels depends on the CxOUT and CxCOUT channel state and the GPIO and the IOMUX registers.

15.5.4.10 TMR1 counter value (TMR1_CVAL)

Bit	Abbr.	Reset value	Type	Description
15: 0	CVAL	0x0000	rw	Counter value

15.5.4.11 TMR1 division value (TMR1_DIV)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DIV	0x0000	rw	Divider value The counter clock frequency fck_cnt = ftmr_clk / (DIV[15: 0]+1). The value of this register is transferred to the actual prescaler register when an overflow event occurs.

15.5.4.12 TMR1 period register (TMR1_PR)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	PR	0x0000	rw	Period value This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

15.5.4.13 TMR1 repetition period register (TMR1_RPR)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	RPR	0x00	rw	Repetition of period value This field is used to reduce the generation rate of overflow events. An overflow event is generated when the repetition counter reaches 0.

15.5.4.14 TMR1 channel 1 data register (TMR1_C1DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C1DT	0x0000	rw	Channel 1 data register When the channel 1 is configured as input mode: The C1DT is the CVAL value stored by the last channel 1 input event (C1IN) When the channel 1 is configured as output mode: C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately

depends on the C10BEN bit, and the corresponding output is generated on C10UT as configured.

15.5.4.15 TMR1 channel 2 data register (TMR1_C2DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C2DT	0x0000	rw	Channel 2 data register When the channel 2 is configured as input mode: The C2DT is the CVAL value stored by the last channel 2 input event (C1IN) When the channel 2 is configured as output mode: C2DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C2OBEN bit, and the corresponding output is generated on C2OUT as configured.

15.5.4.16 TMR1 channel 3 data register (TMR1_C3DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C3DT	0x0000	rw	Channel 3 data register When the channel 3 is configured as input mode: The C3DT is the CVAL value stored by the last channel 3 input event (C1IN) When the channel 3 is configured as output mode: C3DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C3OBEN bit, and the corresponding output is generated on C3OUT as configured.

15.5.4.17 TMR1 channel 4 data register (TMRx_C4DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C4DT	0x0000	rw	Channel 4 data register When the channel 4 is configured as input mode: The C4DT is the CVAL value stored by the last channel 4 input event (C1IN) When the channel 3 is configured as output mode: C4DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C4OBEN bit, and the corresponding output is generated on C4OUT as configured.

15.5.4.18 TMR1 break register (TMR1_BRK)

Bit	Abbr.	Reset value	Type	Description
Bit 19: 16	BKF	0x0	rw	Break input filter This field is used to set the filter for break input. The filter number N indicates that the input edge can pass through filter only after N sampling events. 0000: fsampling=fdts (no filter) 1000: fsampling=fdts/8, N=6 0001: fsampling=fdts/8, N=8 0010: fsampling=fdts/8, N=8 0010: fsampling=fdts/16, N=5 0011: fsampling=fdts/16, N=5 0011: fsampling=fdts/16, N=6 1010: fsampling=fdts/16, N=6 1100: fsampling=fdts/16, N=8 1101: fsampling=fdts/16, N=8 0101: fsampling=fdts/2, N=8 1101: fsampling=fdts/32, N=5 0110: fsampling=fdts/4, N=6 1110: fsampling=fdts/4, N=6 1111: fsampling=fdts/4, N=8 1111: fsampling=fdts/32, N=8
Bit 15	OEN	0x0	rw	Output enable

				This bit acts on the channels as output. It is used to enable
				CxOUT and CxCOUT outputs.
				0: Disabled
				1: Enabled
				Automatic output enable OEN is set automatically at an overflow event.
Bit 14	AOEN	0x0	rw	0: Disabled
				1: Enabled
				Break input validity
				This bit is used to select the active level of a break input.
Bit 13	BRKV	0x0	rw	0: Break input is active low.
				1 Break input is active low.
				Break enable
				This bit is used to enable break input.
Bit 12	BRKEN	0x0	rw	0: Break input is disabled.
				Break input is disabled. 1: Break input is enabled.
				Frozen channel status when holistic output enable
				This bit acts on the channels that have complementary
Bit 11	FCSOEN	0.40	F14/	output. It is used to set the channel state when the timer is inactive and OEN=1.
DILTI	FUSUEIN	0x0	rw	0: CxOUT/CxCOUT outputs are disabled.
				CXOUT/CxCOUT outputs are enabled. Output inactive
				level.
				Frozen channel status when holistic output disable
				This bit acts on the channels that have complementary
	FCSODIS			output. It is used to set the channel state when the timer
Bit 10		0x0	F14/	is inactive and OEN=0.
DIL TU			rw	
				0: CxOUT/CxCOUT outputs are disabled.
				1: CxOUT/CxCOUT outputs are enabled. Output idle
				level.
				Write protection configuration This field is used to enable write protection.
				00: Write protection is OFF.
				01: Write protection is OFF. 01: Write protection level 3, and the following bits are write
				protected:
				TMR1_STOP: DTC, STPEN, STPV and HOAEN
				TMR1_CTRL2: CxIOS and CxCIOS
Bit 9: 8	WPC	0x0	rw	10: Write protection level 2. The following bits and all bits in level 3 are write protected:
				TMR1_CCTRL: CxP and CxCP
				TMR1_STOP: FCSODIS and FCSOEN
				11: Write protection level 1. The following bits and all bits
				in level 2 are write protected:
				TMR1_CMx: C2OCTRL and C2OBEN
				Note: Once WPC>0, its content remains frozen until the
				next system reset.
				Dead-time configuration
				This field defines the duration of the dead-time insertion.
Dit 7: 0	DTC	000	****	The 3-bit MSB of DTC[7: 0] is used for function selection:
Bit 7: 0	DTC	0x00	rw	0xx: DT = DTC [7: 0] * TDTS
				10x: DT = (64+ DTC [5: 0]) * TDTS * 2
				110: DT = (32+ DTC [4: 0]) * TDTS * 8
				111: DT = (32+ DTC [4: 0]) * TDTS * 16

Note: Based on lock configuration, AOEN, BRKV, BRKEN, FCSODIS, FCSOEN and DTC[7:0] can all be write protected. Thus it is necessary to configure write protection when writing to the TMRx_BRK register for the first time.

15.5.4.19 TMR1 DMA control register (TMR1_DMACTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 15:13	Reserved	0x0	resd	Kept at default value.
Bit 12:8	DTB	0x00	rw	DMA transfer bytes

				This field defines the	ne number of DMA transfers:
				00000: 1 byte	00001: 2 bytes
				00010: 3 bytes	00011: 4 bytes
				 10000: 17 bytes	 10001: 18 bytes
Bit 7:5	Reserved	0x0	resd	Kept at default value.	
Bit 4: 0	ADDR	0x00	rw	DMA transfer address offset ADDR is defined as an offset starting from the address of the TMRx_CTRL1 register: 00000: TMRx_CTRL1 00001: TMRx_CTRL2 00010: TMRx_STCTRL	

15.5.4.20 TMR1 DMA data register (TMR1_DMADT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	DMADT	0x0000	rw	DMA data register A write/read operation to the DMADT register accesses any TMR register located at the following address: TMR1 peripheral address + ADDR*4 to TMR1 peripheral address + ADDR*4 + DTB*4

15.5.4.21 TMR1 channel mode register3 (TMR1_ CM3)

Bit	Abbr.	Reset value	Type	Description	
Bit 15: 6	Reserved	0x0	resd	Kept at default value.	
Bit 7	C5OSEN	0x0	rw	Channel 5 output switch enable	
Bit 6: 4	C5OCTRL	0x0	rw	Channel 5 output control	
Bit 3	C5OBEN	0x0	rw	Channel 5 output buffer enable	
Bit 2	C50IEN	0x0	rw	Channel 5 output immediately enable	
Bit 1: 0	Reserved	0x0	resd	Kept at default value.	

15.5.4.22 TMR1 channel 5 data register (TMR1_C5DT)

Bit	Abbr.	Reset value	Type	Description
Bit 15: 0	C5DT	0x0000	rw	Channel 5 data register C5DT holds the value that is to be compared with the CVAL. Whether the written data will takes effect immediately depends on the C5OBEN bit, and the corresponding output generates on the C5OUT bit.

2023.08.31 Page 333 Rev 2.00

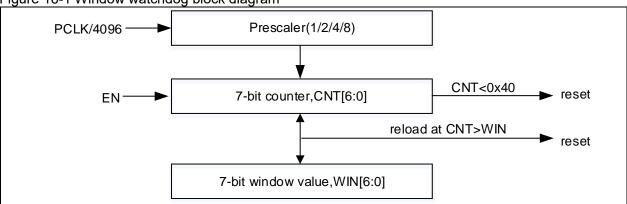
16 Window watchdog timer (WWDT)

16.1 WWDT introduction

The window watchdog downcounter must be reloaded in a limited time window to prevent the watchdog circuits from triggering a system reset. The window watch dog is used to detect the occurrence of system malfunctions.

The window watchdog timer is clocked by a divided APB1_CLK. The precision of the APB1_CLK enables the window watchdog to take accurate control of the limited window.

16.2 WWDT main features


- 7-bit downcounter
- After the watchdog is enabled, a system reset is generated when the value of the downcounter is less than 0x40 or when the downcounter is reloaded outside the window.
- The downcounter can be reloaded by enabling the counter interrupt.

16.3 WWDT functional overview

If the watchdog is enabled, a system reset is generated at the following conditions:

- When the 7-bit downcounter scrolls from 0x40 to 0x3F;
- When the 7-bit downcounter is greater than the 7-bit window value programmed.

Figure 16-1 Window watchdog block diagram

To prevent system reset while reloading the counter value, the counter must be reloaded only when its value is less than the value stored in the window register and greater than 0x40.

The WWDT counter is clocked by a divided APB1_CLK, with the division factor being defined by the DIV[1: 0] bit in the WWDT_CFG register.

The counter value determines the maximum counter period before the watchdog generates a reset. It can be used together with the WIN[6: 0] bit to adjust the window value.

WWDT offers reload counter interrupt feature. If enabled, the WWDT will set the RLDF flag when the counter value reaches 0x40h, and an interrupt is generated accordingly. The interrupt service routine (ISTS) can be used to reload the counter to prevent a system reset. Note that if CNT[6]=0, setting the WWDTEN=1 will generate a system reset, so the CNT[6] bit must be always set (CNT[6]=1) while writing to the WWDT_CTRL register to prevent the occurrence of an immediate reset once the window watchdog is enabled.

The formula to calculate the window watchdog time out:

 $T_{WWDT} = T_{PCLK1} \times 4096 \times 2^{DIV[1:0]} \times (CNT[5:0] + 1); (ms)$

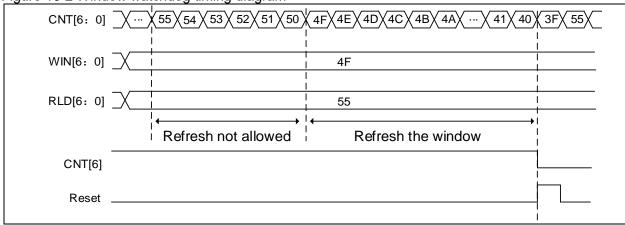

Where: T_{PCLK1} refers to APB1 clock period, in ms.

Table 16-1 Minimum and maximum timeout value when PCLK1=72 MHz

Prescaler	Min. Timeout value	Max. Timeout value
0	56.5µs	3.64ms
1	113.5µs	7.28ms
2	227.5µs	14.56ms
3	455µs	29.12ms

Figure 16-2 Window watchdog timing diagram

16.4 Debug mode

When the microcontroller enters debug mode (Cortex®-M4F core halted), the WWDT counter stops counting by setting the WWDT_PAUSE in the DEBUG module.

16.5 WWDT registers

These peripheral registers must be accessed by half words (16 bits) or words (32 bits).

Table 16-2 WWDT register map and reset value

Register name	Offset	Reset value
WWDT_CTRL	0x00	0x0000 007F
WWDT_CFG	0x04	0x0000 007F
WWDT_STS	0x08	0x0000 0000

16.5.1 Control register (WWDT_CTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at default value.
				Window watchdog enable
				0: Disabled
Bit 7	WWDTEN	0x0	rw1s	1: Enabled
				This bit is set by software, but can be cleared only after
				reset.
				Downcounter
Bit 6: 0	CNT	0x7F	rw	When the counter counts down to 0x3F, a reset is
				generated.

2023.08.31 Page 335 Rev 2.00

16.5.2 Configuration register (WWDT_CFG)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 10	Reserved	0x000000	resd	Kept at default value.
				Reload counter interrupt
Bit 9	RLDIEN	0x0	rw	0: Disabled
				1: Enabled
				Clock division value
				00: PCLK1 divided by 4096
Bit 8: 7	DIV	0x0	rw	01: PCLK1 divided by 8192
				10: PCLK1 divided by 16384
				11: PCLK1 divided by 32768
				Window value
Bit 6: 0	WIN	0x7F	rw	If the counter is reloaded while its value is greater than the window register value, a reset will be generated. The counter must be reloaded between 0x40 and WIN[6: 0].

16.5.3 Status register (WWDT_STS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 1	Reserved	0x0000 00000	resd	Kept at default value.
				Reload counter interrupt flag
Bit 0	RLDF	0x0	rw0c	This flag is set when the downcounter reaches 0x40.
				This bit is set by hardware and cleared by software.

2023.08.31 Page 336 Rev 2.00

17 Watchdog timer (WDT)

17.1 WDT introduction

The WDT is driven by a dedicated low-speed clock (LICK). Due to the lower clock accuracy of LICK, the WDT is best suited to the applications that have lower timing accuracy and can run independently outside the main application.

17.2 WDT main features

- 12-bit downcounter
- The counter is clocked by LICK (can work in Deepsleep and Standby modes)
- The counter can be configured to stop counting either in Deepsleep or Standby mode
- A system reset is generated under the following circumstances:
 - When the counter value is decremented to 0
 - When the counter is reloaded outside the window

17.3 WDT functional overview

WDT enable:

Both software and hardware operations can be used to enable WDT. In other words, the WDT can be enabled by writing 0xCCCC to the WDT_CMD register; or when the user enables the hardware watchdog through user system data area, the WDT will be automatically enabled after power-on reset.

WDT reset:

When the counter value of the WDT counts down to 0, a WDT reset will be generated. Thus the WDT_CMD register must be written with the value 0xAAAA at regular intervals to reload the counter value to avoid the WDT reset. Besides, setting WIN[11:0]= 0xFFF (not default value) will enable window watchdog feature. In this case, when the counter value is greater than the window value, reloading counter value will trigger a system reset.

WDT write-protected:

The WDT_DIV, WDT_RLD and WDT_WIN registers are write-protected. Writing the value 0x5555 to the WDT_CMD register will unlock write protection. The update status of these three registers are indicated by the DIVF, RLDF and WINF bits in the WDT_STS register. If a different value is written to the WDT_CMD register, these three registers will be re-protected. Writing the value 0xAAAA to the WDT_CMD register also enables write protection.

WDT clock:

The WDT counter is clocked by LICK. The LICK is an internal RC clock in the range of 30kHz~60kHz. Therefore, the timeout period is also within a certain range, so a margin should be taken into account when configuring timeout period. The LICK can be calibrated to obtain a relatively accurate WDT timeout. For more information about LICK, see the electrical characteristics section of the data sheet.

WDT low power counting mode:

WDT can work in Sleep, Deepsleep and Standby modes. It is possible to stop counting in Deepsleep and Standby modes by setting the nWDT_DEPSLP and nWDT_STDBY bits in the User System Data area.

If the counter is disabled, it will stop decrementing as soon as the Deepsleep and Standby modes are entered. This means that the WDT would not generate a system reset in both low power modes. After waking up from these two modes, it continues downcounting from the value at the time of the entry of these modes.

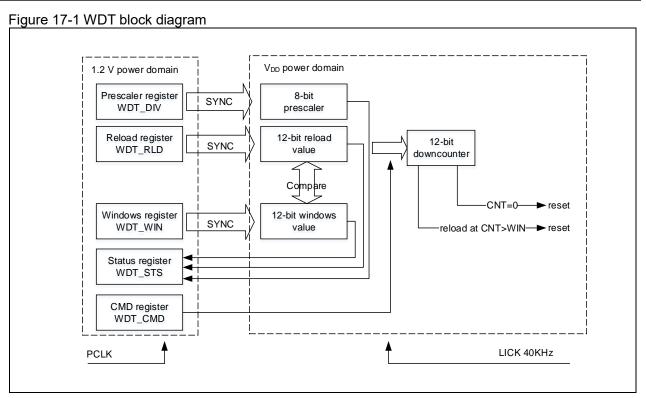


Table 17-1 WDT timeout period (LICK=40kHz)

Prescaler divider	DIV[2: 0] bits	Min.timeout (ms) RLD[11: 0] = 0x000	Max. timeout (ms) RLD[11: 0] = 0xFFF
/4	0	0.1	409.6
/8	1	0.2	819.2
/16	2	0.4	1638.4
/32	3	0.8	3276.8
/64	4	1.6	6553.6
/128	5	3.2	13107.2
/256	(6 or 7)	6.4	26214.4

17.4 Debug mode

When the microcontroller enters debug mode (Cortex®-M4F core halted), the WDT counter stops counting by setting the WDT_PAUSE in the DEBUG module. Refer to Chapter 25.2 for more information.

17.5 WDT registers

These peripheral registers have to be accessed by half words (16 bits) or words (32 bits).

Table 17-2 WDT register and reset value

Register name	Offset	Reset value
WDT_CMD	0x00	0x0000 0000
WDT_DIV	0x04	0x0000 0000
WDT_RLD	0x08	0x0000 0FFF
WDT_STS	0x0C	0x0000 0000
WDT_WIN	0x10	0x0000 0FFF

17.5.1 Command register (WDT_CMD)

(Reset in Standby mode)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value.
Bit 15: 0				Command register
				0xAAAA: Reload counter
	CMD	0x0000	WO	0x5555: Unlock the write-protected WDT_DIV, WDT_RLD and WDT_WIN
				0xCCCC: Enable WDT. If the hardware watchdog has
				been enabled, ignore this operation.

17.5.2 Divider register (WDT_DIV)

(Not reset in Standby mode)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 3	Reserved	0x0000 0000	resd	Kept at default value.
				Clock division value
				000: LICK divided by 4
				001: LICK divided by 8
				010: LICK divided by 16
				011: LICK divided by 32
Bit 2: 0	DIV	0.40	m. 4.7	100: LICK divided by 64
	DIV	0x0	rw	101: LICK divided by 128
				110: LICK divided by 256
				111: LICK divided by 256
				The write protection must be unlocked in order to enable
				write access to the register. The register can be read only
				when DIVF=0.

17.5.3 Reload register (WDT_RLD)

(Not reset in Standby mode)

(11011000	t in Otanaby mode)			
Bit	Abbr.	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at default value.
Bit 11: 0	RLD	0xFFF	rw	Reload value The write protection must be unlocked in order to enable write access to the register. The register can be read only when RLDF=0.

17.5.4 Status register (WDT_STS)

(Reset in Standby mode)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 3	Reserved	0x0000 00000	resd	Kept at default value.
Bit 2	WINF	0x0	ro	Window value update complete flag 0: Window value update complete 1: Window value update is in process. The WDT_WIN register can be written only when RLDF=0
Bit 2	RLDF	0x0	ro	Reload value update complete flag 0: Reload value update complete 1: Reload value update is in process. The reload register WDT_RLD can be written only when RLDF=0
Bit 0	DIVF	0x0	ro	Division value update complete flag 0: Division value update complete 1: Division value update is in process. The divider register WDT_DIV can be written only when DIVF=0

17.5.5 Window register (WDT_WIN)

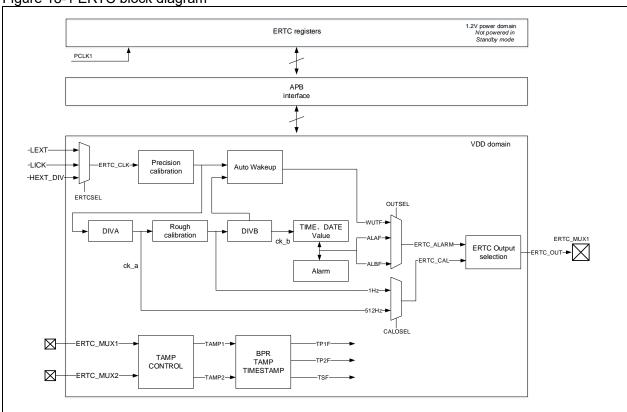
(Not reset in Standby mode)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 12	Reserved	0x000000	resd	Kept at default value.
Bit 11: 0	WIN	0xFFF	ro	Window value When the counter value is greater than the window value, reloading the counter will trigger a reset. The reload counter value falls between 0 and the window value.

2023.08.31 Page 340 Rev 2.00

18 Enhanced real-time clock (ERTC)

18.1 ERTC introduction


The real-time clock provides a calendar clock function. The time and date can be modified by modifying the ERTC_TIME and ERTC_DATE register.

The ERTC module is in the battery powered domain, which means that it keeps running and free from the influence of system reset as long as VBAT is powered (VBAT must be supplied through VDD domain).

18.2 ERTC main features

- Real-time calendar, one alarm. Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed. When the year register is a multiple of 4, it represents a leap year
- Periodic auto-wakeup
- Reference clock detection
- 2x programmable tamper detection supporting time stamp feature
- Supports fine calibration
- 20 x battery powered registers
- 5 x interrupts: alarm A, alarm B, periodic auto-wakeup, tamper detection and time stamp
- Multiplexed function output, calibration clock output, alarm event or wakeup event
- Multiplexed function input, reference clock input, two-channel tamper detection and time stamp

Figure 18-1 ERTC block diagram

18.3 ERTC function overview

18.3.1 ERTC clock

ERTC clock source (ERTC_CLK) is selected via clock controller from a LEXT, LICK, and divided HEXT (by setting the ERTCSEL[1:0] in the CRM_BPDC register).

The HEXT frequency division value is configured through the ERTC_DIV[4:0] bit in the CRM_CFG register.

The ERTC embeds two dividers: A and B, selected by the DIVA[6: 0] and DIVB[14: 0] bits respectively. It is recommended that the DIVA is configured with a higher value in order to minimum power consumption. After being divided by dividers A and B, the ERTC_CLK generates ck_a and ck_b clocks, respectively. The ck_a is used for subsecond update, while the ck_b is used for calendar update and periodic auto wakeup. The clock frequencies of ck_a and ck_b are obtained from the following equation:

$$\begin{aligned} \textbf{F}_{\text{ck_a}} &= \frac{\underline{f}_{\text{ERTC_CLK}}}{\text{DIVA} + 1} \\ \textbf{F}_{\text{ck_b}} &= \frac{\underline{f}_{\text{ERTC_CLK}}}{(\text{DIVB} + 1) \text{ x (DIVA} + 1)} \end{aligned}$$

To obtain ck_b with frequency of 1 Hz, DIVA=127, DIVB=255, and 32.768 kH LEXT should be used. This ck_b is then used for calendar update.

Note: If the divided HEXT is used to clock the ERTC_CLK, then the HEXT frequency division value must be configured first before switching the clock source to HEXT.

18.3.2 ERTC initialization

ERTC register write protection

After a power-on reset, all ERTC registers are write protected. Such protection mechanism is not affected by the system reset. Write access to the ERTC registers (except the ERTC_STS[14: 8], ERTC_TAMP and ERTC BPRx registers) can be enabled by unlocking write protection.

To unlick the write protection of ERTC registers, the steps below should be respected:

- Enable power interface clock by setting PWCEN=1 in the CRM_APB1EN register
- 2. Unlock write protection of the battery powered domain by setting BPWEN=1 in the PWC_CTRL register
- 3. Write 0xCA and 0x53 to the ERTC_WP register in sequence. Writing an incorrect key will activate the write protection again.

Table 18-1 lists the ERTC registers that can be configured only after the write protection is unlocked and after the initialization mode is entered.

Table 18-1 RTC register map and reset values

Register	ERTC_WP enabled	Whether to enter initialization mode	Others
ERTC_TIME	Υ	Υ	-
ERTC_DATE	Υ	Υ	-
ERTC_CTRL	Υ	Bit 7,6, and 4 only	-
ERTC_STS	Y, except [14: 8]	-	-
ERTC_DIV	Υ	Υ	_
ERTC_WAT	Υ	N	Configurable when WATWF=1
ERTC_ALA	Υ	N	Configurable when ALAWF =1
ERTC_ALB	Υ	N	Configurable when ALBWF =1

ERTC_WP	-	-	-
ERTC_SBS	-	-	-
ERTC_TADJ	Υ	N	Configurable when TADJF=0
ERTC_TSTM	-	-	-
ERTC_TSDT	-	-	-
ERTC_TSSBS	-	-	-
ERTC_SCAL	Υ	N	Configurable when CALUPDF=0
ERTC_TAMP	N	N	-
ERTC_ALASBS	Υ	N	Configurable when ALAWF =1
ERTC_ALBSBS	Y	N	Configurable when ALBWF =1
ERTC_BPRx	N	N	-

Clock and calendar initialization

After the register write protection is unlocked, follow the procedure below for clock and calendar initialization:

- 1. Enter initialization mode by setting IMEN =1.
- 2. Wait until the initialization flag INITF bit is set to 1.
- 3. Configure DIVB and DIVA.
- 4. Configure the clock and calendar values.
- 5. Leave the initialization mode by clearing the IMEN bit. Wait until the UPDF bit is set to 1, indicating the completion of the calendar update. The calendar starts counting.

The ERTC also allows the fine-tuning for daylight saving time and clock.

Daylight saving time feature: It is used to increase (ADD1H=1) or decrease (DEC1H=1) one hour in the calendar, without completing the whole initialization process.

Clock calibration: It is used for the fine calibration of the current clock. If only DECSBS[14: 0] is configured, the value will be added to the DIVB counter and a clock latency will be generated. If only ADD1S=1 is activated, the current clock will increase by one second. If both DECSBS[14: 0] and ADDIS bit are configured, the clock will increase by a fraction of a second.

Time latency (ADD1S=0): DECSBS/(DIVB+1)

Time advance (ADD1S=1): 1-(DECSBS/(DIVB+1)

Note: To avoid subsecond overflow, SBS[15]=0 must be asserted before setting the ERTC TADJ register.

Reading the calendar

The ERTC offers two different ways to read the calendar, namely, synchronous read (DREN=0) and asynchronous read (DREN=1).

DREN=0: The clock and calendar values can be obtained by reading the synchronous shadow register via the PCLK1. The UPDF bit is set each time the shadow register is synchronized with the ERTC calendar value located in the battery powered domain. The synchronization is performed every two ERTC_CLK. The shadow register is reset by a system reset. To ensure consistency between the 3 values (ERTC_SBS, ERTC_TIME and ERTC_DATE registers), reading lower-order registers will lock the values in the higher-order registers until the ERTC_DATE register is read. For example, reading the ERTC_SBS register will lock the values in the ERTC_TIME and ERTC_DATE registers.

DREN=1, the ERTC will perform direct read access to the ERTC clock and calendar located in the battery powered domain with the PCLK1, avoiding the occurrence of errors caused by time synchronization. In this mode, the UPDF flag is cleared by hardware. To ensure the data is correct when reading clock and calendar, the software must read the clock and calendar registers twice, and compare the results of two

read operations. If the result is not aligned, read again until that the results of two read accesses are consistent. Besides, it is also possible to compare the least significant bits of the two read operations to determine their consistency.

Note: In Standby and Deepsleep modes, the current calendar values are not copied into the shadow registers. When waking up from these two modes, UPDF=0 must be asserted, and then wait until UPDF=1, to ensure that the latest calendar value can be read. In synchronous read (DREN=0) mode, the frequency of the PCLK1 must be at least seven times the ERTC_CLK frequency. In asynchronous read (DREN=1), an additional APB cycle is required to complete the read operations of the calendar register.

Alarm clock initialization

The ERTC contains two programmable alarm clocks: alarm clock A and alarm clock B, and their respective interrupts.

The alarm clock value is programmed with the ERTC_ALASBS/ERTC_ALA (ERTC_ALBSBS/ERTC_ALB). When the programmed alarm value matches the calendar value, an alarm event is generated if an alarm clock is enabled. The MASKx bit can be used to selectively mask calendar fields. The calendar fields, which are masked, are not allocated with an alarm clock.

To configure the alarm clocks, the following steps should be respected:

- 1. Disable alarm clock A or alarm clock B (by setting ALAEN=0 or ALBEN=0);
- 2. Wait until the ALAWF or ALBWF bit is set to enable write access to the alarm clock A or B;
- Configure alarm clock A or B registers (ERTC_ALA/ERTC_ALASBS and ERTC_ALB/ERTC_ALBSBS);
- 4. Enable alarm clock A or B by setting ALAEN=1 or ALBEN=1.

Note: If MASK1=0 in the ERTC_ALA or ERTC_ALB, the alarm clock can work normally only when the DIVB value is at least equal to 3.

18.3.3 Periodic automatic wakeup

Periodic automatic wakeup unit is used to wake up ERTC from low power consumption modes automatically. The period is programmed with the VAL[15: 0] bi (When WATCLK[2]=1, it is extended to 17 bits, and the wakeup counter value is VAL+2¹⁶). When the wakeup counter value drops from the VAL to zero, the WATF bit is set, and a wakeup event is generated, with the wakeup counter being reloaded with the VAL value. An interrupt is also generated if a periodic wakeup interrupt is enabled.

The WATCLK[2: 0] bit can be used to select a wakeup timer clock, including ERTC_CLK/16, ERTC_CLK/8, ERTC_CLK/4, ERTC_CLK/2 and ck_b (usually 1Hz). The cooperation between wakeup timer clocks and wakeup counter values enable users to adjust the wakeup period freely.

To enable a periodic automatic wakeup, the following steps should be respected:

- 1. Disable a periodic automatic wakeup by setting WATEN=0;
- 2. Wait until WATWF=1 to enable write access to the wakeup reload timer and WATCLK[2: 0];
- 3. Configure the wakeup timer counter value and wakeup timer through VAL[15: 0] and WATCLK[2: 0] bits;
- 4. Enable a timer by setting WATEN=1.

Note: A wakeup timer is not affected by a system reset and low power consumption modes (Sleep, Deepsleep and Standby modes)

Note: In debug mode, if the ERTC_CLK is selected as wakeup clock, the counter which is used for periodic wakeup works normally.

18.3.4 ERTC calibration

Smooth digital calibration:

Smooth digital calibration has a higher and well-distributed performance than the coarse digital calibration. The calibration is performed by increasing or decreasing ERTC_CLK in an evenly manner.

The smooth digital calibration period is around 2^{20} ERTC_CLK (32 seconds) when the ERTC_CLK is 32.768 kHz. The DEC[8: 0] bit specifies the number of pulses to be masked during the 2^{20} ERTC_CLK cycles. A maximum of 511 pulses can be removed. When the ADD bit is set, 512 pulses can be inserted

during the 2²⁰ ERTC_CLK cycles. When DEC[8: 0] and ADD are sued together, a deviation ranging from -511 to +512 ERTC_CLK cycles can be added during the 2²⁰ ERTC_CLK cycles.

The effective calibrated frequency (F_{SCAL)}:

$$F_{SCAL} = F_{ERTC_CLK} \times [1 + \frac{ADD \times 512 - DEC}{2^{20} + DEC - ADD \times 512}]$$

When the divider A is less than 3, the calibration operates as if ADD was equal to 0. The divider B value should be reduced so that each second is accelerated by 8 ERTC_CLK cycles, which means that 256 ERTC_CLK cycles are added every 32 seconds. When DEC[8: 0] and ADD are sued together, a deviation ranging from -255 to +256 ERTC_CLK cycles can be added during the 2^{20} ERTC_CLK cycles.

At this point, the effective calibrated frequency (F_{SCAL)}

$$F_{SCAL} = F_{ERTC_CLK} \times [1 + \frac{256 - DEC}{2^{20} + DEC - 256}]$$

It is also possible to select 8 or 16-second digital calibration period through the CAL8 and CAL16 bits. The 8-second period takes priority over 16-second. In other words, when both 8-second and 16-second are enabled, 8-second calibration period prevails.

The CALUPDF flag in the ERTC indicates the calibration status. During the configuration of ERTC_SCAL registers, the CALUPDF bit is set, indicating that the calibration value is being updated; Once the calibration value is successfully applied, this bit is cleared automatically, indicating the completion of the calibration value update.

18.3.5 Reference clock detection

The calendar update can be synchronized (not used in low-power modes) to a reference clock (usually the mains 50 or 60 Hz) with a higher precision. This reference clock is used to calibrate the precision of the calendar update frequency (1 Hz)

When it is enabled, the reference clock edge detection is performed during the first 7 ck_a periods around each of the calendar updates. When detected, the edge is used to update calendar values, and 3 ck_a periods are used for subsequent calendar updates. Each time the reference clock edge is detected, the divider A value is forced to reload, making the reference clock and the 1 Hz clock aligned. If the 1 Hz clock has a slight shift, a more accurate reference clock can be used to fine-tune the 1 Hz clock so that it is aligned with the reference clock. If no reference clock edge is detected, the calendar is updated based on ERTC's original clock source.

Note: Once the reference clock detection is enabled, the DIVA and DIVB must be kept at its respective reset value (0x7F and 0xFF respectively).

18.3.6 Time stamp function

When time stamp event is detected on the tamper pin (valid edge is detected), the current calendar value will be stored to the time stamp register.

When a time stamp event occurs, the time stamp flag bit (TSF) will be set to 1 in the ERTC_STS register. If a new time stamp event is detected when time stamp flag (TSF) is already set, then the time stamp overflow flag (TSOF) will be set, but the time stamp registers will remain the result of the last event. By setting the TSIEN bit, an interrupt can be generated when a time stamp event occurs.

Usage of time stamp:

- 1. How to enable time stamp when a valid edge is detected on a tamper pin
- Select a time stamp in by setting the TSPIN bit
- Select a rising edge or falling edge to trigger time stamp by setting the TSEDG bit
- Enable time stamp by setting TSEN=1
- 2. How to save time stamp on a tamper event
- Configure tamper detection registers
- Enable tamper detection time stamp by setting TPTSEN=1

Note: The TSF bit will be set after two ck_a cycles following a time stamp event. It is suggested that users poll TSOF bit when the TSF is set.

18.3.7 Tamper detection

The ERTC has two tamper detection modes: TAMP1 and TAMP2. They can be configured as a level detection with filter or edge detection. TAMP1 uses the TSPIN bit to select either ERTC_MUX1 or ERTC_MUX2 as a tamper pin, while the TAMP2 can only select ERTC_MUX2 as a tamper pin.

The TP1F or TP2F will be set to 1 when a valid tamper event is detected. An interrupt will also be generated if a tamper detection interrupt is enabled. If the TPTSEN bit is already set to 1, a time stamp event will be generated accordingly. Once a tamper event occurs, the battery powered registers will be reset so as to ensure data security in the battery powered domain.

How to configure edge detection

- 1. Select edge detection by setting TPFLT=00, and select a valid edge (TP1EDG or TP2EDG)
- 2. According to your needs, configure whether to activate a time stamp on a tamer event (TPTSEN=1)
- 3. According to your needs, enable a tamper detection interrupt (TPIEN=1)
- 4. To use TAMP1 tamper detection mode, either ERTC_MUX1 or ERTC_MUX2 (TP1PIN bit) has to be selected as TAMP1 mapping, and TAMP1 is enabled (TP1EN=1); to use TAMP2 tamper detection mode, the users only need enable TAMP2 by setting TP2EN=1.

How to configure level detection with filtering

- 1. Select level detection with filtering, and valid level sampling times (TPFLT≠00)
- 2. Select tamper detection valid level (TP1EDG or TP2EDG)
- 3. Select tamper detection sampling frequency (TPFREQ\)
- 4. According to your needs, enable tamper detection pull-up (setting TPPU=1). When TPPU=1 is asserted, tamper detection pre-charge time must be configured through the TPPR bit
- 5. According to your needs, configure whether to activate a time stamp on a tamper event (TPTSEN=1)
- 6. According to your needs, enable a tamper interrupt (TPIEN=1)
- 7. To use TAMP1 tamper detection mode, either ERTC_MUX1 or ERTC_MUX2 (TP1PIN bit) has to be selected as TAMPI mapping, and TAMP1 is enabled (TP1EN=1); to use TAMP2 tamper detection mode, the users only need enable TAMP2 by setting TP2EN=1.

In the case of edge detection mode, the following two points deserve our attention:

- 1. If a rising edge is configured to enable tamper detection, and the tamper detection pin turns to high level before tamper detection is enabled, then a tamper event will be detected right after the tamper detection is enabled;
- If a falling edge is configured to enable tamper detection, and the tamper detection pin turns to low level before tamper detection is enabled, then a tamper event will be detected right after the tamper detection is enabled;

Note: Tamper detection is inactive when the battery powered domain is OFF.

Note: In Standby mode, precharge feature is not available to TAMP2 (PA0).

18.3.8 Multiplexed function output

ERTC provides a set of multiplexed function output for the following events:

- 1. Clocks calibrated (OUTSEL=0 and CALOEN=1)
- Output 512Hz (CALOSEL=0)
- Output 1Hz (CALOSEL=1)
- 2. Alarm clock A (OUTSEL=1)
- 3. Alarm clock B (OUTSEL=2)
- 4. Wakeup event (OUTSEL=3)

When alarm clock or wakeup event is selected (OUTSEL \$\neq 0\$), it is possible to select output type (open-drain or push-pull) with the OUTTYPE bit, and output polarity with the OUTP bit.

18.3.9 ERTC wakeup

ERTC can be woken up by alarm clock, periodic auto wakeup, time stamp or tamper event. To enable an ERTC interrupt, follow the procedure below:

- 1. Configure the EXINT line corresponding to ERTC interrupts as an interrupt mode and enable it, and select a rising edge
- 2. Enable a NVIC channel corresponding to ERTC interrupts
- 3. Enable an ERTC interrupt

Table 18-2 lists the ERTC clock sources, events and interrupts that are able to wakeup low-power modes.

Table 18-2 ERTC low-power mode wakeup

Clock sources	Events	Wake up Sleep	Wake up Deepsleep	Wakeup Standby
	Alarm clock A	$\sqrt{}$	×	×
	Alarm clock B	V	×	×
HEXT	Periodic automatic wakeup	\checkmark	×	×
	Time stamp	V	×	×
	Tamper event	√	×	×
	Alarm clock A	V	$\sqrt{}$	$\sqrt{}$
	Alarm clock B	V	$\sqrt{}$	$\sqrt{}$
LICK	Periodic automatic wakeup	\checkmark	\checkmark	\checkmark
	Time stamp	V	√	$\sqrt{}$
	Tamper event	V	√	V
	Alarm clock A	V	√	V
	Alarm clock B	V	√	V
LEXT	Periodic automatic wakeup	√	V	√
	Time stamp	V	V	V
	Tamper event	V	√	V

Table 18-3 Interrupt control bits

Table 10 0 Interrupt central bits					
Interrupt events	Event flag	Interrupt enable bit	EXINT line		
Alarm clock A	ALAF	ALAIEN	17		
Alarm clock B	ALBF	ALBIEN	17		
Periodic automatic wakeup	WATF	WATIEN	22		
Time stamp	TSF	TSIEN	21		
Tamper event	TP1F/TP2F	TPIEN	21		

2023.08.31 Page 347 Rev 2.00

18.4 ERTC registers

These peripheral registers must be accessed by half words (16 bits) or words (32 bits). ERTC registers are 16-bit addressable registers.

Table 18-4 ERTC register map and reset values

Register name	Offset	Reset value		
ERTC_TIME	0x00	0x0000 0000		
ERTC_DATE	0x04	0x0000 2101		
ERTC_CTRL	0x08	0x0000 0000		
ERTC_STS	0x0C	0x0000 0007		
ERTC_DIV	0x10	0x007F 00FF		
ERTC_WAT	0x14	0x0000 FFFF		
ERTC_ALA	0x1C	0x0000 0000		
ERTC_ALB	0x20	0x0000 0000		
ERTC_WP	0x24	0x0000 0000		
ERTC_SBS	0x28	0x0000 0000		
ERTC_TADJ	0x2C	0x0000 0000		
ERTC_TSTM	0x30	0x0000 0000		
ERTC_TSDT	0x34	0x0000 000D		
ERTC_TSSBS	0x38	0x0000 0000		
ERTC_SCAL	0x3C	0x0000 0000		
ERTC_TAMP	0x40	0x0000 0000		
ERTC_ALASBS	0x44	0x0000 0000		
ERTC_ALBSBS	0x48	0x0000 0000		
ERTC_BPRx	0x50-0x9C	0x0000 0000		

18.4.1 ERTC time register (ERTC_TIME)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at default value.
				AM/PM
				0: AM
Bit 22	AMPM	0x0	rw	1: PM
				Note: This bit is applicable for 12-hr format only. It is 0 for 24-hr format instead.
Bit 21: 20	HT	0x0	rw	Hour tens
Bit 19: 16	HU	0x0	rw	Hour units
Bit 15	Reserved	0x0	resd	Kept at its default value.
Bit 14: 12	MT	0x0	rw	Minute tens
Bit 11: 8	MU	0x0	rw	Minute units
Bit 7	Reserved	0x0	resd	Kept at default value.
Bit 6: 4	ST	0x0	rw	Second tens
Bit 3: 0	SU	0x0	rw	Second units

18.4.2 ERTC date register (ERTC_DATE)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	Reserved	0x00	resd	Kept at default value.
Bit 23: 20	YT	0x0	rw	Year tens
Bit 19: 16	YU	0x0	rw	Year units
				Week day
				0: Forbidden
				1: Monday
				2: Tuesday
Bit 15: 13	WK	0x1	rw	3: Wednesday
				4: Thursday
				5: Friday
				6: Saturday
				7: Sunday
Bit 12	MT	0x0	rw	Month tens
Bit 11: 8	MU	0x1	rw	Month units
Bit 7: 6	Reserved	0x0	resd	Kept at default value.
Bit 5: 4	DT	0x0	rw	Date tens
Bit 3: 0	DU	0x1	rw	Date units

18.4.3 ERTC control register (ERTC_CTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	Reserved	0x00	resd	Kept at default value.
				Calibration output enable
Bit 23	CALOEN	0x0	rw	0: Calibration output disabled
				1: Calibration output enabled
				Output source selection
				00: Output source disabled
Bit 22: 21	OUTSEL	0x0	rw	01: Alarm clock A
				10: Alarm clock B
				11: Wakeup event
				Output polarity
Bit 20	OUTP	0x0	rw	0: High
				1: Low
				Calibration output selection
Bit 19	CALOSEL	0x0	rw	0: 512Hz
				1: 1Hz
				Battery powered domain data register
D:: 40	BPR	00		This bit in the battery powered domain is not affected by a
Bit 18		0x0	rw	system reset. It is used to store the daylight saving time
				change or others that need to be saved permanently.
				Decrease 1 hour
				0: No effect
Bit 17	DEC1H	0x0	wo	1: Subtract 1 hour
DIL 17	DECITI	UXU	WO	Note: This bit is applicable only when the current hour is
				not 0. The next second takes effect when this bit is set
				(don't set this bit when the hour is being incremented)
				Add 1 hour
				0: No effect
Bit 16	ADD1H	0x0	WO	1: Add 1 hour
				Note: The next second takes effect when this bit is set
				(don't set this bit when the hour is being incremented)
				Timestamp interrupt enable
Bit 15	TSIEN	0x0	rw	0: Timestamp interrupt disabled
				1: Timestamp interrupt enabled
				Wakeup timer interrupt enable
Bit 14	WATIEN	0x0	rw	0: Wakeup timer interrupt disable
				1: Wakeup timer interrupt enabled

2023.08.31 Page 349 Rev 2.00

.				Alarm B interrupt enable
Bit 13	ALBIEN	0x0	rw	0: Alarm B interrupt disabled
				1: Alarm B interrupt enabled
				Alarm A interrupt enable
Bit 12	ALAIEN	0x0	rw	0: Alarm A interrupt disabled
				1: Alarm A interrupt enabled
				Timestamp enable
Bit 11	TSEN	0x0	rw	0: Timestamp disabled
				1: Timestamp enabled
D:: 40	\4/4 T E\1	0.0		Wakeup timer enable
Bit 10	WATEN	0x0	rw	0: Wakeup timer disabled
				1: Wakeup timer enabled
				Alarm B enable
Bit 9	ALBEN	0x0	rw	0: Alarm B disabled
				1: Alarm B enabled
				Alarm A enable
Bit 8	ALAEN	0x0	rw	0: Alarm A disabled
				1: Alarm A enabled
Bit 7	Reserved	0x0	resd	Kept at default value.
				Hour mode
Bit 6	HM	0x0	rw	0: 24-hour format
				1: 12-hour format
-				Date/time register direct read enable
				0: Date/time register direct read disabled. ERTC_TIME,
				ERTC_DATE and ERTC_SBS values are taken from the
Dit E	DDEN	0.40	211	synchronized registers, which are updated once every two
Bit 5	DREN	0x0	rw	ERTC_CLK cycles
				1: Date/time register direct read enabled. ERTC_TIME,
				ERTC_DATE and ERTC_SBS values are taken from the
				battery powered domain.
				Reference clock detection enable
Bit 4	RCDEN	0x0	rw	0: Reference clock detection disabled
				1: Reference clock detection enabled
				Timestamp trigger edge
Bit 3	TSEDG	0x0	rw	0: Rising edge
				1: Falling edge
				Wakeup timer clock selection
				000: ERTC_CLK/16
				001: ERTC_CLK/8
				010: ERTC_CLK/4
				011: ERTC_CLK/2
Bit 2: 0	WATCLK	0x0	rw	10x: ck_a
				11x: ck_a is selected. 2 ¹⁶ is added to the wakeup counter
				value, and wakeup time =ERTC WAT+2 ¹⁶ .
				Note: The write access to this field is supported when
				WATEN=0 and WATWF=1.
				VVAILIV-V GIIU VVAI VVI - I.

18.4.4 ERTC initialization and status register (ERTC_STS)

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at default value.
				Calibration value update complete flag
				0: Calibration value update is complete
				1: Calibration value update is in progress
Bit 16	CALUPDF	0x0	ro	This bit is automatically set when software writes to the ERTC_SCAL register. It is automatically cleared when a new calibration value is taking into account. When this bit is set, the write access to the ERTC_SCAL register is not allowed.
Bit 15	Reserved	0x0	resd	Kept at default value.
				Tamper detection 2 flag
Bit 14	TP2F	0x0	rw0c	0: No tamper event
				1: Tamper event occurred
Bit 13	TP1F	0x0	rw0c	Tamper detection 1 flag

				0: No tamper event
				1: Tamper event occurred
				Timestamp overflow flag
				0: No timestamp overflow
Bit 12	TSOF	0x0	rw0c	1: Timestamp overflow occurs
				If a new time stamp event is detected when time stamp
				flag (TSF) is already set, this bit will be set by hardware.
				Timestamp flag
				0: No timestamp event
				1: Timestamp event occurs
				It is recommended to double check the TSOF flag after
Bit 11	TSF	0x0	rw0c	reading a timestamp and clearing the TSF. Otherwise, a
Dit 11	101	OXO	1,400	new timestamp event may be detected while clearing the
				TSF.
				Note: The clearing operation of this bit takes effect after
				two APB_CLK cycles.
				Wakeup timer flag
D:: 40	\4/4 T E			0: No wakeup timer event
Bit 10	WATF	0x0	rw0c	1: Wakeup timer event occurs
				Note: The clearing operation of this bit takes effect after
				two APB_CLK cycles.
				Alarm clock B flag
				0: No alarm clock event
Bit 9	ALBF	0x0	rw0c	1: Alarm clock event occurred
				Note: The clearing operation of this bit takes effect after
				two APB_CLK cycles.
				Alarm clock A flag
				0: No alarm clock event
Bit 8	ALAF	0x0	rw0c	1: Alarm clock event occurred
				Note: The clearing operation of this bit takes effect after
				two APB_CLK cycles.
				Initialization mode enable
				0: Initialization mode disabled
Bit 7	IMEN	0x0	rw	1: Initialization mode enabled
Dit i		ONO		When an initialization mode is entered, the calendar stops
				running.
-				Enter initialization mode flag
				0: Initialization mode is not entered
				1: Initialization mode is entered
Bit 6	IMF	0x0	ro	The ERTC_TIME, ERTC_DATE and ERTC_DIV registers
				can be modified only when an initialization mode is
				enabled (INITEN=1) and entered (INITEF=1).
				, , , , , , , , , , , , , , , , , , , ,
				Calendar update flag
				0: Calendar update is in progress
Bit 5	UPDF	0x0	rw0c	1: Calendar update is complete
טונט	UPDF	UXU	TWUC	The UPDF bit is set each time ERTC_TIME, ERTC_DATE
				and ERTC_SBS are synchronized with the ERTC calendar
				value located in the battery powered domain. The
-				synchronization is performed every two ERTC_CLK cycles.
				Calendar initialization flag
D:: 4	181777	2 2		0: Calendar has not been initialized
Bit 4	INITF	0x0	ro	1: Calendar has been initialized
				This bit is set when the calendar year filed (ERTC_DATE)
				is different from 0. It is cleared when the year is 0.
				Time adjustment flag
				0: No time adjustment
Bit 3	TADJF	0x0	ro	1: Time adjustment is in progress
טונ ט	IVD1L	UXU	ro	This bit is automatically set when a write access to the
				ERTC_TADJ register is performed. It is automatically
				cleared at the end of time adjustment.
				Wakeup timer register allows write flag
Bit 2	WATWF	0x1	ro	0: Wakeup timer register configuration not allowed
				1: Wakeup timer register configuration allowed
Bit 1	ALBWF	0x1	ro	Alarm b register allows write flag
<u> </u>	, (2077)	UA I	.0	z regioter allerre tritte mag

2023.08.31 Page 351 Rev 2.00

				0: Alarm B register write operation not allowed	
				1: Alarm B register write operation allowed	
				Alarm A register allows write flag	
Bit 0	ALAWF	0x1	ro	0: Alarm A register write operation not allowed	
				1: Alarm A register write operation allowed	

18.4.5 ERTC divider register (ERTC_DIV)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at default value.
Bit 22: 16	DIVA	0x7F	rw	Divider A
Bit 15	Reserved	0x0	resd	Kept at default value.
Bit 14: 0	DIVB	0x00FF	rw	Divider B
				Calendar clock = ERTC_CLK/((DIVA+1)x(DIVB+1))

18.4.6 ERTC wakeup timer register (ERTC_WAT)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value.
Bit 15: 0	VAL	0xFFFF	rw	Wakeup timer reload value

18.4.7 ERTC alarm clock A register (ERTC_ALA)

Bit	Abbr.	Reset value	Type	Description
				Date/week day mask
Bit 31	MASK4	0x0	rw	0: Date/week day is not masked
				1: Alarm clock doesn't care about date/week day
				Date/week day select
Bit 30	WKSEL	0x0	rw	0: Date
				1: Week day (DT[1: 0] is not used)
Bit 29: 28	DT	0x0	rw	Date tens
Bit 27: 24	DU	0x0	rw	Date/week day units
				Hour mask
Bit 23	MASK3	0x0	rw	0: No hour mask
				1: Alarm clock doesn't care about hours
				AM/PM
				0: AM
Bit 22	AMPM	0x0	rw	1: PM
				Note: This bit is applicable for 12-hour format only. It is 0
				for 24-hour format.
Bit 21: 20	HT	0x0	rw	Hour tens
Bit 19: 16	HU	0x0	rw	Hour units
				Minute mask
Bit 15	MASK2	0x0	rw	0: No minute mask
				1: Alarm clock doesn't care about minutes
Bit 14: 12	MT	0x0	rw	Minute tens
Bit 11: 8	MU	0x0	rw	Minute units
				Second mask
Bit 7	MASK1	0x0	rw	0: No second mask
				1: Alarm clock doesn't care about seconds
Bit 6: 4	ST	0x0	rw	Second tens
Bit 3: 0	SU	0x0	rw	Second units

18.4.8 ERTC alarm clock B register (ERTC_ALB)

Bit	Abbr.	Reset value	Type	Description
Bit 31	MASK4	0x0	rw	Date/week day mask 0: Date/week day is not masked 1: Alarm clock doesn't care about date/week day
Bit 30	WKSEL	0x0	rw	Date/week day select 0: Date 1: Week day (DT[1: 0] is not used)

Bit 29: 28	DT	0x0	rw	Date tens
Bit 27: 24	DU	0x0	rw	Date/week day units
				Hour mask
Bit 23	MASK3	0x0	rw	0: No hour mask
				1: Alarm clock doesn't care about hours
-				AM/PM
				0: AM
Bit 22	AMPM	0x0	rw	1: PM
				Note: This bit is applicable for 12-hour format only. It is 0
				for 24-hour format.
Bit 21: 20	HT	0x0	rw	Hour tens
Bit 19: 16	HU	0x0	rw	Hour units
				Minute mask
Bit 15	MASK2	0x0	rw	0: No minute mask
				1: Alarm clock doesn't care about minutes
Bit 14: 12	MT	0x0	rw	Minute tens
Bit 11: 8	MU	0x0	rw	Minute units
				Second mask
Bit 7	MASK1	0x0	rw	0: No second mask
				1: Alarm clock doesn't care about seconds
Bit 6: 4	ST	0x0	rw	Second tens
Bit 3: 0	SU	0x0	rw	Second units

18.4.9 ERTC write protection register (ERTC_WP)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at default value
				Command register
Bit 7: 0	CMD	0x00	WO	All ERTC register write protection is unlocked by writing 0xCA and then 0x53. Writing any other value will reactivate write protection.

18.4.10 ERTC subsecond register (ERTC_SBS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value
				Sub-second value
Bit 15: 0	SBS	0x0000	ro	Subsecond is the value in the DIVB counter. Clock frequency = ERTC_CLK/(DIVA+1)

18.4.11 ERTC time adjustment register (ERTC_TADJ)

Bit	Abbr.	Reset value	Type	Description
				Add 1 second
				0: No effect
Bit 31	ADD1S	0x0	wo	1: Add one second
				This bit can be written only when TADJF=0. It is intended to be used with DECSBS in order to fine-tune the time.
Bit 30: 15	Reserved	0x0000	resd	Kept at default value
				DECSBS[14: 0]: Decrease sub-second value
Bit 14: 0	DECSBS	0x0000	wo	Delay (ADD1S=0): Delay = DECSBS/(DIVB+1)
				Advance (ADD1S=1): Advance =1-(DECSBS/(DIVB+1))

18.4.12 ERTC time stamp time register (ERTC_TSTM)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at default value
Bit 22	АМРМ	0x0	ro	AM/PM 0: AM 1: PM Note: This bit is applicable for 12-hour format only. It is 0

				for 24-hour format.
Bit 21: 20	HT	0x0	ro	Hour tens
Bit 19: 16	HU	0x0	ro	Hour units
Bit 15	Reserved	0x0	resd	Kept at default value
Bit 14: 12	MT	0x0	ro	Minute tens
Bit 11: 8	MU	0x0	ro	Minute units
Bit 7	Reserved	0x0	resd	Kept at its default value
Bit 6: 4	ST	0x0	ro	Second tens
Bit 3: 0	SU	0x0	ro	Second units

Note: The content of this register is valid only when the TSF is set in the ERTC_STS register. It is cleared when TSF bit is reset.

18.4.13 ERTC time stamp date register (ERTC_TSDT)

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value
Bit 15: 13	WK	0x0	ro	Week day
Bit 12	MT	0x0	ro	Month tens
Bit 11: 8	MU	0x0	ro	Month units
Bit 7: 6	Reserved	0x0	resd	Kept at default value
Bit 5: 4	DT	0x0	ro	Date tens
Bit 3: 0	DU	0x0	ro	Date units

Note: The content of this register is valid only when the TSF is set in the ERTC_STS register. It is cleared when TSF bit is reset.

18.4.14 ERTC time stamp subsecond register (ERTC_TSSBS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value
Bit 15: 0	SBS	0x0000	ro	Sub-second value

Note: The content of this register is valid only when the TSF is set in the ERTC_STS register. It is cleared when TSF bit is reset.

18.4.15 ERTC smooth calibration register (ERTC_SCAL)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value
				Add ERTC clock
Bit 15	ADD	0x0	rw	0: No ERTC clock added
				1: One ERTC_CLK is inserted every 2 ¹¹ ERTC_CLK cycles
				8-second calibration period
Bit 14	CAL8	0x0	rw	0: No effect
				1: 8-second calibration
				16 second calibration period
Bit 13	CAL16	0x0	rw	0: No effect
				1: 16-second calibration
Bit 12: 9	Reserved	0x0	resd	Kept at default value
				Decrease ERTC clock
Bit 8: 0	DEC	0x000	rw	DEC out of ERTC_CLK cycles are masked during the 2^{20} ERTC_CLK cycles. This bit is usually used with ADD. When the ADD is set, the actual number of ERTC_CLK is equal to 2^{20} +512-DEC during the 2^{20} ERTC_CLK cycles.

18.4.16 ERTC tamper configuration register (ERTC_TAMP)

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 19	Reserved	0x0000	resd	Kept at default value
				Output type
Bit 18	OUTTYPE	0x0	rw	0: Open-drain output
				1: Push-pull output
				Time stamp detection pin selection
Bit 17	TSPIN	0x0	rw	0: ERTC_MUX1
				1: ERTC_MUX2
				Tamper detection pin selection
Bit 16	TP1PIN	0x0	rw	0: ERTC_MUX1
				1: ERTC_MUX2
				Tamper detection pull-up
Bit 15	TPPU	0x0	rw	0: Tamper detection pull-up enabled
				1: Tamper detection pull-up disabled
				Tamper detection pre-charge time
				0: 1 ERTC_CLK cycle
Bit 14: 13	TPPR	0x0	rw	1: 2 ERTC_CLK cycles
				2: 4 ERTC_CLK cycles
				3: 8 ERTC_CLK cycles
				Tamper detection filter time
				0: No filter
Bit 12: 11	TPFLT	0x0	rw	1: Tamper is detected after 2 consecutive samples
				2: Tamper is detected after 4 consecutive samples
			rw	3: Tamper is detected after 8 consecutive samples
				Tamper detection frequency
				0: ERTC_CLK/32768
				1: ERTC_CLK/16384
				2: ERTC_CLK/8192
Bit 10: 8	TPFREQ	0x0	rw	3: ERTC_CLK/4096
				4: ERTC_CLK/2048
				5: ERTC_CLK/1024
				6: ERTC_CLK/512
	it 10: 8 TPFREQ 0x0		7: ERTC_CLK/256	
				Tamper detection timestamp enable
Bit 7	TPTSEN	0x0	rw.	0: Tamper detection timestamp disabled
Dit 1	II TOLIN	OAO	IVV	1: Tamper detection timestamp enabled. Save timestamp
-				on a tamper event.
Bit 6: 5	Reserved	0x0	resd	Kept at default value
				Tamper detection 2 valid edge
				No filtering (TPFLT=0):
				0: Rising edge
Bit 4	TP2EDG	0x0		1: Falling edge
				Filtering (TPFLT>0):
				0: Low level
				1: High level
				Tamper detection 2 enable
Bit 3	TP2EN	0x0	rw	0: Tamper detection 2 disabled
				1: Tamper detection 2 enabled
D:4 0	TOICN	00		Tamper detection interrupt enable
Bit 2	TPIEN	0x0	rw	0: Tamper detection interrupt disabled
				*

				1: Tamper detection interrupt enabled	
				Tamper detection 1 valid edge	
				If TPFLT=0:	
				0: Rising edge	
Bit 1	TP1EDG	0x0	rw	1: Falling edge	
				If TPFLT>0:	
				0: Low	
				1: High	
				Tamper detection 1 enable	
Bit 0	TP1EN	0x0	rw	0: Tamper detection 1 disabled	
				1: Tamper detection 1 enabled	

18.4.17 ERTC alarm clock A subsecond register (ERTC_ALASBS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 28	Reserved	0x0	resd	Kept at default value
•				Sub-second mask
	SBSMSK 0x0			0: No comparison. Alarm A doesn't care about subseconds.
				Sub-second mask
D:4 07, 04		0.40		2: SBS[1: 0] are compared
DIL 21. 24		rw	3: SBS[2: 0] are compared	
				14: SBS[13: 0] are compared
			15: SBS[14: 0] are compared	
Bit 23: 15	Reserved	0x000	rw	Kept at default value
Bit 14: 0	SBS	0x0000	rw	Sub-second value

18.4.18 ERTC alarm clock B subsecond register (ERTC_ALBSBS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 28	Reserved	0x0	resd	Kept at default value
				Sub-second mask 0: No comparison. Alarm A doesn't care about subseconds. 1: SBS[0] is compared 2: SBS[1: 0] are compared
	ODOMOK			0: No comparison. Alarm A doesn't care about subseconds.
				1: SBS[0] is compared
D:+ 07, 04		0.40		2: SBS[1: 0] are compared
BIL 27: 24	SBSMSK	0x0	rw	3: SBS[2: 0] are compared
				14: SBS[13: 0] are compared
				15: SBS[14: 0] are compared
Bit 23: 15	Reserved	0x000	rw	Kept at its default value
Bit 14: 0	SBS	0x0000	rw	Sub-second value

18.4.19 ERTC battery powered domain data register (ERTC_BPRx)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	DT	0x0000 0000	rw	Battery powered domain data BPR_DTx registers are powered on by V _{BAT} so that they are not reset by a system reset. They are reset on a tamper event or when a battery powered domain is reset.

2023.08.31 Page 356 Rev 2.00

19 Analog-to-digital converter (ADC)

19.1 ADC introduction

The ADC is a peripheral that converts an analog input signal into a 12-bit digital signal. Its sampling rate is as high as 2 MSPS. It has up to 16 channels for sampling and conversion.

19.2 ADC main features

In terms of analog:

- 12-bit configurable resolution
- Self-calibration time: 205 ADC clock cycles
- ADC conversion time: ADC conversion time is 0. 5 μs at max. 28 MHz
- ADC supply requirement: refer to Datasheet
- ADC input range: V_{REF-} ≤ V_{IN} ≤ V_{REF+}

In terms of digital control:

- Regular channels and preempted channels with different priority
- Regular channels and preempted channels both have their own trigger detection circuit
- Each channel can independently define its own sampling time
- Conversion sequence supports various conversion modes
- Hardware oversampling up to equivalent 16-bit resolution
- Optional data alignment mode
- Programmable voltage monitoring threshold
- Regular channels with DMA transfers
- Interrupt generation at one of the following events:
 - End of the conversion of preempted channels
 - End of the conversion of regular channels
 - Voltage outside the threshold programmed
- ADC master/slave modes
- Master/slave shift mode with programmable timing shift length between ADCs
 - Master-slave mode with DMA is suited to high-performance requirements

ADCx_IN0

GPIO

Temp.sensor

DMA

request

ADC

interrupt

to NVIC

VINTRV

ADCx_IN1

÷

ADCx IN15

Ø V_{DDA} Ø V_{SSA}

19.3 ADC structure

EXINT11

Figure 19-1 shows the block diagram of ADC.

TMR1_CH1 OCSWTRG

TMR1_CH2

TMR1_CH3-TMR2_CH4-

TMR3_CH4

TMR9_CH1

TMR6_TRGOUT PCSWTRG —

PCTESEL[2:0]

Figure 19-1 ADC block diagram ADCDIV ADC prescaler OCTESEL[2:0] ADCCLK OCTEN TMR1_TRGOUT TMR1_TRGOUT
TMR1_CH4
TMR2_TRGOUT
TMR3_TRGOUT
TMR9_TRGOUT

Trigger detection

Ordinary channels

Preempted

Preempted

conversion start

Trigger

PCTEN

Ordinary data register

Ordinary conversion start

Channel

Oversampler

Analog-to-

digital

Data managemen

Voltage

monitor

CCE flag

PCCE flag

/MOR flag

Preempted data register

(4*16 bits)

CCEIEN

PCCFIEN:

VMORIEN-

Input pin description:

EXINT15

 $V_{DDA:}$ Analog supply, ADC analog supply, can be connected to V_{DD} , or $2.4V \le V_{DDA} \le V_{DD}$ (2.6V)

Address/Data bus

- V_{SSA:} Analog supply ground, ADC analog supply ground, has to be connected to V_{SS}
- ADCx_IN: Analog input signal channel

Refer to the Datasheet for more information about the input pin connections and voltage ranges.

19.4 ADC functional overview

19.4.1 Channel management

Analog signal channel input:

There are 18 analog signal channel inputs for each of the ADCs, expressed by ADC INx (x=0 to 17).

 ADC_IN0 to ADC_IN15 are external analog inputs, ADC_IN16 represents internal temperature sensor, ADC_IN17 represents internal reference voltage.

Channel conversion

The conversions are divided into two groups: ordinary and preempted channels. The preempted group has priority over the ordinary group.

If the preempted channel trigger occurs during the ordinary channel conversion, then the ordinary channel conversion is interrupted, giving priority to the preempted channel, and the ordinary channel continues its conversion at the end of the preempted channel conversion. If the ordinary channel trigger occurs during the preempted channel conversion, the ordinary channel conversion won't start until the end of the preempted channel conversion.

Program the ADC_Inx into the ordinary channel sequence (ADC_OSQx) and the preempted channel sequence (ADC_PSQ), and the same channel can be repeated, the total number of sequences is determined by OCLEN and PCLEN, then it is ready to enable the ordinary channel or preempted channel conversion.

19.4.1.1 Internal temperature sensor

The temperature sensor is connected to ADC_IN16. Before the temperature sensor channel conversion, the ITSRVEN bit in the ADC_CTRL2 register must be enabled and wait after power-on time.

The temperature sensor output voltage changes linearly with temperature. The offset of this linear function depends on each chip due to process variations from one chip to another. The internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. Using the ADC to convert ADC_IN16, the current temperature sensor output voltage can be read. Then the following formulat can be used to calculate the current temperature.

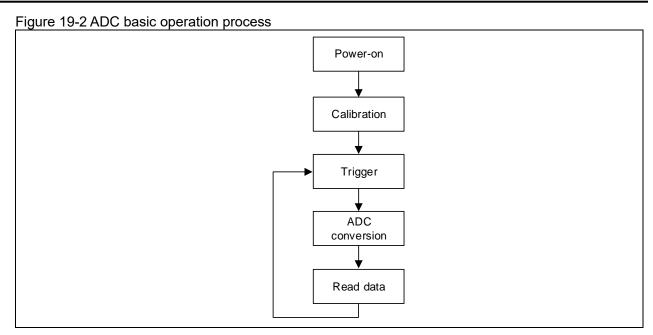
Obtain the temperature using the following formula:

Temperature (in °C) = $\{(V 25 - V_{SENSE}) / Avg_Slope\} + 25$.

Where,

 $V_{25} = V_{SENSE}$ value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. V_{SENSE} (given in mV/° C). Refer to the data sheet's electrical characteristics section for the actual average slope.


19.4.1.2 Internal reference voltage

The internal reference voltage of the typical value 1.2 V is connected to ADC_IN17. It is required to enable the ITSRVEN bit in the ADC_CTRL2 register before the internal reference channel conversion. The converted data of such channel can be used to calculate the external reference voltage.

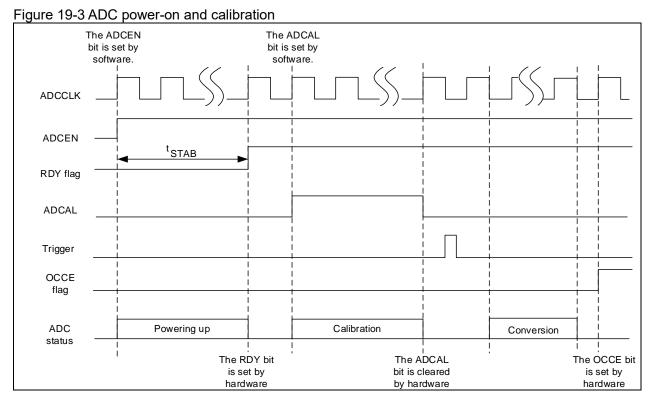
19.4.2 ADC operation process

Figure 19-2 shows the basic operation process of the ADC. It is recommended to do the calibration after the initial power-on in order to improve the accuracy of sampling and conversion. After the calibration, trigger is used to enable ADC sampling and conversion. Read data at the end of the conversion.

19.4.2.1 Power-on and calibration

Power-on

Set the ADC1EN bit in the CRM_APB2EN register to enable ADC clocks: PCLK2 and ADCCLK. Program the desired ADCCLK frequency by setting the ADCDIV bit in the ADC_CCTRL register. ADCCLK is provided by a divided HICK.


Note: ADCCLK must be less than 28 MHz, while the ADCCLK frequency must be lower than PCLK2.

Then set the ADCEN bit in the ADC_CTRL2 register to enable the ADC, and wait until the t_{STAB} flag is set before starting ADC conversion. Clear the ADCEN bit will stop ADC conversion, resulting in a reset, and disabling ADC to save power.

Calibration

After power-on, the ADC calibration is enabled by setting the ADCAL bit in the ADC_CTRL2 register. When the calibration is complete, the ADCAL bit is cleared by hardware and the conversion is triggered by software.

After each calibration, the calibration value is stored in the lower 7 bits of the ADC_ODT register, and then it is automatically sent back to the ADC so as to eliminate capacitance errors. The storage of the calibration value will not set the CCE flag, or generate an interrupt or DMA request.

19.4.2.2 Trigger

The ADC trigger contains ordinary channel trigger and preempted channel trigger. The ordinary channel conversion is triggered by ordinary channel, while the preempted channel conversion is triggered by preempted ones. Only by enabling the OCTEN or PCTEN bit in the ADC_CTRL2 register can the ADC start conversion by detecting the rising edge of trigger source.

The conversion can be triggered by software write operation to the OCSWTRG and PCSWTRG bits in the ADC CTRL2 register, or by an external event. The external events include timer trigger and pin trigger, depending on the OCTESEL and PCTESEL bits in the ADC_CTRL2 register, as shown in Table 19-1.

Table 19-1 Trigger sources for ordinary channels

OCTESEL	Trigger source	PCTESEL	Trigger source
000	TMR1_TRGOUT event	000	TMR1_CH2 event
001	TMR1_CH4 event	001	TMR1_CH3 event
010	TMR2_TRGOUT event	010	TMR2_CH4 event
011	TMR3_TRGOUT event	011	TMR3_CH4 event
100	TMR9_TRGOUT event	100	TMR9_CH1 event
101	TMR1_CH1 event	101	TMR6_TRGOUT event
110	EXINT line11 external pin	110	EXINT line15 external pin
111	OCSWTRG bit	111	PCSWTRG bit

19.4.2.3 Sampling and conversion sequence

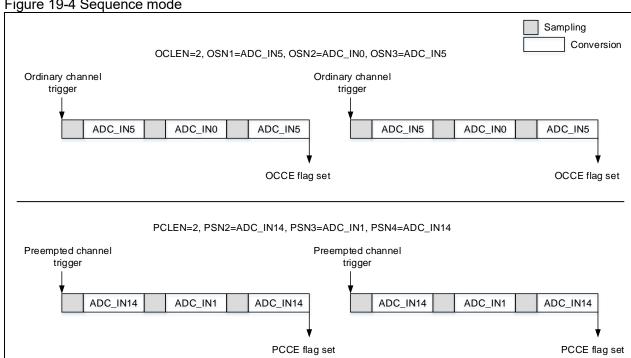
The sampling period can be configured by setting the CSPTx bit in the ADC SPT1 and ADC SPT2 registers. The duration required for a single conversion is calculated based on the following formula:

A single conversion time (ADCCLK period) = sampling time + +12.5

Example:

If the CSPTx selects 1.5 cycles, then a single conversion needs1.5+12.5=14 ADCCLK cycles.

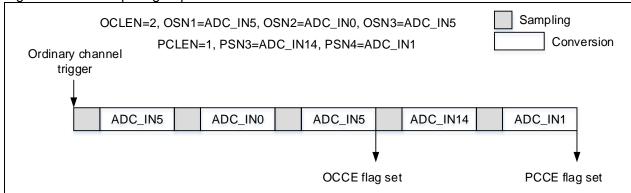
Conversion sequence management


Only one channel is converted at each trigger, by default, that is, OSN1-defined channel or PSN4-defined channel.

The following section describes various conversion sequence modes in detail. This mode enables multiple channels to be converted in a specific sequence.

19.4.3.1 Sequence mode

The sequence mode is enabled by setting the SQEN bit in the ADC_CTRL1 register. The ADC_OSQx register is used to configure the sequence and the number of ordinary channels, while the ADC PSQ register is used to define the sequence and the number of preempted channels. After the sequence mode is enabled, a single trigger event enables the conversion of a group of channels in order. The ordinary channels start converting from the QSN1 while the preempted channels starts from the PSNx, where x=4-PCLEN. Figure 18-4 shows an example of the behavior in seguence mode.


Figure 19-4 Sequence mode

19.4.3.2 Preempted group automatic conversion mode

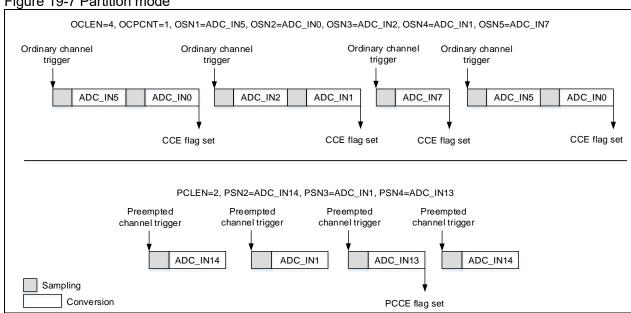
The automatic conversion mode for preempted group is enabled by setting the PCAUTOEN bit in the ADC CTRL1 register. In this mode, once the ordinary channel conversion is over, the preempted group will automatically starts its conversion. This mode can work in conjunction with the sequence mode. In this way, the preempted group conversion starts automatically at the end of the conversion of the ordinary group. Figure 19-5 shows an example of the behavior when the automatic preempted group conversion mode works with the ordinary group.

Figure 19-5 Preempted group auto conversion mode

19.4.3.3 Repetition mode

The repetition mode is enabled by setting the RPEN bit in the ADC_CTRL2 register. When a trigger signal is detected, the ordinary channels will be converted repeatedly. This mode can work in conjunction with the ordinary channel conversion in sequence mode to enable the repeated conversion of the ordinary group. Such mode can also work with the preempted group auto conversion mode to repeatedly convert the ordinary group and preempted group in sequence. Figure 19-6 shows an example of the behavior when the repetition mode works with the sequence mode and preempted group auto conversion mode.

Figure 19-6 Repetition mode


19.4.3.4 Partition mode

The partition mode of the ordinary group can be enabled by setting the OCPEN bit in the ADC CTRL1 register. In this mode, the ordinary group conversion sequence length (OCLEN bit in the ADC_OSQ1 register) is divided into subgroups. The number of channels in a subgroup is defined through the OCPCNT bit in the ADC CTRL1 register. When a trigger occurs, all channels in the subgroup will be converted. Each trigger selects a different subgroup in order.

Setting the PCPEN bit in the ADC CTRL1 register enables the partition mode of preempted group. In this mode, the preempted group conversion sequence length (OCLEN bit in the ADC OSQ1 register) is divided into subgroups, each of which has only one channel. When a trigger occurs, the channel in the subgroup will be converted. Each trigger event selects a different sub-group in order.

The partition mode and repetition mode cannot be used simultaneously. Figure 19-7 shows an example of the behavior in partition mode for ordinary group and preempted group.

Figure 19-7 Partition mode

19.4.4 Oversampling

The converted data of a single oversampling are obtained by enabling multiple conversions of the same channel and then averaging the cumulative converted data.

- Oversampling ratio is selected through the OSRSEL bit in the ADC_OVSP register. This bit is used to specify the oversampling multiple, which is done by converting the same channel many times
- Oversampling shift is selected through the OSSSEL bit in the ADC_OVSP register. This bit defines
 the average coefficient, which is done by right shift.

If the averaged data is greater than 16 bits, then only the right-aligned 16-bit data are fetched and put into a 16-bit data register, shown in Table 19-2.

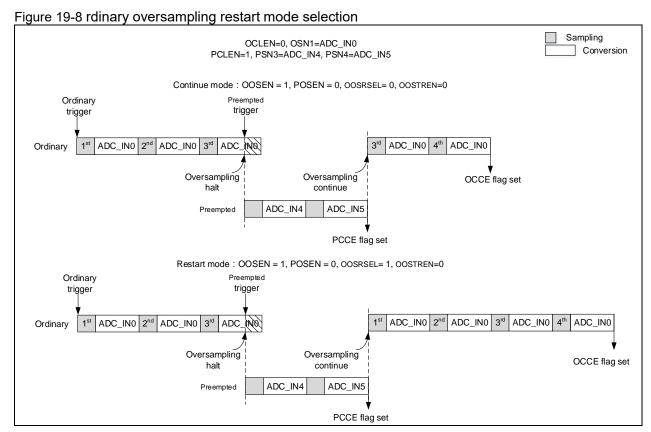
Example:

If 4x oversampling is selected through the OSRSEL bit, then the same channel is converted by four times in a single oversampling conversion, and the converted data derived from 4 conversions is put together. If 6-bit resolution is selected through the OSSSE bit, then the cumulative data is divided by 2⁶ and rounded up.

Table 19-2 Correlation between maximum cumulative data, oversampling multiple and shift digits

Oversampling multiple	2x	4x	8x	16x	32x	64x	128x	256x
Max cumulative data	0x1FFE	0x3FFC	0x7FF8	0xFFF0	0x1FFE0	0x3FFC0	0x7FF80	0xFFF00
No shift	0x1FFE	0x3FFC	0x7FF8	0xFFF0	0xFFE0	0xFFC0	0xFF80	0xFF00
Shift 1 bit	0x0FFF	0x1FFE	0x3FFC	0x7FF8	0xFFF0	0xFFE0	0xFFC0	0xFF00
Shift 2 bit	0x0800	0x0FFF	0x1FFE	0x3FFC	0x7FF8	0xFFF0	0xFFE0	0xFFC0
Shift 3 bit	0x0400	0x0800	0x0FFF	0x1FFE	0x3FFC	0x7FF8	0xFFF0	0xFFE0
Shift 4 bit	0x0200	0x0400	0x0800	0x0FFF	0x1FFE	0x3FFC	0x7FF8	0xFFF0
Shift 5 bit	0x0100	0x0200	0x0400	0x0800	0x0FFF	0x1FFE	0x3FFC	0x7FF8
Shift 6 bit	0x0080	0x0100	0x0200	0x0400	0x0800	0x0FFF	0x1FFE	0x3FFC
Shift 7 bit	0x0040	0x0080	0x0100	0x0200	0x0400	0x0800	0x0FFF	0x1FFE
Shift 8 bit	0x020	0x0040	0x0080	0x0100	0x0200	0x0400	0x0800	0x0FFF

When using oversampling conversion mode, the DTALIGN and PCDTOx are ignored, and data must be right aligned.


19.4.4.1 Oversampling of ordinary group of channels

The OOSRSEL bit in the ADC_OVSP register can be used to resume interrupted ordinary oversampling mode.

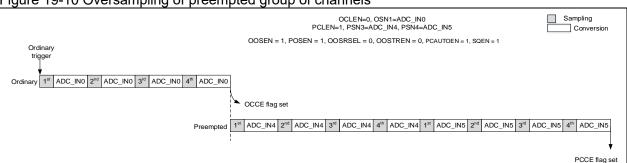
- OOSRSEL=0: continuous conversion mode. Ordinary group of channels, after being interrupted by preempted group of channels during oversampling, will retain the converted data and resume from the last interrupted ordinary conversion.
- OOSRSEL=1: restart mode. Ordinary group of channels, after being interrupted by preempted group of channels during oversampling, will be reset and restart the ordinary conversion from the beginning.

Figure 19-8 shows the differences between ordinary continuous mode and restart mode in 4x oversampling rate and sequence mode.

Trigger mode can be enabled by setting the OOSTREN bit in the ADC_OVSP register. The user must trigger each of the ordinary conversions. In this mode, once the ordinary conversion is interrupted by preempted group of channels, it is necessary to re-trigger ordinary group of channels before resuming the oversampling of ordinary channels.

When the trigger mode works in conjunction with conversion sequence management mode, trigger mode is applied, and the conversion complete flag follows the conversion sequence management mode. *Figure 19-9* shows the behavior when the ordinary trigger mode works together with resume mode in 4x oversampling rate and sequential mode.

Note: The trigger mode and repetition mode cannot be used concurrently.


Figure 19-9 Ordinary oversampling trigger mode Sampling OCLEN=1, OSN1=ADC IN0, OSN2=ADC IN1 Non-triggered oversampling mode: OOSEN = 1, POSEN = 0, OOSRSEL= 0, OOSTREN=0 Ordinary trigger ADC_IN0 2nd ADC_IN0 3rd ADC_IN0 4th ADC_IN0 1st ADC_IN1 2nd ADC_IN1 3rd ADC_IN1 ADC IN1 OCCE flag set Triggered oversampling mode: OOSEN = 1, POSEN = 0, OOSRSEL= 0, OOSTREN=1 Ordinary Ordinary Ordinary Ordinary Ordinary Ordinary Ordinary Ordinary trigger trigger trigger trigger trigge 4th ADC_IN0 1st ADC_IN0 ADC IN0 ADC IN1 ADC IN1 ADC INO ADC IN1 ADC_IN1 OCCE flag set

19.4.4.2 Oversampling of preempted group of channels

It is possible to use both the preempted oversampling and ordinary oversampling simultaneously or individually. The oversampling of the preempted group of channels does not affect ordinary oversampling modes. *Figure 19-10* shows the behavior when the preempted oversampling and ordinary oversampling trigger mode are used simultaneously in 4x oversampling rate and auto-conversion of preempted group.

Figure 19-10 Oversampling of preempted group of channels

19.4.5 Data management

At the end of the conversion of the ordinary group, the converted data are stored in the ADC ODT register. Once the preempted group conversion ends, the converted data of the preempted group are stored in the ADC PDTx register.

19.4.5.1 Data alignment

DTALIGN bit in the ADC CTRL2 register is used to select the alignment mode of data (right-aligned or left-aligned). The offset value of ADC PCDTOx register is subtracted from the converted data of the preempted group. Thus the result may be a negative value, marked by SIGN.

Figure 19-11 Data alignment

	Ordinary channel data 12 bits														
Right-ali	Right-alignment														
0	0	0	0	DT[11]	DT[10]	DT[9]	DT[8]	DT[7]	DT[6]	DT[5]	DT[4]	DT[3]	DT[2]	DT[1]	DT[0]
Left-alig	gnment														
DT[11]	DTIAOI	DTIO	DTIO									•	_	•	_
נווןוון	DT[10]	DT[9]	DT[8]	DT[7]	DT[6]	DT[5]	DT[4]	DT[3]	DT[2]	DT[1]	DT[0]	0	0	0	0
Right-ali		ונפן דע	נאוט	ן ניווט	D1[6]		npted ch				טונסן	0	0	0	0
		SIGN	SIGN		DT[10]						DT[4]	DT[3]	0 DT[2]	O DT[1]	DT[0]
Right-ali SIGN	ignment					Preer	npted ch	annel da	ıta 12 bit	:s					

19.4.5.2 Data read

Read access to the ADC ODT register using CPU or DMA gets the converted data of the ordinary group. Read access to the ADC PDTx register using CPU gets the converted data of the preempted group.

When the OCDMAEN bit is set in the ADC CTRL2 register, the ADC will issue a DMA request each time the ADC_OTD register is updated.

19.4.6 Voltage monitoring

The OCVMEN bit or PCVMEN bit in the ADC CTRL1 register is used to enable voltage monitoring based on the converted data.

The VMOR bit will be set if the converted result is outside the high threshold (ADC VMHB register) or less than the low threshold (ADC VMLB register).

The VMSGEN bit in the ADC CTRL1 register is used to enable voltage monitoring on either a single channel or all the channels. The VMCSEL bit is used to select a specific channel for voltage monitoring.

Voltage monitoring is based on the comparison result between the original converted data and the 12bit voltage monitor boundary register, regardless of the PCDTOx and DTALIGN bits.

When using an oversampler, voltage monitoring is based on the comparison result of the 16-bit registers (ADC VMHB[15:0] and ADC VMLB[15:0]) vs. the oversampled data.

19.4.7 Status flag and interrupts

Each ADC has its dedicated ADCx_STS register, namely, ordinary channel conversion start flag (OCCS), preempted channel conversion start flag (PCCS), preempted channel conversion end flag (PCCE), ordinary channel conversion end flag (CCE) and voltage monitor out of range (VMOR).

PCCE, CCE and VMOR have their respective interrupt enable bits. Once the interrupt bits are enabled, the corresponding flag is set and an interrupt is sent to CPU.

19.5 ADC registers

Table 19-3 lists ADC register map and their reset values.

These peripheral registers must be accessed by words (32 bits).

Table 19-3 ADC register map and reset values

Register name	Offset	Reset value
ADC_STS	0x000	0x0000 0000
ADC_CTRL1	0x004	0x0000 0000
ADC_CTRL2	0x008	0x0000 0000
ADC_SPT1	0x00C	0x0000 0000
ADC_SPT2	0x010	0x0000 0000
ADC_PCDTO1	0x014	0x0000 0000
ADC_PCDTO2	0x018	0x0000 0000
ADC_PCDTO3	0x01C	0x0000 0000
ADC_PCDTO4	0x020	0x0000 0000
ADC_VMHB	0x024	0x0000 FFFF
ADC_VMLB	0x028	0x0000 0000
ADC_OSQ1	0x02C	0x0000 0000
ADC_OSQ2	0x030	0x0000 0000
ADC_OSQ3	0x034	0x0000 0000
ADC_PSQ	0x038	0x0000 0000
ADC_PDT1	0x03C	0x0000 0000
ADC_PDT2	0x040	0x0000 0000
ADC_PDT3	0x044	0x0000 0000
ADC_PDT4	0x048	0x0000 0000
ADC_ODT	0x04C	0x0000 0000
ADC_OVSP	0x080	0x0000 0000
ADC_CCTRL	0x304	0x0000 0000

19.5.1 ADC status register (ADC_STS)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 5	Reserved	0x0000000	resd	Kept at default value.
				Ordinary channel conversion start flag
Bit 4	occs	0x0	rw0c	This bit is set by hardware and cleared by software (writing 0).
				0: No ordinary channel conversion started
				1: Ordinary channel conversion has started
				Preempted channel conversion start flag
Bit 3	PCCS	0x0	rw0c	This bit is set by hardware and cleared by software (writing 0).
				0: No preempted channel conversion started
				1: Preempted channel conversion has started
				Preempted channel end of conversion flag
				This bit is set by hardware and cleared by software
Bit 2	PCCE	0x0	rw0c	(writing 0).
				0: Conversion is not complete
				1: Conversion is complete
				End of conversion flag
Bit 1	CCE	0x0	rw0c	This bit is set by hardware. It is cleared by software (writing 0) or by reading the ADC_ODT register.
				0: Conversion is not complete
				1: Conversion is complete
				Voltage monitoring out of range flag
Bit 0	VMOR	0x0	rw0c	This bit is set by hardware and cleared by software (writing 0).
טונ ט	VIVIOIX	UAU	10000	0: Voltage is within the value programmed
				1: Voltage is outside the value programmed

19.5.2 ADC control register1 (ADC_CTRL1)

Accessed by words

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	Reserved	0x00	resd	Kept at default value.
				Voltage monitoring enable on ordinary channels
Bit 23	OCVMEN	0x0	rw	0: Voltage monitoring disabled on ordinary channels
				1: Voltage monitoring enabled on ordinary channels
				Voltage monitoring enable on preempted channels
Bit 22	PCVMEN	0x0	rw	0: Voltage monitoring disabled on preempted channels
				1: Voltage monitoring enabled on preempted channels
Bit 21: 16	Reserved	0x0	resd	Kept at default value.
				Partitioned mode conversion count of ordinary channels
				000: 1 channel
				001: 2 channels
Bit 15: 13	OCPCNT	0x0	rw	•••••
				111: 8 channels
				Note: In this mode, the preempted group converts only
				one channel at each trigger.
				Partitioned mode enable on preempted channels
Bit 12	PCPEN	0x0	rw	0: Partitioned mode disabled on preempted channels
				1: Partitioned mode enabled on preempted channels
				Partitioned mode enable on ordinary channels
Bit 11	OCPEN	0x0	rw	This is set and cleared by software to enable or disable
				partitioned mode on ordinary channels.

2023.08.31 Page 368 Rev 2.00

				0: Partitioned mode disabled on ordinary channels
				1: Partitioned mode enabled on ordinary channels
				Preempted group automatic conversion enable after
Bit 10	PCAUTOEN	0x0	rw	ordinary group
DIL IU F	PCAUTOEN		I VV	0: Preempted group automatic conversion disabled
				Preempted group automatic conversion enabled
				Voltage monitoring enable on a single channel
Bit 9	VMSGEN	0x0	rw	0: Disabled (Voltage monitoring enabled on all channels)
				1: Enabled (Voltage monitoring enabled a single channel)
				Sequence mode enable
				0: Sequence mode disabled (a single channel is
				converted)
Bit 8	SQEN	0x0	rw	1: Sequence mode enabled (the selected multiple
DILO	SQEN	UXU	I VV	channels are converted)
				Note: If this mode is enabled and the CCEIEN/PCCEIEN
				is set, a CCE or PCCE interrupt is generated only at the
				end of conversion of the last channel.
				Conversion end interrupt enable on Preempted channels
				0: Conversion end interrupt disabled on Preempted
Bit 7	PCCEIEN	0x0	rw	channels
				1: Conversion end interrupt enabled on Preempted
				channels
				Voltage monitoring out of range interrupt enable
Bit 6	VMORIEN	0x0	rw	0: Voltage monitoring out of range interrupt disabled
				Voltage monitoring out of range interrupt enabled
				Channel conversion end interrupt enable
Bit 5	CCEIEN	0x0	rw	0: Channel conversion end interrupt disabled
				1: Channel conversion end interrupt enabled
				Voltage monitoring channel select
				This filed is valid only when the VMSGEN is enabled.
				00000: ADC_IN0 channel
				00001: ADC_IN1 channel
Bit 4: 0	VMCSEL	0x00	rw	
				01111: ADC_IN15 channel
				10000: ADC_IN16 channel
				10001: ADC_IN17 channel
				10010~11111: Unused, do not configure.

2023.08.31 Page 369 Rev 2.00

19.5.3 ADC control register2 (ADC_CTRL2)

Accessed by words.

Bit	Abbr.	Reset value	Type	Description
Bit 30: 26	Reserved	0x00	resd	Kept at default value
				Internal VINTRV enable
Bit 23	ITSRVEN	0x0	rw	0: Internal VINTRV disabled
				1: Internal VINTRV enabled
				Conversion of ordinary channels triggered by software
				0: Conversion of ordinary channels not triggered
Bit 22	OCSWTRG	0x0	rw	1: Conversion of ordinary channels triggered (This bit is
				cleared by software or by hardware as soon as the
				conversion starts)
				Conversion of preempted channels triggered by software
				0: Conversion of preempted channels not triggered
Bit 22	PCSWTRG	0x0	rw	1: Conversion of preempted channels triggered (This bit
				is cleared by software or by hardware as soon as the conversion starts)
				Trigger mode enable for ordinary channels conversion
Bit 20	OCTEN	0x0	rw	0: Trigger mode disabled for ordinary channels conversion
				1: Trigger mode enabled for ordinary channels conversion
				Trigger event select for ordinary channels conversion 000: Timer 1 TRGOUT event
				000: Timer 1 TRGOOT event
				010: Timer 2 TRGOUT event
Bit 19: 17	OCTESEL	0x0	rw	011: Timer 3 TRGOUT event
				100: Timer 9 TRGOUT event 101: Timer 1 CH1 event
				110: EXINT 11
				111: OCSWTRG
Bit 16	Reserved	0x0	resd	Kept at default value.
				Trigger mode enable for preempted channels conversion 0: Trigger mode is disabled for preempted channels
Bit 15	PCTEN	0x00	rw	conversion
				1: Trigger mode is enabled for preempted channels
				conversion Trigger event select for preempted channels conversion
				000: Timer 1 CH2 event
				001: Timer 1CH3 event
Bit 14:12	PCTESEL	0x0	rw	010: Timer 2 CH4 event 011: Timer 3 CH4 event
DIL 14.12	TOTESEE	0.00	I VV	100: Timer 9 CH1 event
				101: Timer 6 TRGOUT event
				110: EXINT 15
Bit 10: 9	Reserved	0x0	resd	111: PCSWTRG Kept at default value.
	. 1.000. 100	<u> </u>		DMA transfer enable of ordinary channels
Bit 8	OCDMAEN	0x0	rw	0: Disabled
				1: Enabled
Bit 7: 4	Reserved	0x0	resd	Kept at default value.
				Initialize A/D calibration
				This bit is set by software and cleared by hardware. It is
Bit 3	ADCALINIT	0x0	rw	cleared after the calibration registers are initialized.
				0: No initialization occurred or initialization completed
				1: Enable initialization or initialization is ongoing
				A/D Calibration
Bit 2	ADCAL	0x0	rw	0: No calibration occurred or calibration completed
				1: Enable calibration or calibration is in process
Bit 1	RPEN	0x0	rw	Repetition mode enable
-	· -			0: Repetition mode disabled

				When SQEN=0, a single channel is converted each time when a trigger event arrives; when SQEN=1, a group of channels are converted each timer when a trigger event arrives.
				1: Repetition mode enabled
				When SQEN =0, continuous conversion mode on a single channel is enabled at each trigger event; when SQEN =1, continuous conversion mode on a group of channels is enabled at each trigger event.
				A/D converter enable
				0: A/D converter disabled (ADC goes to power-down mode)
				1: A/D converter enabled
Bit 0	ADCEN	0x0	r.a.	Note:
DIL U	ADCEN	UXU	rw	When this bit is in OFF state, write an ON command can wake up The ADC from power-down mode.
				The application should pay attention to the fact that there is a delay of t _{STAB} between power up and start of conversion.

19.5.4 ADC sampling time register 1 (ADC_SPT1)

Accessed by words.

Abbr.	Reset value	Type	Description
Reserved	0x00	resd	Kept at default value.
			Sample time selection of channel ADC_IN17
			000: 1.5 cycles
			001: 7.5 cycles
			010: 13.5 cycles
CSPT17	0x0	rw	011: 28.5 cycles
			100: 41.5 cycles
			101: 55.5 cycles
			110: 71.5 cycles
			111: 239.5 cycles
			Sample time selection of channel ADC_IN16
			000: 1.5 cycles
			001: 7.5 cycles
			010: 13.5 cycles
CSPT16	0x0	rw	011: 28.5 cycles
			100: 41.5 cycles
			101: 55.5 cycles
			110: 71.5 cycles
			111: 239.5 cycles
			Sample time selection of channel ADC_IN15
			000: 1.5 cycles
			001: 7.5 cycles
			010: 13.5 cycles
CSPT15	0x0	rw.	011: 28.5 cycles
001 110	OXO	1 44	100: 41.5 cycles
			101: 55.5 cycles
			110: 71.5 cycles
			111: 239.5 cycles
			Sample time selection of channel ADC_IN14
			000: 1.5 cycles
CSPT14	0x0	rw	001: 7.5 cycles
			010: 13.5 cycles
	CSPT16 CSPT15	Reserved 0x00 CSPT17 0x0 CSPT16 0x0 CSPT15 0x0	Reserved 0x00 resd CSPT17 0x0 rw CSPT16 0x0 rw

2023.08.31 Page 371 Rev 2.00

				011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN13
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 11: 9	CSPT13	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN12
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 8: 6	CSPT12	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN11
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 5: 3	CSPT11	0x0 ı	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN10
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 2: 0	CSPT10	0x0 ı	rw	011: 28.5 cycles
DIL Z. U	001110	UAU I	ı vv	100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				•
				111: 239.5 cycles

19.5.5 ADC sampling time register 2 (ADC_SPT2)

Accessed by words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at default value

2023.08.31 Page 372 Rev 2.00

Bit 29: 27	CSPT9	0x0	rw	Sample time selection of channel ADC_IN9 000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles 011: 28.5 cycles 100: 41.5 cycles 101: 55.5 cycles 110: 71.5 cycles
				111: 239.5 cycles Sample time selection of channel ADC_IN8
				000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles
Bit 26: 24	CSPT8	0x0	rw	011: 28.5 cycles 100: 41.5 cycles 101: 55.5 cycles
				110: 71.5 cycles 111: 239.5 cycles
Bit 23: 21	CSPT7	0x0	rw	Sample time selection of channel ADC_IN7 000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles 011: 28.5 cycles 100: 41.5 cycles
				101: 55.5 cycles 110: 71.5 cycles 111: 239.5 cycles
Bit 20: 18	CSPT6	0x0	rw	Sample time selection of channel ADC_IN6 000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles 011: 28.5 cycles
				100: 41.5 cycles 101: 55.5 cycles 110: 71.5 cycles 111: 239.5 cycles
Bit 17: 15	CSPT5	0x0	rw	Sample time selection of channel ADC_IN5 000: 1.5 cycles 001: 7.5 cycles 010: 13.5 cycles 011: 28.5 cycles
28.77.10	30			100: 41.5 cycles 101: 55.5 cycles 110: 71.5 cycles 111: 239.5 cycles

2023.08.31 Page 373 Rev 2.00

				Sample time selection of channel ADC_IN4
				000: 1.5 cycles
				001: 7.5 cycles
		0x0		010: 13.5 cycles
Bit 14: 12	CSPT4	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
	101: 55.5 cycles			
		110: 71.5 cycles		
				111: 239.5 cycles
				Sample time selection of channel ADC_IN3
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 11: 9	CSPT3	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN2
	CSPT2			000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 8: 6		ΩxΩ	rw	011: 28.5 cycles
Dit 0. 0		OXO	1 44	100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
-				Sample time selection of channel ADC_IN1
	CSPT1			000: 1.5 cycles
		0.0		001: 7.5 cycles
				010: 13.5 cycles
Dit 5. 2				011: 28.5 cycles
Bit 5: 3		0x0	rw	100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
-				111: 239.5 cycles
				Sample time selection of channel ADC_IN0
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 2: 0	CSPT0	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles

2023.08.31 Page 374 Rev 2.00

19.5.6 ADC preempted channel data offset register x (ADC_ PCDTOx) (x=1..4)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at default value
				Data offset for Preempted channel x
Bit 11: 0	PCDTOx	0x000	rw	Converted data stored in the ADC_PDTx = Raw converted data – ADC_PCDTOx

19.5.7 ADC voltage monitoring high threshold register (ADC_VWHB)

Accessed by words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x00000	resd	Kept at default value
Bit 15: 0	VMHB	0xFFFF	rw	Voltage monitoring high boundary

19.5.8 ADC voltage monitor low threshold register (ADC_ VWLB)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at default value
Bit 11: 0	VMLB	0x000	rw	Voltage monitoring low boundary

19.5.9 ADC ordinary sequence register 1 (ADC_ OSQ1)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 24	Reserved	0x00	resd	Kept at default value
				Ordinary conversion sequence length
				0000: 1 conversion
Bit 23: 20	OCLEN	0x0	rw	0001: 2 conversions
				11111: 16 conversions
Bit 19: 15	OSN16	0x00	rw	Number of 16th conversion in ordinary sequence
Bit 14: 10	OSN15	0x00	rw	Number of 15th conversion in ordinary sequence
Bit 9: 5	OSN14	0x00	rw	Number of 14th conversion in ordinary sequence
Bit 4: 0	OSN13	0x00	rw	Number of 13th conversion in ordinary sequence Note: The number can be 0~17 For example, if the number is set to 3, it means that the 13 th conversion is ADC_IN3 channel.

19.5.10 ADC ordinary sequence register 2 (ADC_ OSQ2)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 30	Reserved	0x0	resd	Kept at default value
Bit 29: 25	OSN12	0x00	rw	Number of 12th conversion in ordinary sequence
Bit 24: 20	OSN11	0x00	rw	Number of 11th conversion in ordinary sequence
Bit 19: 15	OSN10	0x00	rw	Number of 10th conversion in ordinary sequence
Bit 14: 10	OSN9	0x00	rw	Number of 9th conversion in ordinary sequence
Bit 9: 5	OSN8	0x00	rw	Number of 8th conversion in ordinary sequence

Bit 4: 0	OSN7	0x00	rw	Number of 7th conversion in ordinary sequence Note: The number can be 0~17. For example, if the number is set to 8, it means that the 7 th conversion is ADC_IN8 channel.
----------	------	------	----	---

19.5.11 ADC ordinary sequence register 3 (ADC_ OSQ3)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 30	Reserved	0x0	resd	Kept at default value
Bit 29: 25	OSN6	0x00	rw	Number of 6th conversion in ordinary sequence
Bit 24: 20	OSN5	0x00	rw	Number of 5th conversion in ordinary sequence
Bit 19: 15	OSN4	0x00	rw	Number of 4th conversion in ordinary sequence
Bit 14: 10	OSN3	0x00	rw	Number of 3rd conversion in ordinary sequence
Bit 9: 5	OSN2	0x00	rw	Number of 2nd conversion in ordinary sequence
				Number of 1st conversion in ordinary sequence
Bit 4: 0	OSN1	0x00	rw	Note: The number can be 0~17. For example, if the number is set to 17, it means that the 1st conversion is ADC_IN17 channel.

19.5.12 ADC preempted sequence register (ADC_PSQ)

Accessed by words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at default value
				Preempted conversion sequence length
				00: 1 conversion
Bit 21: 20	PCLEN	0x0	rw	01: 2 conversions
				10: 3 conversions
				11: 4 conversions
Bit 19: 15	PSN4	0x00	rw	Number of 4th conversion in preempted sequence
Bit 14: 10	PSN3	0x00	rw	Number of 3rd conversion in preempted sequence
Bit 9: 5	PSN2	0x00	rw	Number of 2nd conversion in preempted sequence
				Number of 1st conversion in preempted sequence
				Note: The number can be 0~17. For example, if the number is set to 3, it refers to the ADC_IN3 channel.
Bit 4: 0	PSN1	0x00	rw	If PCLEN is less than 4, the conversion sequence starts from 4-PCLEN. For example, when ADC_PSQ ([21: 0]) =10 00110 00101 00100 00011, it indicates that the scan conversion follows the sequence: 4, 5, 6, not 3, 4,5.

19.5.13 ADC preempted data register x (ADC_ PDTx) (x=1..4)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value
Bit 15: 0	PDTx	0x0000	rw	Conversion data from preempted channel

19.5.14 ADC ordinary data register (ADC_ ODT)

Accessed by words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value
Bit 15: 0	ODT	0x0000	ro	Conversion data of ordinary channel

2023.08.31 Page 376 Rev 2.00

19.5.15 ADC oversampling register (ADC_OVSP)

Accessed by words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 11	Reserved	0x0000	resd	Kept at default value.
Bit 10	OOSRSEL	0x0	rw	Ordinary oversampling restart mode select When the ordinary oversampling is interrupted by preempted conversions, this bit can be used to select where to resume ordinary conversions. 0: Continuous mode (ordinary oversampling buffer will be reserved) 1: Restart mode (ordinary oversampling buffer will be cleared, that is, the previously oversampled times are reset)
Bit 9	OOSTREN	0x0	rw	Ordinary oversampling trigger mode enable 0: Disabled (only one trigger is needed for all oversampling conversions) 1: Enabled (Each oversampling conversion needs a trigger)
Bit 8: 5	OSSSEL	0x0	rw	Oversampling shift select This field is used to define the number of right shift used in the oversampling results. 0000: No shift 0001: Shift 1 bit 0010: Shift 2 bits 0011: Shift 3 bits 0100: Shift 4 bits 0101: Shift 5 bits 0110: Shift 6 bits 0111: Shift 7 bits 1000: Shift 8 bits 1001~1111: Unused. Do not configure.
Bit 4: 2	OSRSEL	0x0	rw	Oversampling ratio select 000: 2x 001: 4x 010: 8x 011: 16x 100: 32x 101: 64x 110: 128x 111: 256x
Bit 1	POSEN	0x0	rw	Preempted oversampling enable 0: Preempted oversampling disabled 1: Preempted oversampling enabled
Bit 0	OOSEN	0x0	rw	Ordinary oversampling enable 0:Ordinary oversampling disabled 1: Ordinary oversampling enabled

19.5.16 ADC common control register (ADC_CCTRL)

Accessed by words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Kept at default value.
				ADC division
				0000: HCLK/2
				0001: HCLK//3
D:: 40: 40	ADCDIV/	0.40		 4444 - LICHZ//47
Bit 19: 16	ADCDIV	0x0	rw	1111: HCLK//17
				Note:
				The clock divided by this field is for ADC.
				The maximum value of the ADCCLK is 28 MHz. After this
				division, the ADCCLK cannot be higher than PCLK2.
Bit 15:0	Reserved	0x0000	resd	Kept at default value.

20 Controller area network (CAN)

20.1 CAN introduction

CAN (Controller Area Network) is a serial communication protocol for real-time and reliable data communication among nodes. It supports the CAN protocol version 2.0A and 2.0B.

20.2 CAN main features

- Baud rates up to 1M bit/s
- Supports the time triggered communication
- Interrupt enable and mask
- Configurable automatic retransmission mode

Transmission

- Three transmit mailboxes
- Configurable transmit priority
- Supports the time stamp on transmission

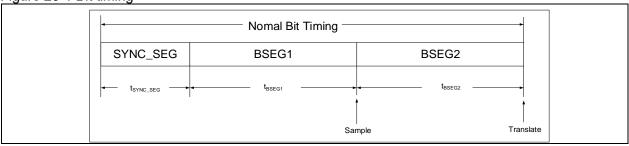
Reception

- Two FIFOs with three-level depth
- 14 filter banks
- Supports the identifier list mode
- Supports the identifier mask mode
- FIFO overrun management

Time triggered communication mode

- 16-bit timers
- Time stamp on transmission

20.3 Baud rate


The nominal bit time of the CAN bus consists of three parts as follows:

Synchronization segment (SYNC_SEG): This segment has one time unit, and its time duration is defined by the BRDIV[11: 0] bit in the CAN BTMG register.

Bit segment 1 (BIT SEGMENT 1): It is referred to as BSEG1 which contains the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is configurable between 1 and 16 time units, depending on the BTS1[3: 0] bit.

Big segment 2 (BIT SEGMENT 2): It is referred to as BSEG2 which contains the PHASE_SEG2 of the CAN standard. Its duration is configurable between 1 and 8 time units, depending on the BTS2[2: 0] bit.

Figure 20-1 Bit timing

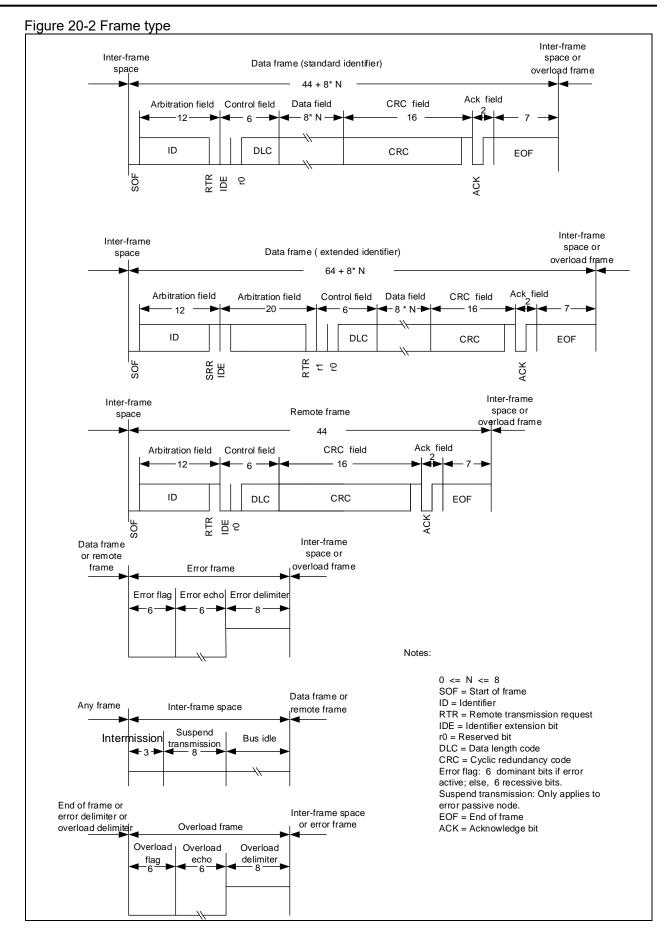
Baud rate formula:

$$BaudRate = \frac{1}{\text{Nomal Bit Timing}}$$

$$Nomal \ Bit \ Timing = t_{SYNC_SEG} + t_{BSEG1} + t_{BSEG2}$$
with
$$t_{SYNC_SEG} = 1 \ \text{x} \ t_q$$

$$t_{BSEG1} = (1 + \text{BTS1[3: 0]}) \ \text{x} \ t_q$$

$$t_{BSEG2} = (1 + \text{BTS2[2: 0]}) \ \text{x} \ t_q$$


$$t_q = (1 + \text{BRDIV[11: 0]}) \ \text{x} \ t_{pclk}$$

Hard synchronization and resynchronization

The start location of each bit in CAN nodes is always in synchronization segment by default. The sampling is performed at the edge location of bit segment 1 and big segment 2 simultaneously.

During the actual transmission, there are certain phase drifts among the bits of CAN nodes due to the oscillator drifts of nodes, transmission latency and noise interference. Therefore it is necessary to avoid the impact on the communication by synchronizing on the start-bit edge and resynchronizing the following falling edges. The length of synchronization to compensate for phase drifts must not be greater than the resynchronization adjustment width (it is programmable between 1 and 4 time units through the RSAW[1:0] bit).

20.4 Interrupt management

The CAN controller has four interrupt vectors that can be used to enable or disable interrupts by setting the CAN_INTEN register.

Figure 20-3 Transmit interrupt generation

Figure 20-4 Receive interrupt 0 generation

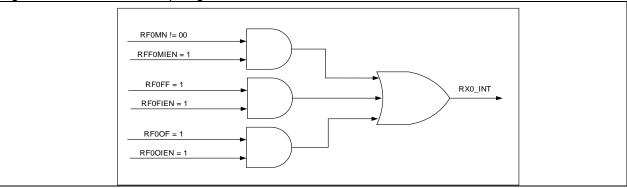


Figure 20-5 Receive interrupt 1 generation

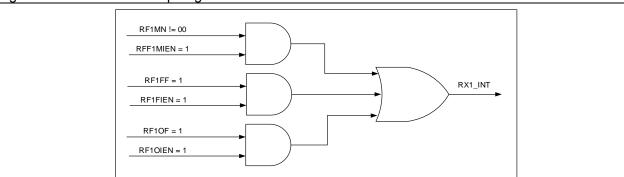
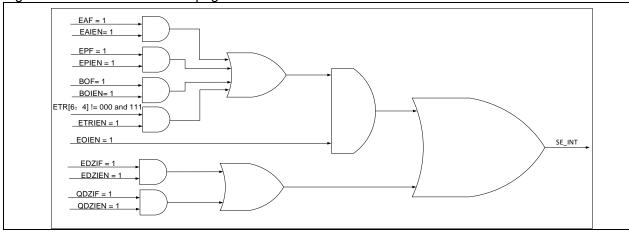



Figure 20-6 Status error interrupt generation

20.5 Design tips

The following information can be used as reference for CAN application development:

Debug control

When the system enters the debug mode, the CAN controller stops or continues to work normally, depending on the CANx_PAUSE bit in the DEBUG_CTRL register or the PTD bit in the CAN MCTRL register.

• Time triggered communication

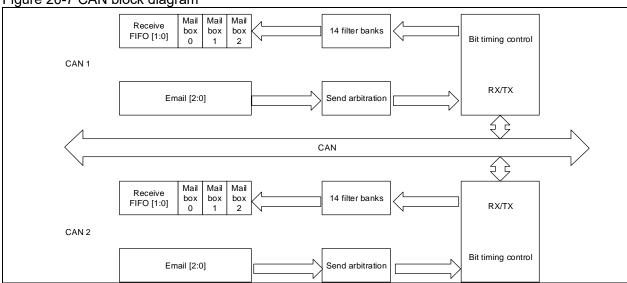
The timer triggered communication is used to improve the real-time performance so as to avoid bus competition. It is activated by setting TTCEN=1 in the CAN_MCTRL register. The internal 16-bit timer is incremented at each CAN bit time, and it is sampled on the Start of Frame bit to generate the time stamp value, which is stored in the CAN_RFCx and CAN_TMCx register.

Register access protection

The CAN BTMG register can be modified only when the CAN is in frozen mode.

Although the transmission of incorrect data will not cause problems at the network level, it can have severe impact on the application. Thus a transmit mailbox can be modified only when it is in empty state.

The filter configuration in the CAN_FMCFG (filter mode configuration register), CAN_FBWCFG (filter bit width configuration register) and CAN_FRF (filter bit register) registers can be modified only when FCS=1. The CAN_FiFBx register can be modified only when FCS=1 (in filter configuration mode) or FAENx=0 (filter is disabled).


20.6 Functional overview

20.6.1 General description

As the number of nodes in the CAN network and the number of messages grows, an enhanced filtering mechanism is required to handle all types of messages in order to reduce the processing time of message reception. One FIFO scheme is used to ensure that the CPU can concentrate on application tasks for a long period of time without the loss of messages. In the meantime, the priority order of the messages to be transmitted is configured by hardware. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully supported by hardware.

Based on the conditions above, the CAN controller provides 14 scalable/configurable identifier filter banks, 2 receive FIFOs capable of storing 3 complete messages each and being totally managed by hardware, and 3 transmit mailboxes with their transmit priority order defined by the transmit scheduler.

Figure 20-7 CAN block diagram

20.6.2 Operating modes

The CAN controller has three operating modes:

Sleep mode

After a system reset, the CAN controller is in Sleep mode. In this mode, the CAN clock is stopped to reduce power consumption and an internal pull-up resistance is disabled. However, the software can still access to the mailbox registers.

The software request the CAN controller to enter Sleep mode by setting the DZEN bit in the CAN_MCTRL register. The hardware confirms the request by setting the DZC bit in the CAN_MSTS register.

Exit Sleep mode in two ways:

The CAN controller can be woke up by hardware clearing the DZEN bit when the AEDEN bit in the CAN_MCTRL register and the CAN bus activity is detected. It can also be woke up by software clearing the DZEN bit.

Sleep mode to Frozen mode:

The CAN controller switches from Sleep mode to Frozen mode when the FZEN bit is set in the CAN_MCTRL register and the DZEN bit is cleared. Such switch operation is confirmed by hardware setting the FZC bit in the CAN_MSTS register.

Sleep mode to Communication mode:

The CAN controller enters Communication mode when the FZEN and DZEN bits are both cleared and the CAN controller has synchronized with the bus. In other words, it must wait for 11 consecutive recessive bits to be detected on the CANRX pin.

• Frozen mode

The software initialization can be done only in Frozen mode, including the CAN_BTMG (CAN bit timing register) and CAN_MCTRL (CAN master control register) registers. But the initialization of the 14 CAN filter banks (mode, scale, FIFO association, activation and filter values) can be done in non-Frozen mode. When the CAN controller is in Frozen mode, message reception and transmission are both disabled.

Frozen mode to Communication mode:

The CAN controller leaves Frozen mode when the FZEN bit is cleared in the CAN_MCTRL register. This switch operation is confirmed by hardware clearing the FZC bit in the CAN_MSTS register. The CAN controller must be synchronized with the bus.

Frozen mode to Sleep mode:

The CAN controller enters Sleep mode if DZEN=1 and FZEN=0 in the CAN_MCTRL register. This switch operation is confirmed by hardware setting the DZC bit in the CAN_MSTS register.

Communication mode

After the CAN_BTMG and CAN_MCTRL registers are configured in Frozen mode, the CAN controller enters Communication mode and is ready for message reception and transmission.

Communication mode to Sleep mode:

The CAN controller switches to Sleep mode when the DZEN bit is set in the CAN_MCTRL register and the current CAN bus transmission is complete.

Communication mode to Frozen mode: The CAN controller enters Frozen mode when the FZEN bit is set in the CAN MCTRL register and the current CAN bus transmission is complete.

20.6.3 Test modes

The CAN controller defines three test modes, including Listen-only mode, Loop back mode and Listen-only combined with Loop back mode. Test mode can be selected by setting the LOEN and LBEN bits in the CAN_BTMG register.

- Listen-only mode is selected when the LOEN bit is set in the CAN_BTMG register. In this mode, the CAN is able to receive data, but it sends only recessive bits on the CANTX pin. In the meantime, the dominant bits on the CANTX can be detected by the receive side but without affecting the CAN bus.
- Loop back mode is selected by setting the LBEN bit in the CAN_BTMG register. In this mode,
 The CAN only receives the level signal on its CANTX pin of its own node. Meanwhile, the CAN
 can send data to the external bus. The Loop back mode is mainly used for self-test functions.
- Loop back mode combined with Listen-only mode: It is possible to combine the Listen-only and Loop back mode by setting [31:30] bits=11 in the CAN_BTMG register. In this mode, the CAN is disconnected from the bus network, the CANTX pin remains in recessive state, and the transmit side is connected to the receive side.

20.6.4 Message filtering

The received message has to go through filtering by its identifier. If passed, the message will be stored in the corresponding FIFOs. If not, the message will be discarded. The whole operation is done by hardware without using CPU resources.

Filter bit width

The CAN controller provides 14 configurable and scalable filter banks (0~13). Each filter bank has two 32-bit registers, CAN_FiFB1 and CAN_FiFB2. The filter bit width can be configured as two 16 bits or one 32 bits, depending on the corresponding bits in the CAN_FBWCFG register.

32-bit filter register CAN_FiFBx includes the SID[10: 0], EID[17: 0], IDT and RTR bits.

CAN_FiFB1[31: 21]	CAN_FiFB1[20: 3]	CAN_FiFB	1[2: 0]	
CAN_FiFB2[31: 21]	CAN_FiFB2[20: 3]	CAN_FiFB	2[2: 0]	
SID[10: 0]/EID[28: 18]	EID[17: 0]	IDT	RTR	0

Two 16-bit filter register CAN_FiFBx includes SID[10: 0], IDT, RTR and EID[17: 15] bits

CAN_FiFB1[31: 21]	CAN_F	iFB1	CAN_FiFB1	CAN FiFB1[15: 5]	CAN_FiFB1		CAN_FiFB1
CAN_FIFBT[ST. ZT]	[20: 19]		[18: 16]	CAN_FIFBT[15. 5]	[4: 3]		[2: 0]
OAN E:ED0[04: 04]	CAN_FiFB2		CAN_FiFB2	OAN 5:500(45: 51	AN_FiFB2		CAN_FiFB2
CAN_FiFB2[31: 21]	[20: 19]		[18: 16]	CAN_FiFB2[15: 5]	[4: 3]		[2: 0]
SID[10: 0]	IDT	RTR	EID[17: 15]	SID[10: 0]	IDT	RTR	EID[17: 15]

Filtering mode

The filter can be configured in identifier mask mode or in identifier list mode by setting the FMSELx bit in the CAN_FMCFG register. The mask mode is used to specify which bits must match the preprogrammed identifiers, and which bits do not need. In identifier list mode, the identifier must match the pre-programmed identifier. The two modes can be used in conjunction with filter width to deliver four filtering modes below:

Figure 20-8 32-bit identifier mask mode

ID	CAN_FiFB1[31:21]	CAN_FiFB1[20:3]	CAN_FiFB1 [2:0]	
Mask	CAN_FiFB2[31:21]	CAN_FiFB2[20:3]	CAN_FiFB2 [2:0]	
Mapping	SID[10:0]	EID[17:0]	IDT RTR 0	

Figure 20-9 32-bit identifier list mode								
ID	CAN_FiFB1[31:21]	CAN_FiFB1[20:3]	CAN_FiFB1 [2:0]					
ID	CAN_FiFB2[31:21]	CAN_FiFB2[20:3]	CAN_FiFB2 [2:0]					
Mapping	SID[10:0]	EID[17:0]	IDT RTR 0					

Figure 20-10 16-bi	t identifier mask mode
--------------------	------------------------

rigare 20-10 To-bit identifier mas	Killoud		
ID	CAN_FiFB1[15:5]	CAN_FiFB1[4:0]	
Mask	CAN_FiFB1[31:21]	CAN_FiFB1[20:16]	
			,
ID	CAN_FiFB2[15:5]	CAN_FiFB2[4:0]	
Mask	CAN_FiFB2[31:21]	CAN_FiFB2[20:16]	
Mapping	SID[10:0]	RTR IDT EID[17:15	

Figure 20-11 16-bit identifier list mode

igare ze ir re pictaerianer nech			
ID	CAN_FiFB1[15:8]	CAN_FiFB1[7:0]	
ID	CAN_FiFB1[31:24]	CAN_FiFB1[23:16]	
,			
ID	CAN_FiFB2[15:8]	CAN_FiFB2[7:0]	
ID	CAN_FiFB2[31:24]	CAN_FiFB2[23:16]	
Mapping	SID[10:0]	RTR IDT EID[17:15]	

Filter match number

14 filter banks have different filtering effects dependent on the bit width mode. For example, 32-bit identifier mask mode contains the filters numbered n while 16-bit identifier list mode contains the filters numbered n, n+1, n+2 and n+3. When a frame of message passes through the filter number N, the number N is stored in the RFFMN[7: 0] bit in the CAN_RFCx register. The distribution of the filter number does not take into account the activation state of the filter banks.

2023.08.31 Page 385 Rev 2.00

Filter bank	FIFO0	Active	Filter number	Filter bank	FIFO1	Active	Filter number	
	CAN_F0FB1[31:0]-ID	0 Yes 1		CAN_F3FB1[15:0]-ID		0		
0	CAN_F0FB2[31:0]-ID			CAN_F3FB1[31:16]-ID		1		
	CAN_F1FB1[15:0]-ID		2	3	CAN_F3FB2[15:0]-ID	Yes	2	
	CAN_F1FB1[31:16]-ID		3		CAN_F3FB2[31:16]-ID		3	
1	CAN_F1FB2[15:0]-ID	Yes	4		CAN_F4FB1[31:0]-ID			
	CAN_F1FB2[31:16]-ID		5	4	CAN_F4FB2[31:0]- Mask	Yes	4	
	CAN_F2FB1[31:0]-ID				CAN_F5FB1[15:0]-ID			
2	CAN_F2FB2[31:0]-Mask	Yes	Yes 6	6	5	CAN_F5FB1[31:16]- Mask	No	5
	CAN_F6FB1[15:0]-ID	7 	7 No.		5	CAN_F5FB2[15:0]-ID		
6	CAN_F6FB1[31:16]-Mask				CAN_F5FB2[31:16]- Mask		6	
Ü	CAN_F6FB2[15:0]-ID			CAN_F7FB1[15:0]-ID		7		
	CAN_F6FB2[31:16]-Mask		· · · · · · · · · · · · · · · · · · ·	-	CAN_F7FB1[31:16]-ID	No	8	
0	CAN_F9FB1[31:0]-ID	N.a.	9	7	CAN_F7FB2[15:0]-ID	No	9	
9	CAN_F9FB2[31:0]-ID	No	10	-	CAN_F7FB2[31:16]-ID		10	
	CAN_F10FB1[15:0]-ID				CAN_F8FB1[31:0]-ID			
10	CAN_F10FB1[31:16]- Mask	Yes	11	8	CAN_F8FB2[31:0]- Mask	Yes	11	
10	CAN_F10FB2[15:0]-ID	res			CAN_F11FB1[31:0]-ID		12	
	CAN_F10FB2[31:16]- Mask		12	11	CAN_F11FB2[31:0]-ID	Yes	13	
	CAN_F12FB1[15:0]-ID		13		CAN_F13FB1[15:0]-ID		14	
40	CAN_F12FB1[31:16]-ID	NI-	14	40	CAN_F13FB1[31:16]- ID	\/	15	
12	CAN_F12FB2[15:0]-ID	No	15	13	CAN_F13FB2[15:0]-ID	Yes	16	
	CAN_F12FB2[31:16]-ID		16		CAN_F13FB2[31:16]- ID		17	

Priority rules

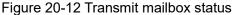
It may occur that CAN controller receives a frame of message that pass through several filters successfully. In this case, the filter match number stored in the receive mailbox is determined according to the following priority rules:

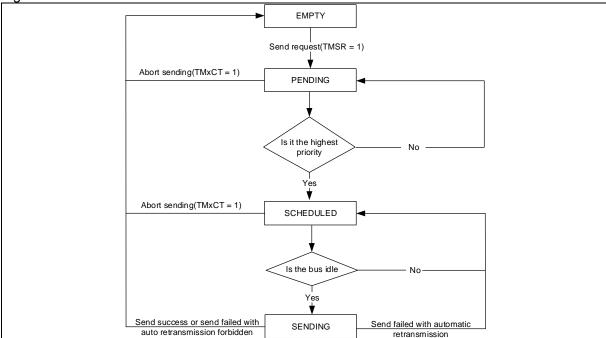
- A 32-bit filter has priority over a 16-bit filter
- For filters with equal bit width, the identifier list mode has priority over the identifier mask mode
- For filter with equal bit width and identifier mode, the lower number has priority over the higher number.

Filter configuration

- Configure the CAN filters by setting the FCS bit in the CAN_FCTRL register.
- Select Identifier mask mode or identifier list mode by setting the FMSELx bit in the CAN_FMCFG register.
- Configure the filter bit width as two 16 bits or one 32 bits by setting the FBWSELx bit in the CAN_FBWCFG register.
- Associate the filter x with FIFO0 or FIFO1 by setting the FRFSELx bit in the CAN FRF register.
- Activate the filter banks x by setting FAENx=1 in the CAN_FACFG register.
- Configure 0~13 filter banks by writing to the CAN FiFBx register (i=0...27; x=1,2).

Complete the CAN filter configuration by setting FCS=0 in the CAN FCTRL register.


20.6.5 Message transmission


Register configuration

To transmit a message, the application must select one transmit mailbox and configure the CAN_TMIx, CAN_TMCx, CAN_TMDTLx and CAN_TMDTHx registers. Once the mailbox configuration is complete, setting the TMSR bit in the CAN_TMIx register can initiate CAN transmission.

Message transmission

The mailbox enters into pending state immediately after the mailbox is configured and the CAN controller receives a transmit request. At this point, the CAN controller will confirm whether the mailbox is given the highest priority or not. If yes, it will enter into SCHEDULED STATE, otherwise, it will wait to get the highest priority. The mailbox in SCHEDULED state will monitor the CAN bus state so that the messages in SCHEDULED mailbox can be transmitted as soon as the CAN bus becomes idle. The mailbox will enter EMPTY state at the end of the message transmission.

Transmit priority configuration

When two or more transmit boxes are in PENDING state, their transmit priority must be given.

By identifier:

When MMSSR=0 in the CAN_MCTRL register, the transmit order is defined by the identifier of the message in the mailbox. The message with lower identifier value has the highest priority. If the identifier values are the same, the message with lower mailbox number will be transmitted first.

By transmit request order:

When MMSSR=1 in the CAN_MCTRL register, the transmit priority is given by the transmit request order of mailboxes.

Transmit status and error status

The TMxTCF, TMxTSF, TMxALF, TMxTEF and TMxEF bits in the CAN_TSTS register are used to indicate transmit status and error status.

TMxTCF bit: Transmission complete flag, indicating that the data transmission is complete when TMxTCF=1.

TMxTSF bit: Transmission success flag, indicating that the data has been transmitted successfully when TMxTSF =1

TMxALF bit: Transmission arbitration lost flag, indicating that the data transmission arbitration is lost

when TMxALF=1.

TMxTEF bit: Transmission error flag, indicating that the data transmission failed due to bus error, and an error frame is sent when TMxTEF=1.

TMxEF bit: Mailbox empty flag, indicating that the data transmission is complete and the mailbox becomes empty when TMxEF=1.

Transmit abort

The TMxCT bit is set in the CAN_TSTS register to abort the transmission of the current mailbox, detailed as follows:

When the current transmission fails or arbitration is lost, if the automatic retransmission mode is disabled, the transmit mailbox become EMPTY; if the automatic retransmission mode is enabled, the transmit mailbox becomes SCHEDULED, the mailbox transmission then is aborted and becomes EMPTY.

When the current transmission is complete successfully, the mailbox becomes EMPTY.

20.6.6 Message reception

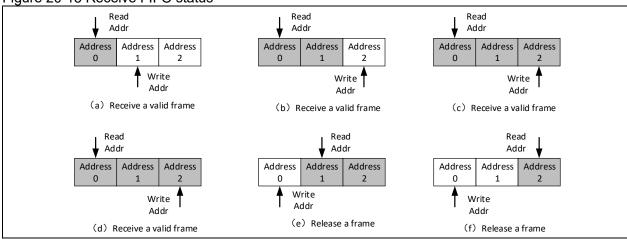
Register configuration

The CAN_RFIx (receive FIFO mailbox identifier register), CAN_RFCx (receive FIFO mailbox data length and time stamp register), CAN_RFDTLx (receive FIFO mailbox data register low) and CAN_RFDTHx (receive FIFO mailbox data register high) registers can be used by user applications to obtain valid messages.

Message reception

The CAN controller has two FIFO with three levels to receive messages. FIFO rule is adopted. When the message is received correctly and has passed the identifier filtering, it is considered as a valid message and is stored in the corresponding FIFO. The number of the received messages RFxMN[1: 0] will be incremented by one whenever the receive FIFO receives a valid message. If a valid message is received when RFxMN[1: 0]=3, the controller will select either to overwrite the previous messages or discard the new incoming message through the MDRSEL bit in the CAN MCTRL register.

In the meantime, when the user reads a frame of message and the RFxR is set in the CAN_RFx register, one FIFO mailbox is released, and RFxMN[1: 0] bit is decremented by one in the CAN_RFx register.


Receive FIFO status

RFxMN[1: 0], RFxFF and RFxOF bits in the RFx register are used to indicate the status of receive FIFO. RFxMN[1: 0]: indicates the number of valid messages stored in the FIFOx.

RFxFF: indicates that three valid messages are stored in the FIFOx (i.e. the three mailboxes are full), as shown in (c) of *Figure 20-13*.

RFxOF: indicates that a new valid message has been received while the FIFOx is full, as shown in (d) of *Figure 20-13*.

Figure 20-13 Receive FIFO status

20.6.7 Error management

The status of the current CAN node is indicated by the receive error counter (TEC) and transmit error counter (REC) bits in the CAN_ESTS register. The ETR[6: 4] bit in the CAN_ESTS register is used to record the last error source, and the corresponding interrupts will be generated when the CAN_INTEN register is enabled.

- Error active flag: When both TEC and REC are lower than 128, the system is in the error active state. An error active flag is set when an error is detected.
- Error passive flag: When either TEC or REC is greater than 127, the system is in the error passive state. An error passive flag is set when an error is detected.
- Bus-off state: The bus-off state is entered when TEC is greater than 255. In bus-off state, the
 node is not able to transmit and receive messages. The CAN recovers from bus-off state in two
 ways:

Option 1: When AEBOEN=0 in the CAN_MCTRL register, in communication mode, the CAN will recover from bus-off state when the 128 occurrence of 11 consecutive recessive bits are detected on the CAN RX pin, and the software requests to enter Frozen mode and exit Frozen mode. Option 2:

When AEBOEN=1 in the CAN_MCTRL register, in communication mode, the CAN will resume from bus-off state automatically after 128 occurrences of 11 consecutive recessive bits have been detected on the CAN RX pin.

20.7 CAN registers

These peripheral registers must be accessed by words (32 bits).

Table 20-1 CAN register map and reset values

Register name	Offset	Reset value
MCTRL	000h	0x0001 0002
MSTS	004h	0x0000 0C02
TSTS	008h	0x1C00 0000
RF0	00Ch	0x0000 0000
FR1	010h	0x0000 0000
INTEN	014h	0x0000 0000
ESTS	018h	0x0000 0000
BTMG	01Ch	0x0123 0000
Reserved	020h~17Fh	xx
TMIO	180h	0xXXXX XXXX
TMC0	184h	0xXXXX XXXX
TMDTL0	188h	0xXXXX XXXX
TMDTH0	18Ch	0xXXXX XXXX
TMI1	190h	0xXXXX XXXX
TMC1	194h	0xXXXX XXXX
TMDTL1	198h	0xXXXX XXXX
TMDTH1	19Ch	0xXXXX XXXX
TMI2	1A0h	0xXXXX XXXX
TMC2	1A4h	0xXXXX XXXX
TMDTL2	1A8h	0xXXXX XXXX
TMDTH2	1ACh	0xXXXX XXXX

RFI0	1B0h	0xXXXX XXXX
RFC0	1B4h	0xXXXX XXXX
RFDTL0	1B8h	0xXXXX XXXX
RFDTH0	1BCh	0xXXXX XXXX
RFI1	1C0h	0xXXXX XXXX
RFC1	1C4h	0xXXXX XXXX
RFDTL1	1C8h	0xXXXX XXXX
RFDTH1	1CCh	0xXXXX XXXX
Reserved	1D0h~1FFh	xx
FCTRL	200h	0x2A1C 0E01
FMCFG	204h	0x0000 0000
Reserved	208h	xx
FBWCFG	20Ch	0x0000 0000
Reserved	210h	xx
FRF	214h	0x0000 0000
Reserved	218h	xx
FACFG	21Ch	0x0000 0000
Reserved	220h~23Fh	xx
F0FB1	240h	0xXXXX XXXX
F0FB2	244h	0xXXXX XXXX
F1FB1	248h	0xXXXX XXXX
F1FB2	24Ch	0xXXXX XXXX
F13FB1	2A8h	0xXXXX XXXX
F13FB2	2ACh	0xXXXX XXXX

20.7.1 CAN control and status registers

20.7.1.1 CAN master control register (CAN_MCTRL)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at default value.
Bit 16	PTD	0x1	rw	Prohibit trans when debug 0: Transmission works during debug 1: Transmission is prohibited during debug. Receive FIFO can be still accessible normally. Note: Transmission can be disabled only when PTD and CANx_PAUSE bits in the DEBUG_CTRL register are set simultaneously.
Bit 15	SPRST	0x0	rw1s	Software partial reset 0: Normal 1: Software partial reset Note: SPRST only reset receive FIFO and MCTRL register. The CAN enters Sleep mode after reset. Then this bit is automatically cleared by hardware.
Bit 14: 8	Reserved	0x00	resd	Kept at default value.
Bit 7	TTCEN	0x0	rw	Time triggered communication mode enable 0: Time triggered communication mode disabled 1: Time triggered communication mode enabled Automatic exit bus-off enable
Bit 6	AEBOEN	0x0	rw	0: Automatic exit bus-off disabled 1: Automatic exit bus-off enabled Note: When Automatic exit bus-off mode is enabled, the hardware will automatically leave bus-off mode as soon as an exit timing is detected on the CAN bus. When Automatic exit bus-off mode is disabled, the software must enter/leave the freeze mode once more, and then the bus-off state is left only when an exit timing is detected on the CAN bus.
Bit 5	AEDEN	0x0	rw	Automatic exit doze mode enable 0: Automatic exit sleep mode disabled 1: Automatic exit sleep mode enabled Note: When Automatic exit sleep mode is disabled, the Sleep mode is left by software clearing the sleep request command. When Automatic exit sleep mode is enabled, the sleep mode is left without the need of software intervention as soon as a message is monitored on the CAN bus.
Bit 4	PRSFEN	0x0	rw	Prohibit retransmission enable when sending fails enable 0: Retransmission is enabled. 1: Retransmission is disabled.
Bit 3	MDRSEL	0x0	rw	Message discard rule select when overflow 0: The previous message is discarded. 1: The new incoming message is discarded.
Bit 2	MMSSR	0x0	rw	Multiple message transmit sequence rule 0: The message with the smallest identifier is first transmitted. 1: The message with the first request order is first transmitted.
Bit 1	DZEN	0x1	rw	Doze mode enable 0: Sleep mode is disabled. 1: Sleep mode is enabled. Note: The hardware will automatically leave sleep mode when the AEDEN is set and a message is monitored on the CAN bus. After CAN reset or partial software reset, this bit is forced

2023.08.31 Page 391 Rev 2.00

				to be set by hardware, that is, the CAN will keep in sleep mode, by default.
Bit 0	FZEN	0x0	rw	Freeze mode enable 0: Freeze mode disabled 1: Freeze mode enabled Note: The CAN leaves Freeze mode once 11 consecutive recessive bits have been detected on the RX pin. For this reason, the software acknowledges the entry of Freeze mode after the FZC bit is cleared by hardware. The Freeze mode is entered only when the current CAN activity (transmission or reception) is completed. Thus the software acknowledges the exit of Freeze mode after the FZC bit is cleared by hardware.

20.7.1.2 CAN master status register (CAN_MSTS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at default value.
				Real time level on RX pin
Bit 11	REALRX	0x1	ro	0: Low
				1: High
				Last sample level on RX pin
Bit 10	LSAMPRX	0x1	ro	0: Low 1: High
				Note: This value keeps updating with the REALRX.
				Current receive status
				0: No reception occurs
Bit 9	CURS	0x0	ro	1: Reception is in progress
טונ פ	CONS	OXO	10	Note: This bit is set by hardware when the CAN reception
				starts, and it is cleared by hardware at the end of
				reception.
				Current transmit status 0: No transmit occurs
				1: Transmit is in progress
Bit 8	CUSS	0x0	ro	Note: This bit is set by hardware when the CAN
				transmission starts, and it is cleared by hardware at the
-				end of transmission.
Bit 7: 5	Reserved	0x0	resd	Kept at default value.
				Enter doze mode interrupt flag
				0: Sleep mode is not entered or no condition for flag set.1: Sleep mode is entered.
				Note:
Bit 4	EDZIF	0x0	rw1c	This bit is set by hardware only when EDZIEN=1 and the
				CAN enters Sleep mode. When set, this bit will generate
				a status change interrupt. This bit is cleared by software
				(writing 1 to itself) or by hardware when DZC is cleared.
				Exit doze mode interrupt flag
				0: Sleep mode is not left or no condition for exit.
				Sleep mode has been left or exit condition has generated.
Bit 3	QDZIF	0x0	rw1c	Note:
Dit 0	QBZII	OAG		This bit is cleared by software (writing 1 to itself)
				Sleep mode is left when a SOF is detected on the bus.
				When QDZIEN=1, this bit will generate a status change
				interrupt.
				Error occur interrupt flag
				0: No error interrupt or no condition for error interrupt flag1: Error interrupt is generated.
				Note:
Bit 2	EOIF	0x0	rw1c	This bit is cleared by software (writing 1 to itself).
				This bit is set by hardware only when the corresponding
				bit is set in the CAN_ESTS register and the
				corresponding interrupt enable bit in the CAN_INTEN

2023.08.31 Page 392 Rev 2.00

				register is enabled. When set, this bit will generate a
				status change interrupt.
				Doze mode acknowledge
				0: The CAN is not in Sleep mode.
				1: CAN is in Sleep mode.
				Note:
				This bit is used to decide whether the CAN is in Sleep
				mode or not. This bit acknowledges the Sleep mode
				request generated by software.
Bit 1	DZC	0x1	ro	The Sleep mode can be entered only when the current
				CAN activity (transmission or reception) is completed. For
				this reason, the software acknowledges the entry of
				Sleep mode after this bit is set by hardware.
				The Sleep mode is left only once 11 consecutive
				recessive bits have been detect on the CAN RX pin. For
				this reason, the software acknowledges the exit of Sleep
				mode after this bit is cleared by hardware.
				Freeze mode confirm
				0: The CAN is not in Freeze mode.
				1: The CAN is in Freeze mode.
				Note:
				This bit is used to decide whether the CAN is in Freeze
				mode or not. This bit acknowledges the Freeze mode
D:: 0	-70	0.0		request generated by software.
Bit 0	FZC	0x0	ro	The Freeze mode can be entered only when the current
				CAN activity (transmission or reception) is completed. For
				this reason, the software acknowledges the entry of
				Freeze mode after this bit is set by hardware.
				The Freeze mode is left only once 11 consecutive
				recessive bits have been detect on the CAN RX pin. For
				this reason, the software acknowledges the exit of Freeze
				mode after this bit is cleared by hardware.

20.7.1.3 CAN transmit status register (CAN_TSTS)

Bit	Abbr.	Reset value	Type	Description
Bit 31	TM2LPF	0x0	ro	Transmit mailbox 2 lowest priority flag 0: Mailbox 2 is not given the lowest priority. 1: Lowest priority (This indicates that more than one mailboxes are pending for transmission, the mailbox 2 has the lowest priority.)
Bit 30	TM1LPF	0x0	ro	Transmit mailbox 1 lowest priority flag 0: Mailbox 1 is not given the lowest priority. 1: Lowest priority (This indicates that more than one mailboxes are pending for transmission, the mailbox 1 has the lowest priority.)
Bit 29	TM0LPF	0x0	ro	Transmit mailbox 0 lowest priority flag 0: Mailbox 0 is not given the lowest priority. 1: Lowest priority (This indicates that more than one mailboxes are pending for transmission, the mailbox 0 has the lowest priority.)
Bit 28	TM2EF	0x1	ro	Transmit mailbox 2 empty flag This bit is set by hardware when no transmission is pending in the mailbox 2.
Bit 27	TM1EF	0x1	ro	Transmit mailbox 1 empty flag This bit is set by hardware when no transmission is pending in the mailbox 1.
Bit 26	TM0EF	0x1	ro	Transmit mailbox 0 empty flag This bit is set by hardware when no transmission is pending in the mailbox 0.
Bit 25: 24	TMNR	0x0	ro	Transmit Mailbox number record Note: If the transmit mailbox is free, these two bits refer to the number of the next transmit mailbox free.

2023.08.31 Page 393 Rev 2.00

				For example, in case of free CAN, the value of these two bit becomes 01 after a message transmit request is
				written. If the transmit box is full, these two bits refer to the number of the transmit mailbox with the lowest priority.
				For example, when there are three messages are
				pending for transmission, the identifiers of mailbox 0, mailbox 1 and mailbox 2 are 0x400, 0x433 and 0x411
				respectively, and the value of these two bits becomes 01.
				Transmit mailbox 2 cancel transmit 0: No effect
				1: Transmission is cancelled.
Bit 23	TM2CT	0x0	ro	Note: Software sets this bit to abort the transmission of
				mailbox 2. This bit is cleared by hardware when the transmit message in the mailbox 2 is cleared. Setting this
				bit has no effect if the mailbox 2 is free.
Bit 22: 20	Reserved	0x0	resd	Kept at default value.
				Transmit mailbox 2 transmission error flag 0: No error
				1: Mailbox 2 transmission error
Bit 19	TM2TEF	0x0	rw1c	Note:
				This bit is set when the mailbox 2 transmission error occurred.
				It is cleared by software writing 1 or by hardware at the
				start of the next transmission Transmit mailbox 2 arbitration lost flag
				0: No arbitration lost
				1: Transmit mailbox 2 arbitration lost
Bit 18	TM2ALF	0x0	rw1c	Note: This bit is set when the mailbox 2 transmission failed due
				to an arbitration lost.
				It is cleared by software writing 1 or by hardware at the
				start of the next transmission Transmit mailbox 2 transmission success flag
				0: Transmission failed
Bit 17	TM2TSF	0x0	rw1c	1: Transmission was successful. Note:
				This bit indicates whether the mailbox 2 transmission is
				successful or not. It is cleared by software writing 1.
				Transmit mailbox 2 transmission completed flag 0: Transmission is in progress
				1: Transmission is completed
				Note: This bit is set by hardware when the transmission/abort
Bit 16	TM2TCF	0x0	rw1c	request on mailbox 2 has been completed.
				It is cleared by software writing 1 or by hardware when a
				new transmission request is received. Clearing this bit will clear the TSMF2, ALMF2 and TEMF2
				bits of mailbox 2 by hardware
				Transmit mailbox 1 cancel transmit 0: No effect
				1: Mailbox 1 cancel transmit
Bit 15	TM1CT	0x0	rw1s	Note: This bit is set by software to abort the transmission
				request on mailbox 1. Clearing the message transmission on mailbox 1 will clear this bit. Setting by this software
				has no effect when the mailbox 1 is free.
Bit 14: 12	Reserved	0x0	resd	Kept at default value. Transmit mailbox 1 transmission error flag
				0: No error
D'' 44		0.0	,	1: Mailbox 1 transmission error
Bit 11	TM1TEF	0x0	rw1c	Note: This bit is set when the mailbox 1 transmission error
				occurred.
				It is cleared by software writing 1 or by hardware at the

2023.08.31 Page 394 Rev 2.00

				start of the next transmission
				Transmit mailbox 1 arbitration lost flag
				0: No arbitration lost
				1: Transmit mailbox 1 arbitration lost
D:: 40	T. 44 A L E	0.0	4	Note:
Bit 10	TM1ALF	0x0	rw1c	This bit is set when the mailbox 1 transmission failed due
				to an arbitration lost.
				It is cleared by software writing 1 or by hardware at the
				start of the next transmission
				Transmit mailbox 1 transmission success flag
				0: Transmission failed
Bit 9	TM1TSF	0x0	rw1c	1: Transmission was successful.
טונ פ	TWITISE	UXU	TWIC	Note:
				This bit indicates whether the mailbox 1 transmission is
				successful or not. It is cleared by software writing 1.
				Transmit mailbox 1 transmission completed flag
				0: Transmission is in progress
				1: Transmission is completed
				Note:
Bit 8	TM1TCF	0x0	rw1c	This bit is set by hardware when the transmission/abort
				request on mailbox 1 has been completed.
				It is cleared by software writing 1 or by hardware when a
				new transmission request is received.
				Clearing this bit will clear the TSMF1, ALMF1 and TEMF1
				bits of mailbox 1.
				Transmit mailbox 0 cancel transmit
				0: No effect
Bit 7	TM0CT	0x0	rw1s	1: Mailbox 0 cancel transmit
DIL /	TIVIOCT	UXU	IWIS	Note: This bit is set by software to abort the transmission request on mailbox 0. Clearing the message transmission
				on mailbox 0 will clear this bit. Setting by this software
				has no effect when the mailbox 0 is free.
Bit 6: 4	Reserved	0x0		
DIL 0. 4	Neserveu	UXU	resd	Kept at default value. Transmit mailhox 0 transmission error flag
Ы: 0. 4	rteserveu	0.00	resa	Transmit mailbox 0 transmission error flag
ык о. 4	Neserveu	UXU	resa	Transmit mailbox 0 transmission error flag 0: No error
				Transmit mailbox 0 transmission error flag
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note:
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred.
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note:
				Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost.
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed
Bit 3	TM0TEF	0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful.
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note:
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1.
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress 1: Transmission is completed
Bit 3 Bit 2 Bit 1	TM0TEF TM0ALF TM0TSF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress 1: Transmission is completed Note:
Bit 3	TMOTEF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress 1: Transmission is completed Note: This bit is set by hardware when the transmission/abort
Bit 3 Bit 2 Bit 1	TM0TEF TM0ALF TM0TSF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress 1: Transmission is completed Note: This bit is set by hardware when the transmission/abort request on mailbox 0 has been completed.
Bit 3 Bit 2 Bit 1	TM0TEF TM0ALF TM0TSF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission failed 1: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress 1: Transmission is completed Note: This bit is set by hardware when the transmission/abort request on mailbox 0 has been completed. It is cleared by software writing 1 or by hardware when a
Bit 3 Bit 2 Bit 1	TM0TEF TM0ALF TM0TSF	0x0 0x0	rw1c	Transmit mailbox 0 transmission error flag 0: No error 1: Mailbox 0 transmission error Note: This bit is set when the mailbox 0 transmission error occurred. It is cleared by software writing 0 or by hardware at the start of the next transmission Transmit mailbox 0 arbitration lost flag 0: No arbitration lost 1: Transmit mailbox 0 arbitration lost Note: This bit is set when the mailbox 0 transmission failed due to an arbitration lost. It is cleared by software writing 1 or by hardware at the start of the next transmission Transmit mailbox 0 transmission success flag 0: Transmission was successful. Note: This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1. Transmit mailbox 0 transmission completed flag 0: Transmission is in progress 1: Transmission is completed Note: This bit is set by hardware when the transmission/abort request on mailbox 0 has been completed.

2023.08.31 Page 395 Rev 2.00

bits of mailbox 0.

20.7.1.4 CAN receive FIFO 0 register (CAN_RF0)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at default value.
Bit 5	RF0R	0x0	rw1s	Receive FIFO 0 release 0: No effect 1: Release FIFO Note: This bit is set by software to release FIFO 0. It is cleared by hardware when the FIFO 0 is released. Setting this bit by software has no effect when the FIFO 0 is empty. If there are more than two messages pending in the FIFO 0, the software has to release the FIFO 0 to access the second message.
Bit 4	RF0OF	0x0	rw1c	Receive FIFO 0 overflow flag 0: No overflow 1: Receive FIFO 0 overflow Note: This bit is set by hardware when a new message has been received and passed the filter while the FIFO 0 is full. It is cleared by software by writing 1.
Bit 3	RF0FF	0x0	rw1c	Receive FIFO 0 full flag 0: Receive FIFO 0 is not full 1: Receive FIFO 0 is full Note: This bit is set by hardware when there are three messages pending in the FIFO 0. It is cleared by software by writing 1.
Bit 2	Reserved	0x0	resd	Kept at default value.
Bit 1: 0	RF0MN	0x0	ro	Receive FIFO 0 message num Note: These two bits indicate how many messages are pending in the FIFO 0. RF0ML bit is incremented by one each time a new message has been received and passed the filter while the FIFO 0 is not full. RF0ML bit is decremented by one each time the software releases the receive FIFO 0 by writing 1 to the RF0R bit.

20.7.1.5 CAN receive FIFO 1 register (CAN_RF1)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at default value.
				Receive FIFO 1 release
				0: No effect
				1: Release FIFO
				Note:
				This bit is set by software to release receive FIFO 1. It is
Bit 5	RF1R	0x0	rw1s	cleared by hardware when the FIFO 1 is released.
				Setting this bit by software has no effect when the FIFO 1
				is empty.
				If there are more than two messages pending in the FIFO
				0, the software has to release the FIFO 1 to access the
				second message.
				Receive FIFO 1 overflow flag
				0: No overflow
				1: Receive FIFO 1 overflow
Bit 4	RF10F	0x0	rw1c	Note:
				This bit is set by hardware when a new message has
				been received and passed the filter while the FIFO 1 is
				full.

				It is cleared by software by writing 1.
				Receive FIFO 1 full flag
				0: Receive FIFO 1 is not full
				1: Receive FIFO 1 is full
Bit 3	RF1FF	0x0	rw1c	Note:
				This bit is set by hardware when three messages are
				pending in the FIFO 1.
				It is cleared by software by writing 1.
Bit 2	Reserved	0x0	resd	Kept at default value.
				Receive FIFO 1 message num
				Note:
				These two bits indicate how many messages are pending
				in the FIFO 1.
Bit 1: 0	RF1MN	0x0	ro	RF1ML bit is incremented by one each time a new
				message has been received and passed the filter while
				the FIFO 1 is not full.
				RF1ML bit is decremented by one each time the software
				releases the receive FIFO 1 by writing 1 to the RF1R bit.

20.7.1.6 CAN interrupt enable register (CAN_INTEN)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 18	Reserved	0x0000	resd	Kept at default value.
				Enter doze mode interrupt enable
				0: Enter sleep mode interrupt disabled
Bit 17	EDZIEN	0x0	D4/	1: Enter sleep mode interrupt enabled
DIL 17	EDZIEN	UXU	rw	Note: EDZIF flag bit corresponds to this interrupt. An
				interrupt is generated when both this bit and EDZIF bit
				are set.
				Quit doze mode interrupt enable
				0: Quit sleep mode interrupt disabled
Dit 16	ODZIENI	0v0	D4/	1: Quit sleep mode interrupt enabled
Bit 16	QDZIEN	0x0	rw	Note: The flag bit of this interrupt is the QDZIF bit. An
				interrupt is generated when both this bit and QDZIF bit
				are set.
				Error occur interrupt enable
				0: Error interrupt disabled
D:+ 1 <i>E</i>	FOIEN	0.40	201	1: Error interrupt enabled
Bit 15	EOIEN	0x0	rw	Note: The flag bit of this interrupt is the EOIF bit. An
				interrupt is generated when both this bit and EOIF bit are
				set.
Bit 14: 12	Reserved	0x0	resd	Kept at default value.
				Error type record interrupt enable
				Error type record interrupt disabled
Bit 11	ETRIEN	0x0	rw	1: Error type record interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and
				the ETR[2: 0] is set by hardware.
				Bus-off interrupt enable
				0: Bus-off interrupt disabled
Bit 10	BOIEN	0x0	rw	1: Bus-off interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and
				the BOF is set by hardware.
				Error passive interrupt enable
				0: Error passive interrupt disabled
Bit 9	EPIEN	0x0	rw	1: Error passive interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and
				the EPF is set by hardware.
				Error active interrupt enable
				Error warning interrupt disabled
Bit 8	EAIEN	0x0	rw	1: Error warning interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and
				the EAF is set by hardware.
Bit 7	Reserved	0x0	resd	Kept at default value.
Bit 6	RF10IEN	0x0	rw	Receive FIFO 1 overflow interrupt enable

2023.08.31 Page 397 Rev 2.00

				0: Receive FIFO 1 overflow interrupt disabled
				1: Receive FIFO 1 overflow interrupt enabled
				Note: The flag bit of this interrupt is the RF1OF bit. An
				interrupt is generated when this bit and RF1OF bit are
				set.
				Receive FIFO 1 full interrupt enable
				0: Receive FIFO 1 full interrupt disabled
Bit 5	RF1FIEN	0x0	rw	1: Receive FIFO 1 full interrupt enabled
				Note: The flag bit of this interrupt is the RF1FF bit. An
				interrupt is generated when this bit and RF1FF bit are set.
				FIFO 1 receive message interrupt enable
				0: FIFO 1 receive message interrupt disabled
D:: 4	DEAMEN	0.0		1: FIFO 1 receive message interrupt enabled
Bit 4	RF1MIEN	0x0	rw	Note: The flag bit of this interrupt is RF1MN bit, so an
				interrupt is generated when this bit and RF1MN bit are
				set.
				Receive FIFO 0 overflow interrupt enable
				0: Receive FIFO 0 overflow interrupt disabled
	RF00IEN			1: Receive FIFO 0 overflow interrupt enabled
Bit 3		0x0	rw	Note: The flag bit of this interrupt is RF0OF bit, so an
				interrupt is generated when this bit and RF0OF bit are
				set.
				Receive FIFO 0 full interrupt enable
				0: Receive FIFO 0 full interrupt disabled
Bit 2	RF0FIEN	0x0	rw	1: Receive FIFO 0 full interrupt enabled
				Note: The flag bit of this interrupt is the RF0FF bit. An
				interrupt is generated when this bit and RF0FF bit are set
-				FIFO 0 receive message interrupt enable
				0: FIFO 0 receive message interrupt disabled
5				1: FIFO 0 receive message interrupt enabled
Bit 1	RF0MIEN	0x0	rw	Note: The flag bit of this interrupt is the RF0MN bit. An
				interrupt is generated when this bit and RF0MN bit are
				set
-				Transmit mailbox empty interrupt enable
				0: Transmit mailbox empty interrupt disabled
	TOIEN	0.0		1: Transmit mailbox empty interrupt enabled
Bit 0	TCIEN	0x0	rw	Note: The flag bit of this interrupt is the TMxTCF bit. An
				interrupt is generated when this bit and TMxTCF bit are
				set
				

2023.08.31 Page 398 Rev 2.00

20.7.1.7 CAN error status register (CAN_ESTS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	REC	0x00	ro	Receive error counter This counter is implemented in accordance with the receive part of the fault confinement mechanism of the CAN protocol.
Bit 23: 16	TEC	0x00	ro	Transmit error counter This counter is implemented in accordance with the transmit part of the fault confinement mechanism of the CAN protocol.
Bit 15: 7	Reserved	0x00	resd	Kept at default value.
Bit 6: 4	ETR	0x0	rw	Error type record 000: No error 001: Bit stuffing error 010: Format error 011: Acknowledgement error 100: Recessive bit error 101: Dominant bit error 110: CRC error 111: Set by software Note: This field is used to indicate the current error type. It is set by hardware according to the error condition detected on the CAN bus. It is cleared by hardware when a message has been transmitted or received successfully. If the error code 7 is not used by hardware, this field can be set by software to monitor the code update.
Bit 3	Reserved	0x0	resd	Kept at default value.
Bit 2	BOF	0x0	ro	Bus-off flag 0: Bus-off state is not entered. 1: Bus-off state is entered. Note: When the TEC is greater than 255, the bus-off state is entered, and this bit is set by hardware.
Bit 1	EPF	0x0	ro	Error passive flag 0: Error passive state is not entered 1: Error passive state is entered Note: This bit is set by hardware when the current error times has reached the Error passive state limit (Receive Error Counter or Transmit Error Counter >127)
Bit 0	EAF	0x0	ro	Error active flag 0: Error active state is not entered 1: Error active state is entered Note: This bit is set by hardware when the current error times has reached the Error active state limit (Receive Error Counter or Transmit Error Counter ≥96)

20.7.1.8 CAN bit timing register (CAN_BTMG)

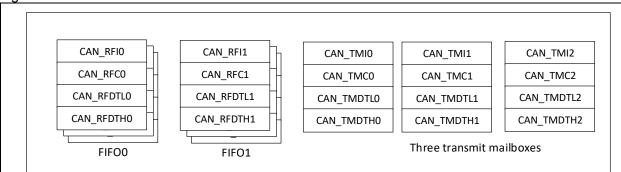
Bit	Abbr.	Reset value	Туре	Description
				Listen-Only mode
Bit 31	LOEN	0x0	rw	0: Listen-Only mode disabled
				1: Listen-Only mode enabled
				Loop back mode
Bit 30	LBEN	0x0	rw	0: Loop back mode disabled
				1: Loop back mode enabled
Bit 29: 26	Reserved	0x0	resd	Kept at default value.
•		0x1	24	Resynchronization width
Bit 25: 24	RSAW			$tRSAW = tCAN \times (RSAW[1: 0] + 1)$
DIL 23. 24	NOAW	UXI	rw	Note: This field defines the maximum of time unit that the
				CAN hardware is allowed to lengthen or shorten in a bit.
Bit 23	Reserved	0x0	resd	Kept at default value.
Bit 22: 20	BTS2	0x2	rw.	Bit time segment 2
DIL 22. 20	טוטב	UXZ	rw	tBTS2 = tCAN x (BTS2[2: 0] + 1)

2023.08.31 Page 399 Rev 2.00

				Note: This field defines the number of time unit in Bit time segment 2.
Bit 19: 16	BTS1	0x3	rw	Bit time segment 1 tBTS1 = tCAN x (BTS1[3: 0] + 1) Note: This field defines the number of time unit in Bit time segment 1.
Bit 15: 12	Reserved	0x0	resd	Kept at default value.
Bit 11: 0	BRDIV	0x000	rw	Baud rate division tq = (BRDIV[11: 0]+1) x tPCLK Note: This field defines the length of a time unit (tq).

20.7.2 CAN mailbox registers

This section describes the registers of the transmit and receive mailboxes. Refer to *Section 20.6.5* for more information on register map.


Transmit and receive mailboxes are the same except:

- RFFMN field in the CAN_RFCx register
- A receive mailbox is read only
- A transmit mailbox can be written only when empty. TM2S=1 in the CAN_TSTS register indicates that the mailbox is empty.

There are three transmit mailboxes and two receive mailboxes. Each receive mailbox has 3-level depth of FIFO, and can only access to the first received message in the FIFO.

Each mailbox contains four registers.

Figure 20-14 ransmit and receive mailboxes

20.7.2.1 Transmit mailbox identifier register (CAN_TMIx) (x=0..2)

Note: 1. This register is write protected when its mailboxes are pending for transmission.

2. This register implements the Transmit Request control (bit 0) — reset value 0.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 21	TMSID/ TMEID	0xXXX	rw	Transmit mailbox standard identifier or extended identifier high bytes Note: This field defines the 11-bit high bytes of the standard identifier or extended identifier.
Bit 20: 3	TMEID	0xXXXXX	rw	Transmit mailbox extended identifier Note: This field defines the 18-bit low bytes of the extended identifier.
Bit 2	TMIDSEL	0xX	rw	Transmit mailbox identifier type select 0: Standard identifier 1: Extended identifier
Bit 1	TMFRSEL	0xX	rw	Transmit mailbox frame type select 0: Data frame 1: Remote frame
Bit 0	TMSR	0x0	rw	Transmit mailbox send request 0: No effect 1: Transmit request Note: This bit is cleared by hardware when the transmission has been completed (The mailbox becomes empty)

20.7.2.2 Transmit mailbox data length and time stamp register (CAN_TMCx) (x=0..2)

All the bits in the register are write protected when the mailbox is not in empty state.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	TMTS	0xXXXX	rw	Transmit mailbox time stamp Note: This field contains the value of the CAN timer sampled at the SOF transmission.
Bit 15: 9	Reserved	0xXX	resd	Kept at default value
Bit 8	TMTSTEN	0xX	rw	Transmit mailbox time stamp transmit enable 0: Time stamp is not sent 1: Time stamp is sent Note: This bit is valid only when the time-triggered communication mode is enabled. In the time stamp MTS[15: 0], the MTS[7: 0] is stored in the TMDT7, and MTS[15: 8] in the TMDT6. The data length must be programmed as 8 to send time stamp.
Bit 7: 4	Reserved	0xX	resd	Kept at default value
Bit 3: 0	TMDTBL	0xX	rw	Transmit mailbox data byte length Note: This field defines the data length of a transmit message. A transmit message can contain from 0 to 8 data bytes.

20.7.2.3 Transmit mailbox data low register (CAN_TMDTLx) (x=0..2)

All the bits in the register are write protected when the mailbox is not in empty state.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	TMDT3	0xXX	rw	Transmit mailbox data byte 3
Bit 23: 16	TMDT2	0xXX	rw	Transmit mailbox data byte 2
Bit 15: 8	TMDT1	0xXX	rw	Transmit mailbox data byte 1
Bit 7: 0	TMDT0	0xXX	rw	Transmit mailbox data byte 0

20.7.2.4 Transmit mailbox data high register (CAN_TMDTHx) (x=0..2)

All the bits in the register are write protected when the mailbox is not in empty state.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	TMDT7	0xXX	rw	Transmit mailbox data byte 7
Bit 23: 16	TMDT6	0xXX	rw	Transmit mailbox data byte 6 Note: This field will be replaced with MTS[15: 8] when the time-triggered communication mode is enabled and the corresponding time stamp transmit is enabled.
Bit 15: 8	TMDT5	0xXX	rw	Transmit mailbox data byte 5
Bit 7: 0	TMDT4	0xXX	rw	Transmit mailbox data byte 4

20.7.2.5 Receive FIFO mailbox identifier register (CAN_RFIx) (x=0..1)

Note: All the receive mailbox registers are read only.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 21	RFSID/RFEID	0xXXX	ro	Receive FIFO standard identifier or receive FIFO extended identifier Note: This field defines the 11-bit high bytes of the
Bit 20: 3	RFEID	0xXXXXX	ro	standard identifier or extended identifier. Receive FIFO extended identifier Note: This field defines the 18-bit low bytes of the extended identifier.
Bit 2	RFIDI	0xX	ro	Receive FIFO identifier type indication 0: Standard identifier 1: Extended identifier
Bit 1	RFFRI	0xX	Ro	Receive FIFO frame type indication 0: Data frame 1: Remote frame
Bit 0	Reserved	0x0	resd	Kept at default value

20.7.2.6 Receive FIFO mailbox data length and time stamp register (CAN_RFCx) (x=0..1)

Note: All the receive mailbox registers are read only.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	RFTS	0xXXXX	ro	Receive FIFO time stamp Note: This field contains the value of the CAN timer sampled at the start of a receive frame.
Bit 15: 8	RFFMN	0xXX	ro	Receive FIFO filter match number Note: This field contains the filter number that a message has passed through.
Bit 7: 4	Reserved	0xX	resd	Kept at default value
Bit 3: 0	RFDTL	0xX	ro	Receive FIFO data length Note: This field defines the data length of a receive message. A transmit message can contain from 0 to 8 data bytes. For a remote frame, its data length RFDTI is fixed 0.

20.7.2.7 Receive FIFO mailbox data low register (CAN_RFDTLx) (x=0..1)

Note: All the receive mailbox registers are read only.

				,
Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	RFDT3	0xXX	ro	Receive FIFO data byte 3
Bit 23: 16	RFDT2	0xXX	ro	Receive FIFO data byte 2
Bit 15: 8	RFDT1	0xXX	ro	Receive FIFO data byte 1
Bit 7: 0	RFDT0	0xXX	ro	Receive FIFO data byte 0

20.7.2.8 Receive FIFO mailbox data high register (CAN_RFDTHx) (x=0..1)

Note: All the receive mailbox registers are read only.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	RFDT7	0xXX	ro	Receive FIFO data byte 7
Bit 23: 16	RFDT6	0xXX	ro	Receive FIFO data byte 6
Bit 15: 8	RFDT5	0xXX	ro	Receive FIFO data byte 5
Bit 7: 0	RFDT4	0xXX	ro	Receive FIFO data byte 4

20.7.3 CAN filter registers

20.7.3.1 CAN filter control register (CAN_FCTRL)

Note: All the non-reserved bits of this register are controlled by software completely.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 1	Reserved	0x160E0700	resd	Kept at its default value
	FCS		rw	Filter configuration switch
Bit 0				0: Disabled (Filter bank is active)
		0x1		1: Enabled (Filter bank is in configuration mode)
				Note: The initialization of the filter bank can be configured
				only when it is in configuration mode.

20.7.3.2 CAN filter mode configuration register (CAN_FMCFG)

Note: This register can be written only when FCS=1 in the CAN_FCTRL register (The filter is in configuration mode)

Bit	Abbr.	Reset value	Type	Description	
Bit 31: 14	Reserved	0x00000	resd	Kept at default value	
Bit 13: 0	FMSELx	0x0000	rw	Filter mode select Each bit corresponds to a filter bank. 0: Identifier mask mode 1: Identifier list mode	

20.7.3.3 CAN filter bit width configuration register (CAN_ FBWCFG)

Note: This register can be written only when FCS=1 in the CAN_FCTRL register (The filter is in configuration mode)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at default value
Bit 13: 0	FBWSELx	0x0000	rw	Filter bit width select Each bit corresponds to a filter bank. 0: Dual 16-bit 1: Single 32-bit

20.7.3.4 CAN filter FIFO association register (CAN_ FRF)

Note: This register can be written only when FCS=1 in the CAN_FCTRL register (The filter is in configuration mode)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at default value
Bit 13: 0	FRFSELx	0x0000	rw	Filter relation FIFO select Each bit corresponds to a filter bank. 0: Associated with FIFO0 1: Associated with FIFO1

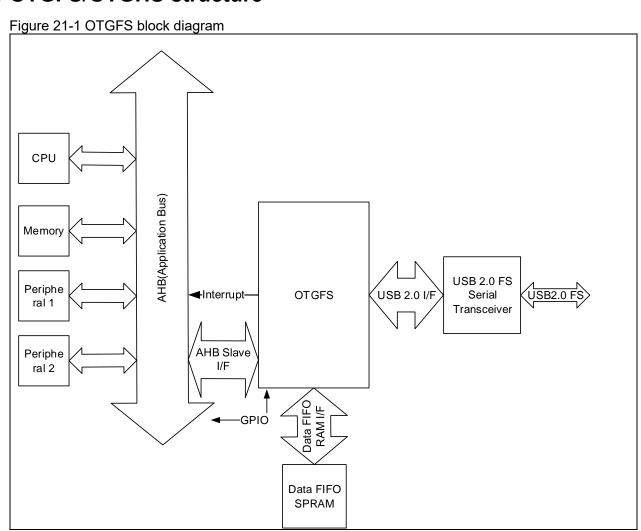
20.7.3.5 CAN filter activation control register (CAN_ FACFG)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at default value
Bit 13: 0	FAENx	0x0000	rw	Filter active enable Each bit corresponds to a filter bank. 0: Disabled 1: Enabled

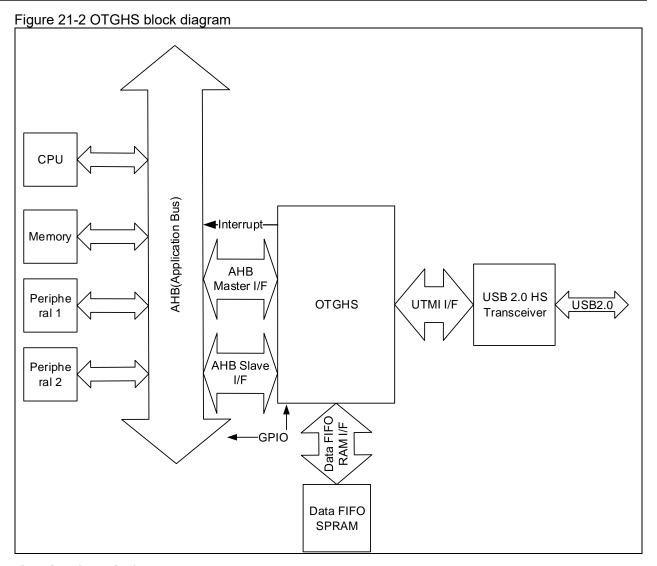
20.7.3.6 CAN filter bank i filter bit register (CAN_ FiFBx) (i=0..13; x=1..2)

Note: There are 14 filter banks (i=0..13). Each filter bank consists of two 32-bit registers, CAN_FiFB[2: 1]. This register can be modified only when the FAENx bit of the CAN_FACFG register is cleared or the FCS bit of the CAN_FCTRL register is set.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	FFDB	0x0000 0000	rw	Filters filter data bit Identifier list mode: The configuration value of the register matches with the level of the corresponding bit of the data received on the bus (If it is a standard frame, the value of the corresponding bit of the extended frame is neglected.) Identifier mark mode: Only the bit with its register configuration value being 1 can match with the level of the corresponding bit of the data received on the bus. It don't care when the register value is 0.



21 USB full-speed/high-speed device interface (OTGFS/HS)


The AT32F405 series supports OTGFS/OTGHS mode, and the AT32F402 series supports OTGFS mode only.

As a dual-role device, the OTGFS/OTGHS is fully compliant with the Universal Serial Bus Specification Revision 2.0.

21.1 OTGFS/OTGHS structure

21.2 OTGFS/HS functional description

For OTGFS controller, in host mode, it supports full-speed (12Mb/s) and low-speed (1.5 Mb/s) transfers whereas in device mode, it supports only full-speed (12Mb/s) transfer.

For OTGHS controller, in host mode, it supports high-speed (480Mb/s), full-speed (12Mb/s) and low-speed (1.5 Mb/s) transfers whereas in device mode, it supports high-speed (480Mb/s) and full-speed (12Mb/s) transfers.

The OTGFS module consists of an OTGFS controller, built-in 2.0 FS PHY and a dedicated 1280-byte SRAM.

The OTGHS module consists of an OTGHS controller, built-in 2.0 HS PHY and a dedicated 4096-byte SRAM.

The OTGHS embeds an internal DMA controller which accesses to other peripherals as a host of AHB bus matrix.

The OTGFS/HS supports control transfer, bulk transfer, interrupt transfer and synchronous transfer.

The OTGFS/HS is a USB dual-role device controller. The host or device role depends on the level of the ID line. When the ID line is in a floating state, the OTGFS/HS runs in a device mode. When the ID line is grounded, the OTGFS/HS host role is confirmed. The OTG PHY embeds an 1.5K Ω pull-up resistor and 1.5K Ω pull-down resistor for this OTGFS/HS dual-role controller.

In device mode, the OTGFS/HS supports one bidirectional control endpoint, 7 IN endpoints, and 7 OUT endpoints; in hose mode, the OTGFS/HS supports 16 host channels.

The OTGFS/HS supports SOF pulse and OE pulse functions: a SOF pulse is generated at any SOF starting token. The SOF pulse can be output to device pins and timer 2. An OE pulse is generated

together with data output. The OE pulse can be output to device pins.

In device mode, the OTGFS/HS offers a unified FIFO buffer for all OUT endpoints, and a separate FIFO buffer for each of IN endpoints. In host mode, a unified receive FIFO is arranged for periodic and non-periodic transfers of all IN endpoints, as well as a unified transmit FIFO for non-periodic transfers of all OUT endpoints.

Suspend mode is supported. In this case, the OTGFS/HS goes into power-saving mode. Besides, it is also possible to achieve low power consumption by setting the PWRDOWN bit in the OTGFS/HS_GCCFG register, or STOPPCLK bit in the OTGFS/HS_PCGCCTL register.

21.3 OTGFS/HS clock and pin configuration

21.3.1 OTGFS clock configuration

The OTGFS has two clock sources, one is $48\text{MHz} \pm 0.25\%$ clock for OTGFS controller, and the other AHB bus clock for accessing OTGFS control register.

OTGFS 48M has the following two clock sources:

HICK 48M

When the HICK 48M clock is to be used as an USB clock, enabling ACC feature is recommended.

PLLU

The PLLU is configured as 48 MHz clock output (see the CRM PLLCFG register)

Note: The AHB clock frequency must be higher than 30 MHz when using OTGFS.

21.3.2 OTGHS clock configuration

The OTGHS PHY is provided with a 12MHz (\pm 50ppm) clock. The OTGHS controller is provided with an AHB bus clock for accessing OTGHS control register. It also has a UTMI clock source from OTGPHY. OTGHS 12M clock source:

The 12M clock required for OTGHS PHY is provided by HEXT.

Note:

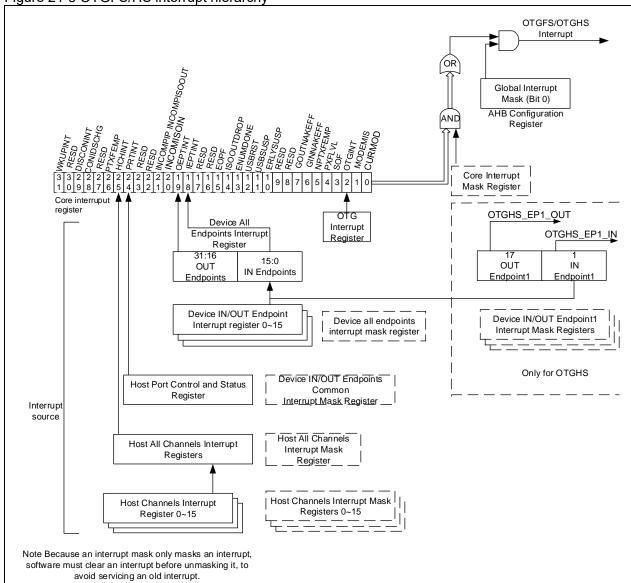
- 1. The APB clock frequency must be greater than 30MHz when OTGHS is enabled.
- 2. PWRDOWN feature is allowed to be enabled only after the stabilization of OTGHS PHY 12Mhz clock. After the PWRDOWN is enabled, it is necessary to wait for 1ms stabilization time before continuing operation.

21.3.3 OTGFS/HS pin configuration

The OTGFS/HS input/output pins are shared with GPIOs. The GPIOs are used as OTGFS/HS in one of the following conditions:

Table 21-1 OTGFS input/output pins

Table 21 1 0101 0 inpayoutput pino					
Pin	GPIO	Description			
OTGFS_SOF	PA8	Enable OTGFS in CRM, and configure PA8 multiplexed function register as 0xa			
OTGFS_VBUS	PA9	Enable OTGFS in CRM, configure PA9 multiplexed function register as 0xa			
OTGFS_ID	PA10	Enable OTGFS in CRM, configure PA10 multiplexed function register as 0xa			
OTGFS_D-	PA11	Enable OTGFS in CRM, and PWRDOWN=1			
OTGFS_D+	PA12	Enable OTGFS in CRM, and PWRDOWN=1			
OTGFS_OE	PA13	Enable OTGFS in CRM, and configure PA13 multiplexed function register as 0xa			


Table 21-2 OTGHS input/output pins

Pin	GPIO	Description
OTGHS_SOF	PA4	Enable OTGHS in CRM, and configure PA4 multiplexed function register as 0xa
OTGHS_VBUS	PB13	Enable OTGHS in CRM, and configure PB13 multiplexed function register as 0xa
OTGHS_ID	PB12	Enable OTGHS in CRM, and configure PB12 multiplexed function register as 0xa
OTGHS_D-	-	OTGHS dedicated pin
OTGHS_D+	-	OTGHS dedicated pin
OTGHS_R	-	OTGHS dedicated pin
OTGHS_OE	PC9	Enable OTGHS in CRM, and configure PC9 multiplexed function register as 0xa

21.4 OTGFS/HS interrupts

Figure 21-3 shows the OTGFS/HS interrupt hierarchy. Refer to the OTGFS/HS interrupt register (OTGFS/HS GINTSTS) and OTGFS/HS interrupt mask register (OTGFS/HS GINTMSK).

Figure 21-3 OTGFS/HS interrupt hierarchy

21.5 OTGFS/HS functional description

21.5.1 OTGFS/HS initialization

If the cable is connected during power-on, the current operation mode bit (CURMOD bit) in the controller interrupt register indicates the current operation mode. If the A-side of the USB cable is connected, the OTGFS/HS controller operates in host mode; when the B-side of the USB cable is connected, the OTGFS/HS controller operates in device mode.

This section describes how to initialize the OTGFS /HS controller after power-on. The application must follow the initialization sequence, whatever mode (in host or device mode). All controller global registers are initialized according to the controller configuration.

- 1. Configure the following fields in the AHB global configuration register:
- Global interrupt mask bit = 0x1
- Non-periodic transmit FIFO empty level
- Periodic transmit FIFO empty level
- 2. Configure the following fields in the AHB global configuration register:
- OTGFS/HS GINTMSK.RXFLVLMSK = 0x0
- 3. Configure the following fields in the OTGFS/HS_GUSBCFG register:
- Full-speed timeout standard bit
- USB turnaround time bit
- 4. The software must unmask the following bits in the OTGFS/HS_GINTMSK register:
- OTG interrupt mask
- Mode mismatch interrupt mask
- 5. The software can read the CURMOD bit in the OTGFS/HS_GINTSTS register to determine whether the OTGFS/HS controller is in host or device mode.

21.5.2 OTGFS/HS FIFO configuration

21.5.2.1 Device mode

A dynamic FIFO allocation is required during power-on or USB reset. In device mode, the application must meet the following conditions before change to FIFO SRAM allocation.

- OTGFS/HS DIEPCTLx/ OTGFS/HS DOEPCTLx.EPENA = 0x0
- OTGFS/HS DIEPCTLx/ OTGFS/HS DOEPCTLx.NAKSTS = 0x1

The TXFNUM bit in the OTGFS_GRSTCTL register is used to refresh the controller transmit FIFO. Refer to Section Refresh controller transmit FIFO for more information.

Attention should be paid to the following information when it comes to FIFO SRAM allocation:

(1) Receive FIFO SRAM allocation

- SRAM for SETUP Packets: 13 WORDs must be reserved in the receive FIFO to receive one SETUP Packet on control endpoint. The controller does not use these locations, which are reserved for SETUP packets.
- One WORD reserved for global OUT NAK
- Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (largest packet size/4) + 1 must be allocated to receive data packets. If multiple synchronous endpoints are enabled, at least two (largest packet size/4) + 1 must be allocated to receive back-to-back data packets. In most cases, two (largest packet size/4) + 1 spaces are recommended so that the USB can receive the subsequent packet while the previous packet is being transferred to the AHB. If there is a longer latency on AHB, sufficient spaces must be reserved to receive multiple packets in order to prevent synchronous data packet loss.
- Transfer complete status information, along with the last packet on each endpoint, is also pushed into the FIFO
- One location must be reserved for the disable status bit of each endpoint
- Typically, two WORDs for each OUT endpoint are recommended.

(2) Transmit FIFO SRAM allocation

The minimum SRAM space required for each IN endpoint transmit FIFO is the maximum data packet size for that particular IN endpoint. The greater the space allocated to the transmit IN endpoint FIFO, the better the USB performance, and this helps to avoid latency on the AHB line.

Table 21-3 OTGFS/HS transmit FIFO SRAM allocation

FIFO name	SRAM size
Receive FIFO	rx_fifo_size, including setup packets, OUT endpoint control information and OUT data packets.
Transmit FIFO 0	tx_fifo_size[0]
Transmit FIFO 1	tx_fifo_size[1]
Transmit FIFO 2	tx_fifo_size[2]
Transmit FIFO i	tx fifo size[i]

Configure the following registers according to the above mentioned:

- 1. OTGFS/HS receive FIFO size register (OTGFS/HS GRXFSIZ)
- OTGFS/HS GRXFSIZ.RXFDEP = rx fifo size
- 2. Endpoint 0 TX FIFO size register (OTGFS/HS_DIEPTXF0)
- OTGFS/HS DIEPTXF0.INEPT0TXDEP = tx fifo size[0];
- OTGFS/HS_DIEPTXF0.INEPT0TXSTADDR = rx_fifo_size
- 3. Device IN endpoint transmit FIFO#1 size register (OTGFS/HS_DIEPTXF1)
- OTGFS/HS_DIEPTXF1.INEPTXFSTADDR = OTGFS/HS_DIEPTXF0.INEPT0TXSTADDR + tx_fifo_size[0]
- 4. Device IN endpoint transmit FIFO#2 size register (OTGFS/HS DIEPTXF2)
- OTGFS/HS_DIEPTXF2.INEPTXFSTADDR = OTGFS/HS_DIEPTXF1.INEPTXFSTADDR + tx_fifo_size[1]
- 5. Device IN endpoint transmit FIFO#i size register (OTGFS/HS_DIEPTXFi)
- OTGFS/HS_DIEPTXFi.INEPTXFSTADDR = OTGFS/HS_DIEPTXFi-1.INEPTXFSTADDR +tx_fifo_size[i-1]
- 6. After SRAM allocation, refresh transmit FIFO and receive FIFO to ensure normal FIFO running.
- OTGFS/HS GRSTCTL.TXFNUM = 0x10
- OTGFS/HS_GRSTCTL.TXFFLSH = 0x1
- OTGFS/HS GRSTCTL.RXFFLSH = 0x1

The application cannot perform operations on the controller until the TXFFLSH and RXFFLSH bits are cleared.

21.5.2.2 Host mode

In host mode, the application must confirm the following status before changing FIFO SRAM allocation:

- All channels have been disabled
- All FIFOs are empty

After FIFO SRAM allocation is complete, the application must refresh all FIFOs in the controller through the TXFNUM bit in the OTGFS/HS_GRSTCTL register.

After allocation, the FIFO pointer must be reset by refreshing operation to ensure normal FIFO run. Refer to Section Refresh controller transmit FIFO for more information.

(1) Receive FIFO SRAM allocation

Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (largest packet size/4) + 2 must be allocated to receive data packets. If more synchronous endpoints are enabled, then at least two (largest packet size/4) + 2 spaces must be allocated to receive back-to-back packets. In most cases, two (largest packet size/4) + 2 spaces are recommended so that the USB can receive the subsequent packet while the previous packet is being transferred to the AHB. If there is a longer latency on AHB, sufficient spaces must be reserved to receive multiple packets in order to prevent synchronous data packet loss.

Transfer complete status information and channel abort information, along with the last packet in the host channel is also pushed to the FIFO. Thus, two DWORDs must be allocated for this.

(2) Transmit FIFO SRAM allocation

The minimum SRAM space required for the host non-periodic transmit FIFO is the largest packet size of all non-periodic OUT channels. The more the space allocated to the non-periodic FIFO, the better the

USB performance, and this helps to avoid latency on the AHB line. Typically, two largest packet sizes of space is recommended so that the AHB can get the next data packet while the current packet is being transferred to the USB. If there is a longer latency on AHB, sufficient spaces must be reserved to receive multiple packets in order to prevent synchronous data packet loss.

The minimum number of SRAM space required for the host periodic transmit FIFO is the largest packet size of all periodic OUT channels.

(3) Internal storage space allocation

Table 21-4 OTGFS internal storage space allocation

FIFO Name	Data SRAM Size
Receive FIFO	rx_fifo_size
Non-periodic transmit FIFO	tx_fifo_size[0]
Periodic transmit FIFO	tx_fifo_size[1]

Configure the following registers according to the above mentioned:

- 1. OTGFS/HS receive FIFO size register (OTGFS/HS_GRXFSIZ)
- OTGFS/HS GRXFSIZ.RXFDEP = rx fifo size
- 2. OTGFS/HS Non-periodic TX FIFO size register (OTGFS/HS GNPTXFSIZ)
- OTGFS/HS GNPTXFSIZ.NPTXFDEP = tx fifo size[0]
- OTGFS/HS GNPTXFSIZ. NPTXFSTADDR = rx fifo size
- 3. OTGFS/HS host periodic transmit FIFO size register (OTGFS/HS HPTXFSIZ)
- OTGFS/HS_HPTXFSIZ.PTXFSIZE = tx_fifo_size[1]
- OTGFS/HS_HPTXFSIZ.PTXFSTADDR = OTGFS_GNPTXFSIZ.NPTXFSTADDR + tx_fifo_size[0]
- 4. After SRAM allocation, refresh transmit FIFO and receive FIFO to ensure normal FIFO running.
- OTGFS/HS GRSTCTL.TXFNUM = 0x10
- OTGFS/HS GRSTCTL.TXFFLSH = 0x1
- OTGFS/HS GRSTCTL.RXFFLSH = 0x1
- The application cannot perform other operations on the controller until the TXFFLSH and RXFFLSH bits are cleared.

21.5.2.3 Refresh controller transmit FIFO

The application refreshes all transmit FIFOs through the TXFFLSH bit in the OTGFS/HS_GRSTCTL register:

- Check whether GINNAKEFF=0 or not in the OTGFS/HS_GINTSTS register. If this bit has been cleared, write 0x1 to the OTGFS/HS_DCTL.SGNPINNAK register. When the NACK valid interrupt is set, it means that the controller does not read FIFO.
- Wait until GINNAKEFF = 0x1 in the OTGFS/HS_GINTSTS register, indicating that the NAK configuration has taken effect for all IN endpoints.
- Poll the OTGFS/HS_GRSTCTL register and wait until AHBIDLE=1. AHBIDLE = H indicates that the controller does not write the FIFO.
- Confirm whether TXFFLSH = 0x0 or not in the OTGFS/HS_GRSTCTL register. If TXFFLSH is cleared, write the transmit FIFO number to be refreshed into the OTGFS/HS_GRSTCTL.TXFNUM register.
- Set TXFFLSH = 0x1 in the OTGFS/HS_GRSTCTL register, and wait until it is cleared.
- Set the CGNPINNAK bit in the OTGFS/HS DCTL register.

21.5.3 OTGFS /HS host mode

On-chip 5V VBUS generation is not supported. As a result, a charger pump must be added externally to drive the 5V VBUS power line.

21.5.3.1 Host initialization

The following steps must be respected to initialize the controller:

- 1. Unmask interrupt through the PRTINTMSK bit in the OTGFS/HS GINTMSK register
- 2. Program the OTGFS/HS_HCFG register to select full-speed or high-speed host mode
- 3. Set PRTPWR = 0x1 in the OTGFS/HS_HPRT register to drive VBUS on the USB
- 4. Wait until that the PRTCONDETbit is set in the OTGFS/HS_HPRT0 register, indicating that the device is connected to the port
- 5. Set PRTRST = 0x1 in the OTGFS/HS HPRT register to issue a reset operation
- 6. Wait for at least 10 ms to ensure the completion of the reset
- 7. Set PRTRST = 0x0 in the OTGFS/HS HPRT register
- 8. Wait for the interrupt (PRTENCHNG bit in the OTGFS/HS HPRT register)
- 9. Read the PRTSPD bit in the OTGFS/HS HPRT register to get the enumeration speed
- 10. Configure the HFIR register according to the selected PHY clock value
- 11. Select the size of the receive FIFO by setting the OTGFS/HS GRXFSIZ register
- 12. Select the start address and size of the non-periodic transmit FIFO by setting the OTGFS/HS_GNPTXFSIZ register
- 13. Select the start address and size of the periodic transmit FIFO by setting the OTGFS/HS_HPTXFSIZ register

To communicate with the device, the application must enable and initialize at least one channel according to OTGFS/HS channel initialization requirements.

21.5.3.2 OTGFS channel initialization

To communicate with the device, the application must enable and initialize at least one channel according to the following steps:

- 1. Unmask the following interrupts by setting the OTGFS/HS_GINTMSK register:
- Non-periodic transmit FIFO empty for OUT transfers
- Non-periodic transmit FIFO half empty for OUT transfers
- 2. Unmask the interrupts of the selected channels by setting the OTGFS/HS_HAINTMSK register
- 3. Unmask the transfer-related interrupts in the host channel interrupt register by setting the OTGFS/HS HCINTMSKx register
- 4. Configure the total transfer size (in bytes), and the expected number of the packets (including short packets) for the OTGFS/HS_HCTSIZx register of the selected channel. The application must configure the PID bit according to the initial data PID (it is the PID on the first OUT transfer, or to be received from the first IN transfer)
- 5. Configure the transfer size to ensure that the transfer size of the channel is a multiple of the largest packet size
- 6. Configure the OTGFS/HS_HCCHARx register of the selected channel according to the device endpoint characteristics such as type, speed and direction (the channel cannot be enabled by setting the enable bit until the application is ready for packet transfer or reception)

21.5.3.3 Halting a channel

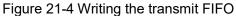
The application can disable a channel by writing 0x1 to the CHDIS and CHENA bits in the OTGFS/HS_HCCHARx register. This enables the host to refresh the summited requests (if any) and generates a channel halted interrupt. The application cannot re-allocate channels for other transactions until an interrupt is generated in the OTGFS/HS_HCINTx register (CHHLTD bit). Those transactions that have already been started on the USB line are not interrupted by the host.

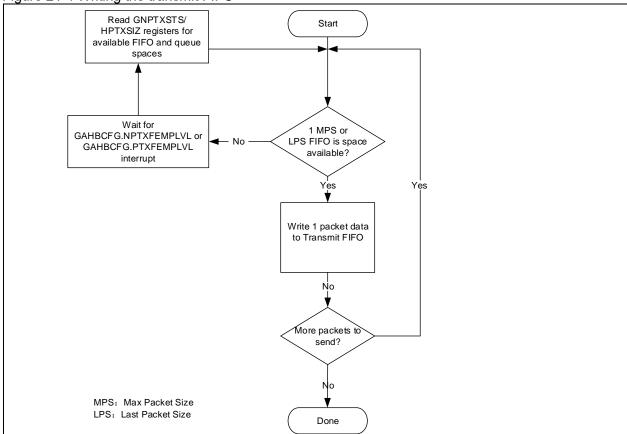
Before disabling a channel, the application must ensure that there is at least one free space available in the non-periodic request queue (when disabling a non-periodic channel) or the periodic request queue (when disabling a periodic channel). The application can refresh the submitted requests when the request queue is full (before disabling the channel) by setting CHDIS=0x1, and CHENA=0 in the

OTGFS HCCHARx register.

When there is a transaction input in the request queue, the controller will trigger a RXFLVL interrupt. The application must generate a channel halted interrupt through the OTGFS/HS GRXSTSP register.

The application is expected to abort a channel on any of the following conditions:

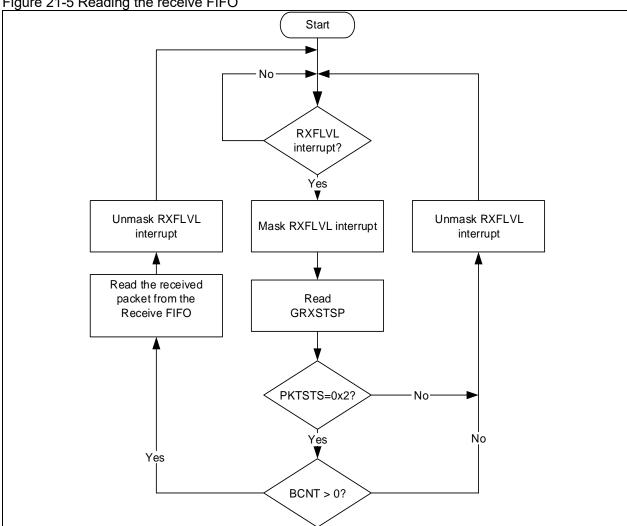

- When an interrupt (XFERC bit) is received in the OTGFS/HS_HCINTx register during a nonperiodic IN transfer
- When an STALL, XACTERR, BBLERR or DTGLERR interrupt in the OTGFS/HS_HCINTx register is received for an IN or OUT channel
- When a DISCONINT (device disconnected) interrupt event is received in the OTGFS/HS_GINTSTS register, the application must check the PRTCONSTS bit in the OTGFS/HS_HPRT register. This is because when the device is disconnected with the host, the PRTCONSTS bit will be reset in the OTGFS/HS_HPRT register. The application must initiate a software reset to ensure that all channels have been cleared. Once the device is reconnected, the host must start a USB reset.
- When the application needs to abort a transfer before normal completion


21.5.3.4 Queue depth

Up to 8 interrupt and synchronous transfer requests are supported in the periodic hardware transfer request queue; while up to 8 control and bulk transfer requests are allowed in the non-periodic hardware transfer request queue.

Writing the transmit FIFO

Figure 21-4 shows the flow chart of writing the transmit FIFO. The OTGFS host automatically writes an entry (OUT request) to the periodic/non-periodic request queue when writing the last one WORD packet. The application must ensure that at least one free space is available in the periodic/non-periodic request queue before starting to write to the transmit FIFO. The application must always write to the transmit FIFO in WORDs. If the packet size is not aligned with WORD, the application must use padding. The OTGFS/HS host determines the actual packet size according to the programmed maximum packet size and transfer size.



Reading the receive FIFO

Figure 21-5 shows the flow chart of reading the receive FIFO. The application must ignore all packet statuses other than IN data packet (0x0010)

Figure 21-5 Reading the receive FIFO

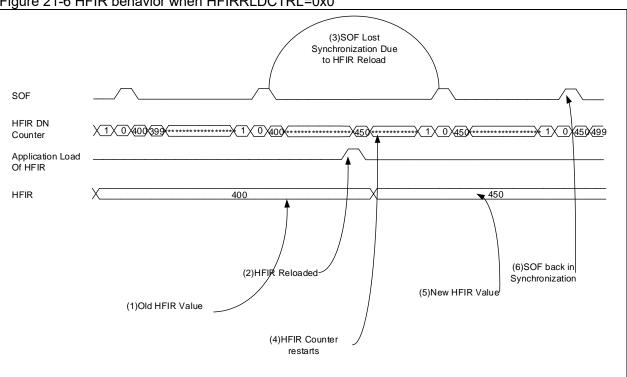
21.5.3.5 Special cases

(1) Handling babble conditions

The OTGFS/HS controller handles two cases of babble: packet babble and port babble. Packet babble occurs if the device sends more than the largest packet size for the channel. Port babble occurs if the controller continues to receive data from the device at EOF2 (the end of frame 2, which is very close to SOF)

When the OTGFS/HS controller detects a packet babble, it stops writing data to the receiver buffer and waits for the completion of packet. When it detects the end of packet, the OTGFS/HS flushes the data already written in the receiver buffer and generates a babble interrupt.

When the OTGFS/HS controller detects a port babble, it flushes the receive FIFO and disables the port. Then the controller generates a Port disable interrupt. Once receiving the interrupt, the application must determine that this is not caused by an overcurrent condition (another cause of the port disable interrupt)by checking the PRTOVRCACT bit in the OTGFS/HS HPRT register, then perform a software reset. The controller does not send any more tokens if a port babble signal is detected.

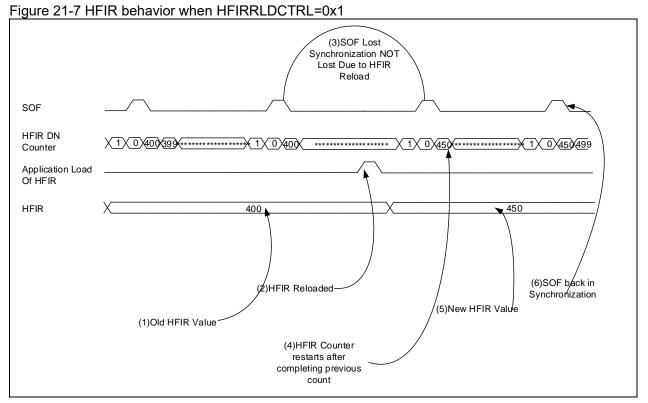

(2) Handling device disconnected conditions

If the device is suddenly disconnected, an interrupt is generated on a disconnect event (DISCONINT bit in the OTGFS/HS GINTSTS register). Upon receiving this interrupt, the application must start a software reset through the CSFTRST in the OTGFS/HS GRSTCTL register.

21.5.3.6 Host HFIR feature

The host frame interval register (HFIR) defines the interval between two consecutive SOFs (full-speed), micor-SOFs (HS) or Keep-Alive tokens. This field contains the number of PHY clock for the required frame interval. This is mainly used to adjust the SOF duration in accordance with PHY clock frequencies. Figure 21-6 shows the HFIR behavior when the HFIRRLDCTRL is set to 0x0 in the OTGFS/HS HFIR register.

Figure 21-6 HFIR behavior when HFIRRLDCTRL=0x0



The sequence of operation is as follows:

- 1. After power-on reset, the current HFIR value set by the application is shown
- 2. The application loads a new value into the HFIR register
- 3. The HFIR downcounter is reloaded, so it will immediately restart counting to cause SOF synchronization loss
- 4. Restart HFIR counter
- 5. The HFIR register receives a new programmed value
- 6. Obtain SOF re-synchronization after the first SOF is generated using the HFIR new feature

Figure 21-7 shows the HFIR behavior when HFIRRLDCTRL=0x1 in the OTGFS/HS HFIR register.

The sequence of operation is as follows:

- 1. After power-on reset, the current HFIR value set by the application is shown
- 2. The application loads a new HFIR value; the HFIR counter does not apply this new value, but continues counting until it reaches 0
- 3. The counter generates a SOF when it reaches 0 using the old HRIF value
- 4. The HFIR counter applies a new value
- 5. New HFIR value takes effect

The SOF synchronization resumes after going through above-mentioned steps.

21.5.3.7 Initialize bulk and control IN transfers

Figure 21-8 shows a typical bulk or control IN transfer operation. Refer to channel 2 (ch_2) for more information. The assumptions are as follows:

- The application is attempting to receive two largest-packet-size packets (transfer size is 1024 bytes)
- The receive FIFO contains at least one largest-packet-size packet and two status WORDs per each packet (72 bytes for full-speed transfer)
- The non-periodic request queue depth is 4

(1) Operation process for common bulk and control IN transfers

The sequence of operations shown in *Figure 21-8* is as follows:

- 1. Initialize channel 2 (according to OTGFS/HS channel initialization requirements)
- 2. Set the CHENA bit in the OTGFS/HS_HCCHAR2 register to write an IN request to the non-periodic request queue
- 3. The controller issues an IN token after completing the current OUT transfer
- 4. The controller generates a RXFLVL interrupt once the receive packet is written into the receive FIFO
- 5. To handle the RXFLVL interrupt, mask the RXFLVL interrupt and read the received packet status to determine the number of bytes received, and then read the receive FIFO. Following this step to unmask the RXFLVL interrupt
- 6. The controller generates the RXFLVL interrupt when the transfer complete status is written into the receive FIFO

- 7. The application must read the receive packet status, and ignore it when the receive packet status is not an IN data packet
- 8. The controller generates the XFERC interrupt as soon as the receive packet is read
- 9. To handle the XFERC interrupt, disable the channel (see Halting a channel) and stop writing the OTGFS/HS_HCCHAR2 register. The controller writes a channel halted request to the non-periodic request queue once the OTGFS/HS HCCHAR2 register is written
- 10. The controller generates the RXFLVL interrupt once the halt status is written to the receive FIFO
- 11. Read and ignore the receive packet status
- 12. The controller generates a CHHLTD interrupt once the halt status is read from the receive FIFO
- 13. In response to the CHHLTD interrupt, the processor does not allocate the channel for other transfers.

(2) Handling interrupts

The following code describes the interrupt service routine related to the channel during bulk and control IN transfers

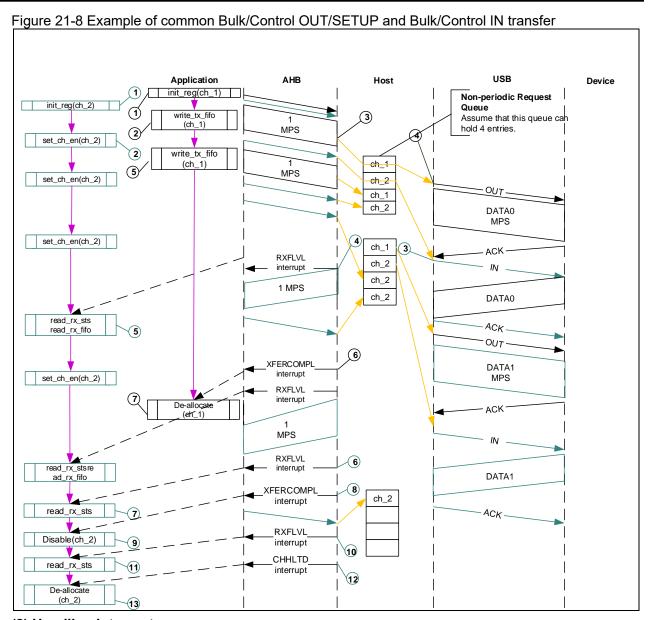
```
IN transfers
 Unmask (XACTERR/XFERC/BBLERR/STALL/DATATGLERR)
 if (XFERC)
     Reset Error Count
     Unmask CHHLTD
     Disable Channel
     Reset Error Count
     Mask ACK
     }
 else if (XACTERR or BBLERR or STALL)
     Unmask CHHLTD
     Disable Channel
     if (XACTERR)
         Increment Error Count
         Unmask ACK
     }
 else if (ChHltd)
     Mask CHHLTD
     if (Transfer Done or (Error_count == 3))
         De-allocate Channel
         }
     else
         Re-initialize Channel
         }
     }
 else if (ACK)
     Reset Error Count
     Mask ACK
 else if (DATATGLERR)
```



```
{
Reset Error Count
}
```

21.5.3.8 Initialize bulk and control OUT/SETUP transfers

Figure 21-8 shows a typical bulk or control transfer OUT/SETUP transfer operation. Refer to channel 1 (ch_1) for more information. It is necessary to send two bulk transfer OUT packets. The control transfer SETUP operation is the same, just the fact that it has only one packet. The assumptions are as follows:


- The application is attempting to send two largest-packet-size packets (transfer size is 1024 bytes)
- The non-periodic transmit FIFO can store two packets (128 bytes for full-speed transfer)
- The non-periodic request queue depth is 4

(1) OUT/SETUP operation process for common bulk and control transfer

The sequence of operations shown in *Figure 21-8* is as follows:

- 1. Initialize channel 1 (according to OTGFS/HS channel initialization requirements)
- 2. Write the first packet for channel 1
- 3. Along with the last WORD write, the controller writes a request to the non-periodic request queue
- 4. The controller sends an OUT token in the current frame once the non-periodic queue becomes empty
- 5. Write the second packet (the last one) to the channel 1
- 6. The controller generate an XFERC interrupt as soon as the previous transfer is completed successfully
- 7. In response to the XFERC interrupt, the processor does not allocate the channel for other transfers.

(2) Handling interrupts

The following code describes the interrupt service routine related to the channel during bulk and control transfer OUT/SETUP operation

```
Unmask (NAK/XACTERR/NYET/STALL/XFERC)

if (XFERC)

{
    Reset Error Count
    Mask ACK
    De-allocate Channel
    }

else if (STALL)

{
    Transfer Done = 1
    Unmask CHHLTD
    Disable Channel
    }

else if (NAK or XACTERR or NYET)

{
```

```
Rewind Buffer Pointers
    Unmask CHHLTD
    Disable Channel
    if (XactErr)
        Increment Error Count
        Unmask ACK
    else
        Reset Error Count
    }
else if (CHHLTD)
    Mask CHHLTD
    if (Transfer Done or (Error count == 3))
        De-allocate Channel
    else
        Re-initialize Channel (Do ping protocol for HS)
        }
    }
else if (ACK)
    Reset Error Count
    Mask ACK
```

Notes:

- The application can only write the transmit FIFO when the transmit FIFO and request queue has
 free space. The application must check whether there is a free space in the transmit FIFO through
 the NPTXFEMP bit in the OTGFS/HS_GINTSTS register
- The application can only write a request when the request queue has free spaces and wait until an XFERC interrupt is received

21.5.3.9 Initialize interrupt IN transfers

Figure 21-9 shows the operation process of a typical interrupt IN transfer. Refer to channel 2 (ch_2). The assumptions are as follows:

- The application is attempting to receive one largest-packet-size packet (transfer size is 1024 bytes) from an odd frame
- The receive FIFO can store at least one largest-packet-size packet and two status WORDs per packet (1031 bytes for full-speed transfer)
- The periodic request queue depth is 4

(1) Common interrupt IN operation process

The sequence of operations shown in Figure 21-9 (channel 2) is as follows:

- 1. Initialize channel 2 (according to OTGFS/HS channel initialization requirements). The application must set the ODDFRM bit in the OTGFS/HS HCCHAR2 register
- 2. Set the CHENA bit in the OTGFS/HS_HCCHAR2 register to write an IN request to the periodic request queue

- 3. The OTGFS/HS host writes an IN request to the periodic request queue each time the CHENA is set in the OTGFS/HS HCCHAR2 register
- 4. The OTGFS/HS host attempts to send an IN token in the next frame (odd)
- 5. The OTGFS/HS host generates a RXFLVL interrupt as soon as an IN packet is received and written to the receive FIFO
- 6. To handle the RXFLVL interrupt, read the received packet status to determine the number of bytes received, then read the receive FIFO. The application must mask the RXFLVL interrupt before reading the receive FIFO, and unmask the interrupt after reading the entire packet
- The controller generates the RXFLVL interrupt when the transfer complete status is written to the receive FIFO. The application must read and ignore the receive packet when the receive packet is not an IN packet
- 8. The controller generates an XFERC interrupt as soon as the receive packet is read
- 9. To handle the XFERC interrupt, read the PKTCN bit in the OTGFS/HS_HCTSIZ2 register. If the PKTCNT bit in the OTGFS/HS_HCTSIZ2 is not equal to 0, disable the channel before re-initializing the channel for the next transfer. If PKTCNT == 0 in the OTGFS/HS_HCTSIZ2 register, re-initialize the channel for the next transfer. In this case, the application must reset the ODDFRM bit in the OTGFS/HS_HCHAR2 register.

(2) Interrupt handling

The following code describes the interrupt service routine related to the channel during interrupt IN transfer

```
Unmask (NAK/XACTERR/XFERC/BBLERR/STALL/FRMOVRUN/DATATGLERR)
if (XFERC)
 {
 Reset Error Count
 Mask ACK
 if (HCTSIZx.PKTCNT == 0)
   De-allocate Channel
   }
 else
   {
   Transfer Done = 1
   Unmask CHHLTD
   Disable Channel
   }
 }
else if (STALL or FRMOVRUN or NAK or DATATGLERR or BBLERR)
 Mask ACK
 Unmask CHHLTD
 Disable Channel
 if (STALL or BBLERR)
   Reset Error Count
   Transfer Done = 1
   }
 else if (!FRMOVRUN)
   Reset Error Count
```

```
}
else if (XACTERR)
  Increment Error Count
 Unmask ACK
  Unmask CHHLTD
 Disable Channel
 }
else if (CHHLTD)
 {
 Mask CHHLTD
 if (Transfer Done or (Error count == 3))
    De-allocate Channel
   }
 else Re-initialize Channel (in next b interval - 1 uF/F)
 }
else if (ACK)
  Reset Error Count
  Mask ACK
```

The application can only write a request to the same channel when the remaining space in the request queue reaches the number defined in the MC field, before switching to other channels (if any).

21.5.3.10 Initialize interrupt OUT transfers

Figure 21-9 shows a typical interrupt OUT transfer operation. Refer to channel 1 (ch_1). The assumptions are as follows:

- The application is attempting to send one largest-packet-size packet (transfer size is 1024 bytes) to every frame
- The periodic transmit FIFO can store one packet (1KB bytes for full-speed transfer)
- The periodic request queue depth is 4

(1) Common interrupt IN operation process

The sequence of operations shown in Figure 21-8 (channel 1) is as follows:

- 1. Initialize channel 1 (according to OTGFS/HS channel initialization requirements). The application must set the ODDFRM bit in the OTGFS/HS_HCCHAR2 register
- 2. Write the first packet to the channel 1
- 3. Along with the last WORD write of each packet, the host writes a request to the periodic request queue
- 4. The host sends an OUT token in the next frame (odd)
- 5. The host generates an XFERC interrupt after the last packet is transmitted successfully
- 6. In response to the XFERC interrupt, re-initialize the channel for the next transfer.

(2) Interrupt handling

Figure 21-9 shows an example of common interrupt OUT/IN transfers USB AHB Application Host Device init_reg(ch_1) Periodic Request Queue init_reg(ch_2) Assume that this queue (1) can hold 4 entries. write_tx_fifo MPS 2 (ch_1) 4 set_ch_en(ch_2) ch_1 (2) ch_2 (3) Odd (micro) frame DATA0 MPS **(6)** XFERC 4 ACKinterrupt init_reg(ch_1) IN write_tx_fifo (ch_1) 1 MPS DATA0 RXFLVL interrupt ACK-**6**) read_rx_fifo 1 MPS RXFLVL interrupt read rx sts ch_1 XFERC interrupt ch_2 init_reg(ch_2) set_ch_en(ch_2) OUT. **XFERC** Even (micro) interrupt frame DATA1 init_reg(ch_1) MPS write_tx_fifo ACK MPS (ch_1) IN DATA1

The following code describes the interrupt service routine related to the channel during interrupt OUT transfers

```
Unmask (NAK/XACTERR/STALL/XFERC/FRMOVRUN)
if (XFERC)
{
Reset Error Count
Mask ACK
De-allocate Channel
}
else if (STALL or FRMOVRUN)
{
Mask ACK
Unmask CHHLTD
Disable Channel
if (STALL)
{
Transfer Done = 1
}
else if (NAK or XACTERR)
{
Rewind Buffer Pointers
```

```
Reset Error Count
Mask ACK
Unmask CHHLTD
Disable Channel
}
else if (CHHLTD)
{
Mask CHHLTD
if (Transfer Done or (Error_count == 3))
{
De-allocate Channel
}
else
{
Re-initialize Channel (in next b_interval - 1 uF/F)
}
}
else if (ACK)
{
Reset Error Count
Mask ACK
}
```

Before switching to other channels (if any), the application can only write packets to the transmit FIFO and request queue according to the number defined in the MC filed when the transmit FIFO has free spaces. The application can determine whether the transmit FIFO has free spaces through the NPTXFEMP bit in the OTGFS/HS GINTSTS register.

21.5.3.11 Initialize synchronous IN transfers

Figure 21-10 shows the operation process of a typical synchronous IN transfer. Refer to channel 2 (ch_2). The assumptions are as follows:

- The application is attempting to receive one largest-packet-size packet (transfer size is 1024 bytes) from the next odd frame
- The receive FIFO can store at least one largest-packet-size packet and two status WORDs per packet (1031 bytes for full-speed transfer)
- The periodic request queue depth is 4

(1) Common interrupt IN operation process

The sequence of operations shown in Figure 21-9 (channel 2) is as follows:

- 1. Initialize channel 2 (according to OTGFS/HS channel initialization requirements). The application must set the ODDFRM bit in the OTGFS/HS_HCCHAR2 register
- 2. Set the CHENA bit in the OTGFS/HS_HCCHAR2 register to write an IN request to the periodic request queue
- 3. The OTGFS host writes an IN request to the periodic request queue each time the CHENA is set in the OTGFS/HS HCCHAR2 register
- 4. The OTGFS/HS host attempts to send an IN token in the next frame (odd)
- 5. The OTGFS/HS host generates a RXFLVL interrupt as soon as an IN packet is received and written to the receive FIFO
- 6. To handle the RXFLVL interrupt, read the received packet status to determine the number of bytes received, then read the receive FIFO. The application must mask the RXFLVL interrupt before reading the receive FIFO, and unmask the interrupt after reading the entire packet
- 7. The controller generates the RXFLVL interrupt when the transfer complete status is written to the receive FIFO. The application must read and ignore the receive packet when the receive packet is

not an IN packet (GRXSTSR.PKTSTS!= 0x0010)

- 8. The controller generates an XFERC interrupt as soon as the receive packet is read
- 9. To handle the XFERC interrupt, read the PKTCN bit in the OTGFS/HS_HCTSIZ2 register. If the PKTCNT bit in the OTGFS/HS_HCTSIZ2 is not equal to 0, disable the channel before re-initializing the channel for the next transfer. If PKTCNT == 0 in the OTGFS/HS_HCTSIZ2 register, re-initialize the channel for the next transfer. In this case, the application must reset the ODDFRM bit in the OTGFS/HS_HCHAR2 register.

(2) Interrupt handling

The following code describes the interrupt service routine related to the channel during synchronous IN transfers

```
Unmask (XACTERR/XFERC/FRMOVRUN/BBLERR)
if (XFERC or FRMOVRUN)
 if (XFERC and (HCTSIZx.PKTCNT == 0))
    Reset Error Count
    De-allocate Channel
   }
 else
   {
   Unmask CHHLTD
    Disable Channel
   }
 }
else if (XACTERR or BBLERR)
 {
 Increment Error Count
 Unmask CHHLTD
 Disable Channel
 }
else if (CHHLTD)
 Mask CHHLTD
 if (Transfer Done or (Error count == 3))
    De-allocate Channel
   }
  else
    {
    Re-initialize Channel
```

21.5.3.12 Initialize synchronous OUT transfers

Figure 21-10 shows a typical synchronous OUT transfer operation. Refer to channel 1 (ch_1). The assumptions are as follows:

- The application is attempting to send one largest-packet-size packet (transfer size is 1024 bytes) to every frame from the next odd frame
- The periodic transmit FIFO can store one packet (1KB bytes for full-speed transfer)
- The periodic request queue depth is 4

(1) Common interrupt IN operation process

The sequence of operations shown in *Figure 21-10* (channel 2) is as follows:

- 1. Initialize channel 1 (according to OTGFS/HS channel initialization requirements). The application must set the ODDFRM bit in the OTGFS/HS HCCHAR1 register
- 2. Write the first packet to the channel 1
- 3. Along with the last WORD write of each packet, the host writes a request to the periodic request queue
- 4. The OTGFS/HS host sends an OUT token in the next frame (odd)
- 5. The host generates an XFERC interrupt after the last packet is transmitted successfully
- 6. In response to the XFERC interrupt, re-initialize the channel for the next transfer.

(2) Interrupt handling

Figure 21-10 shows an example of common synchronous OUT transfers

Figure 21-10 Example of common synchronous OUT/IN transfers USB Application AHB Host Device (1) init_reg(ch_1) Periodic Request Queue init_reg(ch_2 Assume that this queue (1) can hold 4 entries write_tx_fifo MPS (2) 4 set_ch_en(ch_2) ch_1 2 ch 2 3 Odd (micro) frame DATA0 MPS **(6)** 4 **XFERC** init_reg(ch_1) interrupt IN write_tx_fifo 1 MPS **(5)** DATA0 RXFLVL interrupt read rx sts ACK**(6**) read rx fifo 1 MPS RXFLVL read_rx_sts nterrupt XFERC ch_1 interrupt ch_2 init_reg(ch_2) set_ch_en(ch_2) <u>O</u>UT Even (micro) **XFERC** frame interrupt DATA1 init_reg(ch_1) MPS write_tx_fifo **MPS** IN DATA1

The following code describes the interrupt service routine related to the channel during synchronous OUT transfers

```
Unmask (FRMOVRUN/XFERC)

if (XFERC)
{
    De-allocate Channel
}

else if (FRMOVRUN)
{
    Unmask CHHLTD
    Disable Channel
}

else if (CHHLTD)
{
    Mask CHHLTD
    De-allocate Channel
}
```

21.5.4 OTGFS/HS device mode

21.5.4.1 Device initialization

The application must perform the following steps to initialize the controller at device startup time, during power-on or after switching from host mode to device mode:

- 1. Program the following fields in the OTGFS/HS_DCFG register
- Device speed
- Non-zero-length status OUT handshake
- Periodic frame interval
- 2. Clear the SFTDISCON bit in the OTGFS/HS_DCTL register. The controller will start connection after clearing this bit
- 3. Program the OTGFS/HS GINTMSK register to unmask the following interrupts:
- USB reset
- Enumeration done
- Early suspend
- USB suspend
- SOF
- 4. Wait for the USBRESET interrupt in the OTGFS/HS_GINTSTS register. It indicates that a reset signal has been detected on the USB (lasting for about 10ms). Upon receiving this interrupt, the application must follow the steps defined in USB initialization on USB reset.
- 5. Wait for the ENUMDONE interrupt in the OTGFS/HS_GINTSTS register. It indicates the end of USB reset. Upon receiving this interrupt, the application must read the OTGFS/HS_DSTS register to determine the enumeration speed and perform the steps defined in Endpoint initialization on enumeration completion. At this time, the device is ready to accept SOF packets and perform control transfers on control endpoint 0.

21.5.4.2 Endpoint initialization on USB reset

This section describes the operations required for the application to perform when a USB reset signal is detected:

- 1. Set the NAK bit for all OUT endpoints
- OTGFS/HS DOEPCTLx.SNAK = 0x1(for all OUT endpoints)
- 2. Unmask the following interrupt bits
- OTGFS/HS DAINTMSK.INEP0 = 0x1(control IN endpoint 0)
- OTGFS/HS DAINTMSK.OUTEP0 = 0x1(control OUT endpoint 0)
- OTGFS/HS DOEPMSK.SETUP = 0x1
- OTGFS/HS DOEPMSK.XFERC = 0x1
- OTGFS/HS DIEPMSK.XFERC = 0x1
- OTGFS/HS DIEPMSK.TIMEOUT = 0x1

- 3. To receive/transmit data, the device must perform Device initialization steps to initialize registers
- 4. Allocate SRAM for each endpoint
- Program the OTGFS/HS_GRXFSIZ register to be able to receive control OUT data and SETUP data. If the allocated SRAM is equal to at least 1 largest-packet-size of control endpoint 0 + 2 WORDs (for the status of the control OUT data packet) +10 WORDs (for setup packets)
- Program the OTGFS/HS_GNPTXFSIZ register to be able to transmit control IN data. The allocated SRAM is equal to at least 1 largest-packet-size of control endpoint 0
- 5. Reset the device address in the device configuration register
- 6. Program the following fields in the endpoint-specific registers to ensure that control OUT endpoint 0 is able to receive a SETUP packet
- OTGFS/HS_DOEPTSIZ0.SUPCNT = 0x3(to receive up to 3 consecutive SETUP packets)

At this point, all initialization required to receive SETUP packets is done.

21.5.4.3 Endpoint initialization on enumeration completion

This section describes the operations required for the application to perform when an enumeration completion interrupt signal is detected:

- Upon detecting the enumeration completion interrupt signal, read the OTGFS/HS_DSTS register to get the enumeration speed
- Program the MPS bit in the OTGFS/HS_DIEPCTL0 register to set the maximum packet size. This
 operation is used to configure control endpoint 0. The maximum packet size for a control endpoint
 depends on the enumeration speed
- Unmask SOF interrupts.

At this point, the device is ready to receive SOF packets and has been configured to perform control transfers on control endpoint 0.

21.5.4.4 Endpoint initialization on SetAddress command

This section describes the operations required for the application to perform when the application receives a SetAddress command in a SETUP packet

- Program the OTGFS/HS_DCFG register with the device address received in the SetAddress command
- Program the controller to send an IN packet

21.5.4.5 Endpoint initialization on SetConfiguration/SetInterface command

This section describes the operations required for the application to perform when the application receives a SetConfiguration / SetInterface command in a SETUP packet

- When a SetConfiguration command is received, the application must program the endpoint registers according to the characteristics of the valid endpoints defined in the new configuration
- When a SetInterface command is received, the application must program the endpoint registers of the endpoints affected by this command
- Some endpoints that were valid in the previous configuration are not valid in the new configuration. These invalid endpoints must be disabled
- Refer to Endpoint activation and USB endpoint deactivation for more information on how to activate or disable a certain endpoint
- Unmask the interrupt for each valid endpoint and mask the interrupts for all invalid endpoints in the DAINTMSK register
- Refer to OTGFS/HS FIFO configuration for more information on how to program SRAM for each FIFO
- After all required endpoints are configured, the application must program the controller to send a status IN packet
- At this point, the device controller has been ready to receive and transmit any type of data packet.

21.5.4.6 Endpoint activation

This section describes how to activate a device endpoint or configure an existing device endpoint to a new type.

- 1. Program the following bits in the OTGFS/HS_DIEPCTLx register (for IN or bidirectional endpoints) or the OTGFS/HS_DOEPCTLx register (for OUT or bidirectional endpoints)
- Largest packet size
- USB valid endpoint = 1
- Endpoint start data toggle (for interrupt and bulk endpoints
- Endpoint type
- Transmit FIFO number
- 2. Once the endpoint is activated, the controller starts decoding the tokens issued to this endpoint and sends out a valid handshake for each valid token received for the endpoint

21.5.4.7 USB endpoint deactivation

This section describes how to deactivate an existing endpoint. Disable the suspended transfer before performing endpoint deactivation.

- Clear the USB valid endpoint bit in the OTGFS/HS_DIEPCTLx register (for IN or bidirectional endpoints) or the OTGFS/HS DOEPCTLx register (for OUT or bidirectional endpoints)
- Once the endpoint is deactivated, the controller will ignore the tokens issued to this endpoint, which causes a USB timeout.

21.5.4.8 Control write transfers (SETUP/Data OUT/Status IN)

This section describes the steps required for control write transfers. The application programming process is as follows:

- 1. When the SETUP bit is set in the OTGFS/HS_DOEPINTx register, it indicates that a valid SETUP packet has been sent to the application, and data stage is initiated, see OUT data transfers. At the end of the SETUP stage, the application must rewrite 3 to the SUPCNT bit in the OTGFS/HS_DOEPTSIZx register to receive the subsequent SETUP packet
- If the last SETUP packet received before the generation of the SETUP interrupt indicates data OUT stage, program the controller to perform OUT transfers according to Asynchronous OUT data transfer operation
- 3. The application can receive up to 64-byte data for a single OUT data transfer of control endpoint 0. If the application expects to receive more than 64-byte data during data OUT stage, it must re-enable the endpoint to receive another 64-byte data, and it must continue this operation until the completion of all data reception in data stage
- 4. When the XFERC interrupt is set in the OTGFS/HS_DOEPINTx register during the last OUT transfer, it indicates the end of data OUT stage of control transfer
- 5. Once the completion of data OUT stage, the application must perform the following steps:
- If the application needs to transfer a new SETUP packet, it must re-enable control OUT endpoints (refer to OUT data transfers)
 - OTGFS/HS DOEPCTLx.EPENA = 0x1
- To execute the received SETUP commands, the application must configure the corresponding registers in the controller. This is optional, depending on the received SETUP command type
- 6. During status IN stage, the application must follow the requirements of Non-periodic (for bulk and control) IN data transfers to program registers to perform data IN transfers
- 7. When the XFERC interrupt is set in the OTGFS/HS_DOEPINTx register is set, it indicates that the status stage of control transfers is started. As soon as Data transfer complete mode and Status stage start bit are set in the receive FIFO packet status register, the controller generates an interrupt. The Transfer complete interrupt can be cleared through the XFERC bit in the OTGFS/HS_DOEPINTx register

Repeat above-mentioned steps until an interrupt (XFERC bit in the OTGFS/HS DIEPINTx register) is

generated on the endpoint, which indicates the end of control write transfers.

21.5.4.9 Control read transfers (SETUP/Data IN/Status OUT)

This section describes the steps required for control read transfers.

The application programming process is as follows:

- When the SETUP bit is set in the OTGFS/HS_DOEPINTx register, it indicates that a valid SETUP
 packet has been sent to the application, and data stage is initiated, see OUT data transfers. At the
 end of the SETUP stage, the application must rewrite 3 to the SUPCNT bit in the
 OTGFS/HS DOEPTSIZx register to receive the subsequent SETUP packet
- If the last SETUP packet received before the generation of the SETUP interrupt indicates data IN stage, program the controller to perform IN transfers based on Non-periodic IN data transfer operation
- The application can receive up to 64-byte data for a single IN data transfer of control endpoint 0. If the application expects to receive more than 64-byte data during data IN stage, it must re-enable the endpoint to receive another 64-byte data, and it must continue this operation until the completion of all data transfers in data stage
- Repeat above-mentioned steps until the XFERC interrupt is generated in the OTGFS/HS DIEPINTx register for each IN transfer on the endpoint
- When the XFERC interrupt is set in the OTGFS/HS_DIEPINTx register during the last IN transfer, it indicates the end of data OUT stage of control transfer
- To execute data OUT transfer at status OUT stage, the application must configure the controller. This is optional.

The application must program the NZSTSOUTHSHK bit in the OTGFS/HS_DCFG register, and then send data OUT transfer at status stage

The XFERC interrupt bit is set in the OTGFS/HS_DOEPINTx register to indicate the end of status OUT stage of control transfer, marking the completion of control read transfers.

21.5.4.10 Control transfers (SETUP/Status IN)

This section describes the two-phase control transfer operation.

The application programming process is as follows:

- 1. When the SETUP bit is set in the OTGFS/HS_DOEPINTx register, it indicates that a valid SETUP packet has been sent to the application, and data stage is initiated, see OUT data transfers. At the end of the SETUP stage, the application must re-write 3 to the SUPCNT bit in the OTGFS/HS_DOEPTSIZx register to receive the subsequent SETUP packet
- 2. The application decodes the last SETUP packet received before the generation of the SETUP interrupt. If the SETUP packet indicates two-level control commands, the application must perform the following steps:
- Set OTGFS/HS DOEPCTLx.EPENA = 0x1
- The application must program the registers in the controller to execute the received SETUP commands
- 3. For status IN stage, the application must program the registers according to "Non-periodic (bulk and control) IN data transfers" to perform data IN transfers
- 4. The XFERC interrupt bit is set in the OTGFS/HS_DIEPINTx register to indicate the end of status IN stage of control transfers.

21.5.4.11 Read FIFO packets

This section describes how to read FIFO packets (OUT data and SETUP packets)

- 1. The application must read the OTGFS/HS_GRXSTSP register as soon as the RXFLVL interrupt bit is detected in the OTGFS/HS_GINTSTS register
- 2. The application can mask the RXFLVL interrupt bit in the OTGFS/HS_GINTSTS register by setting RXFLVL = 0x0 in the OTGFS/HS_GINTMSK register, until it has read the data packets from the receive FIFO

- 3. If the received packet byte is not 0, the byte count amount of data is popped from the receive data FIFO and stored in memory. If the received packet byte count is 0, no data is read from the receive data FIFO
- 4. The receive FIFO packet status reading indicates one of the following conditions:
- 5. Global OUT NAK mode: PKTSTS = Global OUT NAK, BCNT = 0x000, EPNUM = Dont Care (0x0) and DPID = Dont Care (0x00), indicating that the global OUT NAK bit has taken effect
- SETUP packet mode: PKTSTS = SETUP, BCnt = 0x008, EPNUM = Control EP Num and DPID = D0, indicating that a SETUP packet for the specified endpoint is now available for reading from the receive FIFO
- Setup stage done mode: PKTSTS = Setup Stage Done, BCNT = 0x0, EPNUM = Control EP Num and DPID = Don't Care (0x00), indicating the completion of the Setup stage for the specified endpoint, and the start of the data stage. After this request is popped from the receive FIFO, the controller triggers a Setup interrupt on the specified control OUT endpoint
- Data OUT packet mode: PKTSTS = DataOUT, BCnt =size of the received data OUT packet (0 ≤ BCNT ≤ 1024), EPNUM =Endpoint number on which the data packet was received, DPID =Actual data PID
- Data transfer complete mode: PKTSTS = Data OUT transfer done, BCNT = 0x0, EPNUM =OUT endpoint number on which the data transfer is complete, DPID = Don't Care (0x00). These data indicate that an OUT data transfer for the specified OUT endpoint has been complete. After this request is popped from the receive FIFO, the controller triggers a Transfer Completed interrupt on the specified OUT endpoint. PKTSTS code can be found in the OTGFS/HS_GRXSTSR / OTGFS/HS_GRXSTSP register
- 6. After the valid data is popped from the receive FIFO, the RXFLVL interrupt bit in the OTGFS/HS GINTSTS register must be unmasked
- 7. Step 1-5 must be repeated each time the application detects the interrupt line due to the RXFLVL bit in the OTGFS/HS_GINTSTS register. Reading an empty receive FIFO will result in unexpected behavior. *Figure 21-11* shows a flowchart.

Figure 21-11 Read receive FIFO wait until GINSTS.RXFLVL rd_data=rd_reg(GRXSTSP); rame transfer completed? rcv_out_pkt() rd data.BCNT=0 dword_cnt=B CNT[11:2]+(B mem[0:dword_cnt-CNT[1] | packet store in 1]=rd rxfifo(rd data.EPNU memory BCNT[0]) M,dword_cnt)

2023.08.31 Page 430 Rev 2.00

21.5.4.12 OUT data transfers

This section describes the internal data flow during data OUT and SETUP transfers, and how the application handles SETUP transfers.

(1) Setup transfers

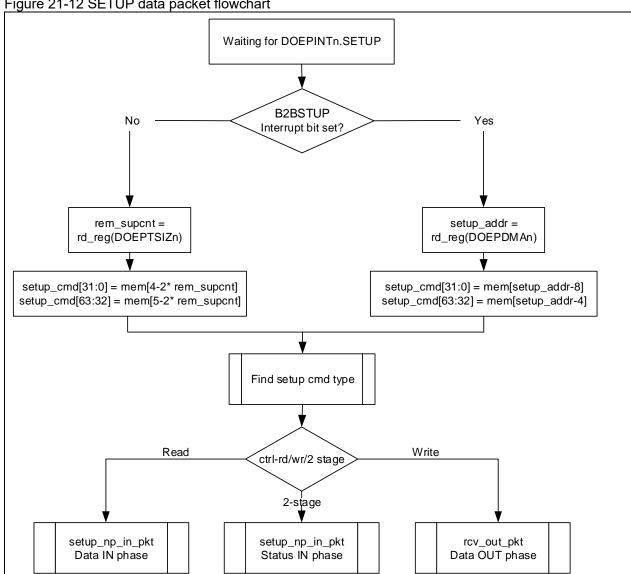
This section describes how to handle SETUP data packets and the application's operating sequence of handling SETUP transfers. After power-on reset, the application must follow the OTGFS/HS Initialization process to initialize the controller. Before communicating with the host, the application must initialize the endpoints based on Device Initialization, and refer to Read FIFO packets for more information.

[Application requirements]

- 1. To receive a SETUP packet, the SUPCNT bit (OTGFS/HS_DOEPTSIZx) on a control OUT endpoint must be programmed to be a non-zero value. When the application sets the SUPCNT bit to a non-zero value, the controller receives SETUP packets and writes them to the receive FIFO, irrespective of the NAK status bit and EPENA bit in the OTGFS/HS_DOEPCTLx register. The SUPCNT bit is decremented each time the control endpoint receives a SETUP packet. If the SUPCNT bit is not programmed to a proper value before receiving a SETUP packet, the controller still receives the SETUP packet and decrements the SUPCNT bit, but the application may not be able to determine the exact number of SETUP packets received in the SETUP stage of a control transfer.
- OTGFS/HS DOEPTSIZx.SUPCNT = 0x3
- 2. The application must allocate some extra space for the receive data FIFO to ensure that up to three SETUP packets can be received on a control endpoint
- The space to be reserved is 13 WORDs. Four WORDs for one SETUP packet, one WORD for Setup stage and 8 WORDs for two extra SETUP packets among all control endpoints
- Four WORDs per SETUP packet are required to store 8-byte SETUP data and 4-byte Transfer completed status and 4-byte SETUP status (SETUP packet mode). The controller must reserve this space to receive data
- FIFO is used to write SETUP data only, and never for data packets
- 3. The application must read 2-WORDs SETUP packet from the receive data
- 4. The application must read and discard the Transfer Completed status WORD from the receive FIFO, and ignore the Transfer Completed interrupt due to this read operation.

[Internal data flow]

- 1. When a SETUP packet is received, the controller writes the received data to the receive FIFO, without checking whether there is available space in the receive FIFO, irrespective of the NAK and Stall bits on the control endpoints.
- The controller sets the IN NAK and OUT NAK bits for the control IN/OUT endpoints on which the SETUP packet was received.
- 2. For every SETUP packet received on the USB line, 3 WORDs of data are written to the receive FIFO, and the SUPCNT bit is decremented by 1 automatically.
- The first WORD contains control information used internally by the controller
- The second WORD contains the first 4 bytes of the SETUP command
- The third WORD contains the last 4 bytes of the SETUP command
- 3. When the SETUP stage switches to data IN/OUT stage, the controller writes a SETUP status done WORD to the receive FIFO, indicating the end of the SETUP stage.
- 4. The application reads the SETUP packages through the AHB bus.
- 5. When the application pops the Setup stage done WORD from the receive FIFO, the controller interrupts the application through the SETUP interrupt bit in the OTGFS/HS_DOEPINTx register, indicating that the application can start processing the SETUP packet received.
- 6. The controller clears the endpoint enable bit for control OUT endpoints.


[Application programming process]

- 1. Program the OTGFS/HS DOEPTSIZx register
- OTGFS/HS_DOEPTSIZx.SUPCNT = 0x3

- 2. Wait for the RXFLVL interrupt bit in the OTGFS/HS GINTSTS register and read and empty the data packets from the receive FIFO (Refer to Read FIFO packets for details). This operation can be repeated several times.
- 3. When the SETUP interrupt bit is set in the OTGFS/HS DOEPINTx register, it indicates that the SETUP data transfer has been completed successfully. Upon this interrupt, the application must read the OTGFS/HS DOEPTSIZx register to determine the number of SETUP packets received, and process the last received SETUP packet.

Figure 21-12 SETUP data packet flowchart

(2) Handling more than three consecutive SETUP packets

Per the USB 2.0 specification, typically, a host does not send more than three consecutive SETUP packets to the same endpoint during a SETUP packet error. However, the USB2.0 specification does not limit the number of consecutive SETUP packets a host can send to the same endpoint. If this condition occurs, the OTGFS controller generates an interrupt (B2BSTUP OTGFS/HS DOEPINTx register).

21.5.4.13 IN data transfers

This section describes the internal data flow during IN data transfers and how the application handles IN data transfers.

- 1. The application can either select a polling or an interrupt mode.
- In polling mode, the application monitors the status of the endpoint transmit data FIFO by reading the OTGFS/HS DTXFSTSx register to determine whether there is enough space in the data FIFO.

- In interrupt mode, the application must wait for the TXFEMP interrupt bit in the OTGFS_DIEPINTx register, and then read the OTGFS/HS_DTXFSTSx register to determine whether there is enough space in the data FIFO.
- To write a single non-zero-length data packet, there must be enough space to write the entire data packet in the data FIFO.
- To write zero-length data packet, the application does not need to check the FIFO space.
- 2. Either way, when the application determines that there is enough space to write a transmit packet, the application can first write into the endpoint control register before writing the data into the data FIFO. Normally, except for setting the endpoint enable bit, the application must do a read modify write on the OTGFS/HS_DIEPCTLx register to avoid modifying the contents of the register. If the space is enough, the application can write multiple data packets for the same endpoint into the transmit FIFO. For the periodic IN endpoints, the application must write packets for only one frame. It can write packets for the next periodic transfer only after the previous transfer has been completed.

21.5.4.14 Non-periodic (bulk and control) IN data transfers

To initialize the controller after power-on reset, the application must perform the steps list in OTGFS/HS Initialization. Before communicating with a host, the controller must follow the steps defined in Device Initialization to initialize endpoints.

[Application requirements]

- 1. For IN transfers, the Transfer Size bit in the Endpoint Transfer Size register indicates a payload that contains multiple largest-packet-size packets and a short packet. This short packet is transmitted at the end of the transfer.
- To transmit several largest-packet-size packets and a short packet:
 Transfer size [epnum] = n * mps[epnum] + sp (n is an integer ≥ 0 and 0 ≤ sp < mps[epnum])
 If (sp > 0), then packet count [epnum] = n + 1. Otherwise, packet count [epnum] = n
- To transmit a single zero-length data packet:

Transfer size [epnum] = 0x0 Packet count [epnum] = 0x1

• To transmit several largest-packet-size packets and a zero-length data packet (at the end of the transfer), the application must split the transfer into two parts. First send the largest-packet-size packets and then the zero-length data packet alone.

First transfer: Transfer size [epnum] = n * mps[epnum]; Packet count = n; Second transfer: Transfer size [epnum] = 0x0; Packet count = 0x1;

- 2. If an endpoint is enabled for data transfers, the controller updates the Transfer size register. At the end of the IN transfer (indicated by endpoint disable interrupt bit), the application must read the Transfer size register to determine how much data in the transmit FIFO have already been sent on the USB line.
- 3. Data fetched in the transmit FIFO = Application-programmed initial transfer size Controller-updated final transfer size
- Data transmitted on USB = (Application-programmed initial packet count Controller-updated final packet count) * mps[epnum]
- Data to be transmitted on USB = Application-programmed initial transfer size Data transmitted on USB

[Internal data flow]

- 1. The application must set the transfer size and packet count bits in the endpoint control registers and enable the endpoint to transmit the data.
- 2. The application must also write the required data to the transmit FIFO of the endpoint.
- 3. Each time a data packet is sent to the transmit FIFO by the application the transfer size for this endpoint is decremented with the packet size. The application must continue to write data until the transfer size of the endpoint becomes 0. After writing data to the FIFO, the "packet count in the FIFO" is incremented (this is a 3-bit count for each IN endpoint transmit FIFO data packet, which is internally

maintained by the controller. For an IN endpoint FIFO, the maximum number of packets maintained by the controller at any time is 8). For non-zero-length packets, a separate flag is set for each FIFO, without any data in the FIFO.

- 4. After the data is written to the transmit FIFO, the controller reads them upon receiving an IN token. For each non-synchronous IN data packet transmitted with an ACK handshake signal, the number of packets for the endpoint is decremented by 1, until the packet count becomes 0. The packet count is not decremented due to a timeout.
- 5. For zero-length data packets (indicated by an internal zero-length flag), the controller sends zero-length packets according to the IN token, and the packet count is decremented automatically.
- 6. If there are no data in the FIFO on a received IN token and the packet count for the endpoint is 0, the controller generates an "IN token received when FIFO is empty" interrupt, and the NAK bit for the endpoint is not set. The controller responds with a NAK handshake signal to the non-synchronous endpoints on the USB.
- 7. The controller rewinds the FIFO pointers internally and no timeout interrupt is generated except for the control IN endpoints.
- 8. When the transfer size is 0 and the packet count is also 0, the Transfer completed interrupt is generated and the endpoint enable bit is cleared.

[Application programming sequence]

- 1. Program the OTGFS/HS_DIEPTSIZx register according to the transfer size and the corresponding packet count.
- 2. Program the OTGFS/HS_DIEPCTLx register according to the endpoint characteristics and set the CNAK and endpoint enable bits.
- 3. While sending non-zero-length data packets, the application must poll the OTGFS/HS_DTXFSTSx register (where n is the FIFO number related to that endpoint) to determine whether there is enough space in the data FIFO. The application can also use the TXFEMP bit in the OTGFS/HS_DIEPINTx register before writing data.

21.5.4.15 Non-synchronous OUT data transfers

To initialize the controller after power-on reset, the application must perform the steps list in "OTGFS/HS Initialization". Before communicating with a host, the application must initialize endpoints based on the process described in "Endpoint Initialization" and by referring to "Read FIFO packets". This section describes a regular non-synchronous OUT transfers (control, bulk or interrupt transfers).

[Application requirements]

1. For OUT data transfers, the transfer size of the endpoint transfer register must be set to a multiple of the largest packet size for the endpoint, and adjusted to the WORD boundary.

```
if (mps[epnum] mod 4) == 0
transfer size[epnum] = n * (mps[epnum]) //WORD Aligned
else
transfer size[epnum] = n * (mps[epnum] + 4 - (mps[epnum] mod 4)) //Non WORD
Aligned
packet count[epnum] = n
n > 0
```

- 2. When an OUT endpoint interrupt occurs, the application must read the endpoint's transfer size register to calculate the size of the data in the memory. The received payload size must be less than the programmed transfer size.
- Payload size in memory = Application-programmed initial transfer size Controller-updated final transfer size
- Number of USB packets the payload was received = Application-programmed initial packet count
 Controller-updated final packet count

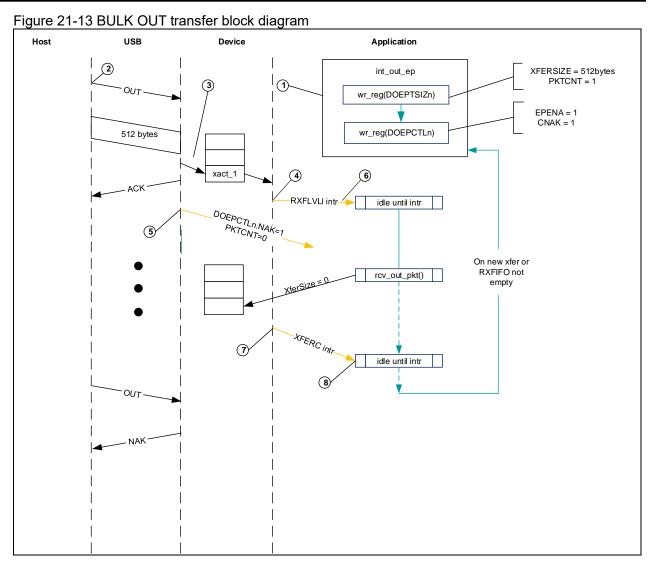
[Internal data flow]

1. The application must set the transfer size and packet count bits in the endpoint control registers, clear the NAK bit, and enable the endpoint to receive the data.

- 2. Once the NAK bit is cleared, the controller starts receiving data and writes it to the receive FIFO as long as there is available space in the receive FIFO. For each data packet received on the USB line, the data packet and its status are written to the receive FIFO. The packet count is decremented by 1 each time a packet (largest packet size or a short packet) is written to the receive FIFO.
- OUT data packets received with Bad Data CRC are emptied from the receive FIFO
- After sending an ACK to the data packet on the USB, the controller discards non-synchronous OUT data packets that the host (which cannot detect the ACK) re-transmits. The application does not detect multiple consecutive OUT data packets on the same endpoint with the same data PID. In this case, the packet count is not decremented.
- If there is no space in the receive FIFO, synchronous or non-synchronous data packets are ignored and not written to the receive FIFO. Besides, the non-synchronous OUT tokens receive a NAK handshake response.
- In all the above-mentioned cases, the packet count is not decremented because no data is written to the receive FIFO.
- 3. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit for the endpoint is set. Once the NAK bit is set, the synchronous or non-synchronous data packets are ignored and not written to the receive FIFO, and non-synchronous OUT tokens receive a NAK handshake response.
- 4. After the data is written to the receive FIFO, the application reads the data from the receive FIFO and writes it to the external memory, once packet at a time per endpoint.
- 5. At the end of data packet write to the external memory, the transfer size for the endpoint is decremented with the size of the written packet.
- 6. The OUT data transfer completed mode for an OUT endpoint is written to the receive FIFO in one of the following conditions:
- The transfer size and packet count are both 0
- The last OUT data packet written to the receive FIFO is a short packet (0 ≤ data packet size < largest packet size)
- 7. When the application pops this entry (OUT data transfer complete), a transfer completed interrupt is generated and the endpoint enable bit is cleared.

[Application programming sequence]

- 1. Program the OTGFS/HS_DOEPTSIZx register with the transfer size and the corresponding packet count.
- 2. Program the OTGFS/HS_DOEPCTLx register with the endpoint characteristics, and set the endpoint enable and ClearNAK bits.
- OTGFS/HS_DOEPCTLx.EPENA = 0x1
- OTGFS/HS DOEPCTLx.CNAK = 0x1
- 3. Wait for the RXFLVL interrupt in the OTGFS/HS_GINTSTS register, and read out all data packets from the receive FIFO.


This step can be repeated, depending on the transfer size

4. When the XFERC interrupt is set in the OTGFS/HS_DOEPINTx register, it indicates a successful completion of the non-synchronous OUT data transfer. Read the OTGFS/HS_DOEPTSIZx register to determine how much data has been received.

[Bulk OUT transfer]

Figure 21-13 describes the reception of a single bulk OUT data packet from the USB to the AHB and shows the events involved in the process.

After a SetConfiguration/SetInterface command is received, the application initializes all OUT endpoints by setting CNAK = 0x1 and EPENA = 0x1 in the OTGFS/HS_DOEPCTLx register, and setting the XFERSIZE and PKTCNT bits in the OTGFS/HS_DOEPTSIZx register.

- 1. The host attempts to send data (OUT token) to the endpoint
- 2. When the controller receives the OUT token on the USB, it stores data in the receive FIFO because the FIFO has free space.
- 3. Upon writing the complete data in the receive FIFO, the controller then triggers the RXFLVL interrupt bit in the OTGFS/HS GINTSTS register.
- 4. Upon receiving the packet count of USB packets, the controller internally sets the NAK bit for the endpoint to prevent it from receiving any more packets.
- 5. The application processes the interrupt and reads the data from the receive FIFO.
- 6. When the application reads all the data (equivalent to XFERSIZE), the controller generates an XFERC interrupt in the OTGFS/HS_DOEPINTx register.
- 7. The application processes the interrupt and uses the XFERC bit in the OTGFS/HS_DOEPINTx register to judge that the expected transfer is already complete.

21.5.4.16 Synchronous OUT data transfers

To initialize the controller after power-on reset, the application must perform the steps list in "OTGFS/HS Initialization". Before communicating with a host, the application must initialize endpoints based on the process described in "Endpoint Initialization" and by referring to "Read FIFO packets". This section describes a regular synchronous OUT transfers.

[Application requirements]

- 1. All the application requirements are the same as that of non-synchronous OUT data transfers.
- 2. For synchronous OUT data transfers, the transfer size and packet count must be set to the number of the largest-packet-size packets that can be received in a single frame and not exceed this size. Synchronous OUT data transfer cannot span more than one frame.
- 1 ≤ packet count [epnum] ≤ 3
- 3. If the device supports the synchronous OUT endpoints, the application must read all synchronous OUT data packets from the receive FIFO before the end of the periodic frame (EOPF interrupt in the OTGFS/HS_GINTSTS register)
- 4. To receive data in the subsequent frame, a synchronous OUT endpoint must be enabled before the generation of the EOPF and SOF interrupt in the OTGFS/HS GINTSTS register.

[Internal data flow]

- 1. The internal data flow for the synchronous OUT endpoints is the same as that for the non-synchronous OUT endpoints, just for a few differences.
- 2. When the synchronous OUT endpoint is enabled by setting the endpoint enable bit and by clearing the NAK bit, the even/odd frame bits are also set properly. The controller can receive data on a synchronous OUT endpoint in a particular frame only when the following condition is met:
- Even/Odd microframe (OTGFS/HS_DOEPCTLx) =SOFFN[0] (OTGFS_DSTS)
- 3. When the application completely reads the synchronous OUT data packet (data and status) from the receive FIFO, the controller updates the RXDPID bit in the OTGFS/HS_DOEPTSIZx register based on the data PID of the last synchronous OUT data packet read from the receive FIFO.

[Application programming sequence]

- 1. Program the transfer size and the corresponding packet count of the OTGFS DOEPTSIZx register
- 2. Program the OTGFS/HS_DOEPCTLx register with the endpoint enable, ClearNAK and Even/Odd frame bits
- Endpoint enable = 0x1
- CNAK = 0x1
- Even/Odd frame = (0x0: Even; 0x1: Odd)
- 3. Wait for the RXFLVL interrupt in the OTGFS/HS_GINTSTS register, and read all the data packets from the receive FIFO. See "Read FIFO" for more information
- This step can be repeated several times, depending on the transfer size
- 4. When the XFERC interrupt is set in the OTGFS/HS_DOEPINTx register, it indicates the completion of the synchronous OUT data transfers. But this interrupt does not necessarily mean that the data in memory are good.
- 5. This interrupt signal cannot always be detected by the synchronous OUT data transfers. However, the application can detect the INCOMPISOOUT interrupt in the OTGFS/HS_GINTSTS register. See "Incomplete synchronous OUT data transfers" for more information.
- 6. Read the OTGFS/HS_DOEPTSIZx register to determine the received transfer size and to determine whether the data received in the frame are valid or not. The application must treat the data received in memory as valid only when one of the following conditions is met:
- OTGFS/HS_DOEPTSIZx.RxDPID = 0xD0 and the USB packet count in which the payload was received =0x1
- OTGFS/HS_DOEPTSIZx.RxDPID = 0xD1 and the USB packet count in which the payload was received =0x2
- OTGFS/HS_DOEPTSIZx.RxDPID = 0xD2 and the USB packet count in which the payload was received =0x3

The number of USB packets in which the payload was received= Application-programed initial packet count – Controller-updated final packet count

The application discards invalid data packets.

21.5.4.17 Enable synchronous endpoints

After sending a Set interface control command to the device, a host enables the synchronous endpoints. Then the host can send the initial synchronous IN token in any frame before transmission in the sequence of BInterval.

Instead, synchronous support in the OTGFS/HS controller is based on a single-transfer level. The application must re-configure the controller on every frame. The OTGFS/HS controller enables the synchronous endpoint of the frame before the frame to be transmitted.

For example, to send data on the frame n, enable the endpoint of the frame n-1. Additionally, the OTGFS/HS controller schedules the synchronous transfers by setting Even/Odd frame bits.

[Synchronous IN transfer interrupt]

The following interrupts must be processed to ensure successful scheduling of the synchronous transfers.

- XFERC interrupt in the OTGFS/HS_DIEPINTx register (for endpoints)
- INCOMPISOIN interrupt in the OTGFS/HS_GINTSTS register (for global interrupts)

[Handling synchronous IN transfers]

The following steps must be performed to handle a synchronous IN transfer:

- 1. Unmask the incompISOOUT interrupt in the OTGFS/HS_GINTSTS register by setting the INCOMISOINMSK interrupt bit in the OTGFS/HS GINTMSK register
- 2. Unmask the XFERC interrupt in the OTGFS/HS_DIEPINTx register by setting the XFERCMSK bit in the OTGFS/HS_DIEPMSK register
- 3. Enable synchronous endpoints with the following steps:
- Program the OTGFS/HS DIEPTSIZx register

OTGFS/HS_DIEPTSIZx.XFERSIZE= n * OTGFS/HS_DIEPCTLx.MPS + sp, where 0 <= n <= 3 and 0 <= sp <OTGFS/HS_DIEPCTLx.MPS. When the transfer size in a frame is less than that of the MPS bit in the OTGFS/HS_DIEPCTLx register, n=0; When the transfer size in a frame is a multiple of that of the MPS bit in the OTGFS/HS_DIEPCTLx register, sp=0.

OTGFS/HS DIEPTSIZx.PKTCNT = 1

The MC bit in the OTGFS/HS_DIEPTSIZx register is set the same value as that of the PKTCNT bit in the OTGFS/HS_DIEPTSIZx register.

Program the OTGFS/HS DIEPCTLx register

Read the OTGFS/HS DSTS register to determine the current frame number

Program the OTGFS/HS DIEPCTLx with the maximum packet size (MPS bit)

Set USBACTEP = 0x1 in the OTGFS/HS_DIEPCTLx register

Set EPTYPE = 0x1 in the OTGFS/HS_DIEPCTLx register, marking synchronization

Set the FIFO number of the endpoint through the TXFNUM bit in the OTGFS/HS_DIEPCTLx register

Set CNAK = 0x1 in the OTGFS/HS DIEPCTLx register

If.SOFFN[0] = 0x0 in OTGFS/HS_DSTS, then SETEVENFR = 0x1 in OTGFS/HS_DIEPCTLx (otherwise, SETEVENFR = 0x1 in OTGFS/HS DIEPCTLx)

If SOFFN[0] = 0x1 in $OTGFS/HS_DSTS$, then SETODDFR = 0x1 in $OTGFS_DIEPCTLx$ (otherwise, SETODDFR = 0x0 in $OTGFS/HS_DIEPCTLx$)

Set EPENA = 0x1 in OTGFS/HS DIEPCTLx

4. Write endpoint data to the corresponding transmit FIFO

For example, write address ranges are as follows:

- EP1 corresponding to 0x2000 0x2FFC
- EP2 corresponding to 0x3000 0x3FFC
- EP3 corresponding to 0x3000 0x3FFC
- ...
- 5. Wait for interrupts
- When an interrupt is generated (XFERC bit in OTGFS/HS_DIEPINTx register), clear the XFERC interrupt; for the following transaction, repeat step 3-5 until the completion of data transfers.

- When an interrupt is generated (INCOMPISOIN bit in OTGFS/HS_GINTSTS register), clear the INCOMPISOIN interrupt; For any synchronous IN endpoint, when Odd/Even bits match the current frame number bit 0, and when the endpoint remains enabled, the controller generates an interrupt at the end of the frame. This interrupt is generated on one of the following conditions:
 - (1)There is no token in a frame
 - (2) Late data write to the receive FIFO. An IN token has arrived before the completion of data write
 - (3) IN token error

The INCOMPISOIN interrupt in the OTGFS/HS_GINTSTS register is a global interrupt. Therefore, when more than one synchronous endpoints are in active state, the application must determine which one of the synchronous IN endpoints has not yet completed data transfers.

To achieve this, read the DSTS and DIEPCTLx bits of all synchronous endpoints. If the current endpoint has been enabled, and the read value of the SOFFN bit in the OTGFS/HS_DSTS register is equal to the target frame number of the endpoint, it indicates that this endpoint has not finished data transfers. The application must keep track of and update the target frame number of the synchronous endpoint.

If data transfer is not yet complete on an endpoint, then Odd/Even bits have to be toggled.

Next:

- (1) When the DPID is set to 1 (an odd frame) in the OTGFS/HS_DIEPCTLx register, write 1 to the SETD0PID bit in the OTGFS/HS_DIEPCTLx register makes it an even frame, then data transmission starts when there is an IN token input in the next frame.
- (2) When the DPID is set to 0 in the OTGFS/HS_DIEPCTLx register, write 1 to the SETD1PID bit in the OTGFS/HS_DIEPCTLx register makes it an odd frame, then data transmission starts when there is an IN token input in the next frame.

21.5.4.18 Incomplete synchronous OUT data transfers

To initialize the controller after power-on reset, the application must perform the steps list in OTGFS/HS Initialization. Before communicating with a host, the controller must follow the steps defined in Endpoint Initialization to initialize endpoints. This section describes the application programming sequence when the controller drops synchronous OUT data packets.

[Internal data flow]

- 1. For synchronous OUT endpoints, the XFERC interrupt (in the OTGFS/HS_DOEPINTx register) may not always be generated. If the controller drops synchronous OUT data packets, the application may fail to detect the XFERC interrupt in the OTGFS/HS_DOEPINTx register.
- When the receive FIFO cannot accommodate the complete ISO OUT data packet, the controller drops the received ISO OUT data.
- When the synchronous OUT data packet is received with CRC errors.
- When the synchronous OUT token received by the controller is corrupted.
- When the application is very slow in reading the receive FIFO
- 2. When the controller detects the end of periodic frames before transfer complete to all synchronous OUT endpoints, an interrupt of incomplete synchronous OUT data is generated, indicating that an XFERC interrupt in the OTGFS/HS_DOEPINTx register is not set on at least one of the synchronous OUT endpoints. At this point, the endpoint with the incomplete data transfer remains enabled, but no valid transfers are in progress on this endpoint.

[Application programming sequence]

- 1. The assertion of the incomplete synchronous OUT data interrupt indicates that at least one synchronous OUT endpoint has an incomplete data transfer in the current frame.
- 2. If this occurs because the synchronous OUT data is not completely read out from the endpoint, the application must empty all synchronous OUT data (data and status) in the receive FIFO before proceeding.
- When all data are read from the receive FIFO, the application can detect the XFERC interrupt in the OTGFS/HS_DOEPINTx register. In this case, the application must re-enable the endpoint to receive the synchronous OUT data in the next frame by following the steps listed in "SETUP/Data IN/Status OUT"
- 3. When it receives an incomplete synchronous OUT data interrupt, the application must read the control registers of all synchronous OUT endpoints to determine which one of the endpoints has an

incomplete data transfer in the current frame. An endpoint transfer is regarded as incomplete if both of the following conditions are met:

- OTGFS/HS DOEPCTLx. Even/Odd frame bit= OTGFS DSTS.SOFFN[0]
- OTGFS/HS_DOEPCTLx. Endpoint enable = 0x1
- 4. The pervious step must be performed before the SOF interrupt of the GINTSTS register is detected to ensure that the current frame number is not changed.
- 5. For synchronous OUT endpoints with incomplete transfers, the application must drop the data in memory, and disable the endpoint through the endpoint disable bit in the OTGFS/HS_DOEPCTLx register.
- 6. Wait for the endpoint disable interrupt in the OTGFS/HS_DOEPINTx register, and enable the endpoint to receive new data in the next frame by following the steps listed in "SETUP/Data IN/Status OUT". Because the controller can take some time to disable the endpoint, the application may not be able to receive the data in the next frame after receiving wrong synchronous data.

21.5.4.19 Incomplete synchronous IN data transfers

This section describes how the application behaves on incomplete synchronous IN transfers.

[Internal data flow]

- 1. Synchronous IN transfers are incomplete on one of the following conditions:
- The controller receives corrupted synchronous IN tokens from more than one synchronous IN endpoints. In this case, the application can detect the incomplete synchronous IN transfer interrupt in the GINTSTS register.
- The application is slow in writing complete data to the transmit FIFO, and an IN token is received before the completion of data write. In this case, the application can detect the INTKNTXFEMP interrupt in the OTGFS/HS_DIEPINTx register. The application ignores this interrupt, which will result in the generation of the incomplete synchronous IN transfer interrupt (in OTGFS/HS_GINTSTS register). The controller responds to the received IN token by sending a zero-length data packet to the USB.
- 2. Either way, the application must stop writing the transmit FIFO as soon as possible.
- 3. The application must set the NAK and disable bits of the endpoints.
- 4. The controller disables the endpoint, clears the disable bit, and triggers the endpoint disable interrupt.

[Application programming sequence]

- 1. When the transmit FIFO becomes empty, the application ignores the INTKNTXFEMP interrupt (in the OTGFS/HS_DIEPINTx register) from any synchronous IN endpoint because this can trigger the incomplete synchronous IN interrupt.
- 2. The incomplete synchronous IN transfer interrupt (in the OTGFS/HS_GINTSTS register) indicates that at least one synchronous IN endpoint is with incomplete synchronous IN transfers.
- 3. The application must read the endpoint control registers of all synchronous IN endpoints to determine which one is with incomplete synchronous IN transfers.
- 4. The application must write data to the periodic transmit FIFO of the endpoint.
- 5. Disable theses endpoints by setting the following bits in the OTGFS/HS_DIEPCTLx register
- OTGFS/HS_DIEPCTLx.SETNAK = 0x1
- OTGFS/HS DIEPCTLx. endpoint enable = 0x1
- 6. The endpoint disable interrupt in the DIEPINTx register indicates that the controller has disabled the endpoint.
- 7. At this point, the application must empty the data in the associated transmit FIFO or overwrite the existing data in the FIFO by enabling the endpoint for a new transfer in the next frame. The application must refresh the data through the OTGFS/HS GRSTCTL register.

21.5.4.20 Periodic IN (interrupt and synchronous) data transfers

This section describes a typical periodic IN data transfer.

To initialize the controller after power-on reset, the application must perform the steps list in OTGFS/HS Initialization. Before communicating with a host, the controller must follow the steps defined in Endpoint Initialization to initialize endpoints.

[Application requirements]

- 1. Application requirements in "Non-periodic (bulk and control) IN data transfers" also apply to periodic IN data transfers, except for a slight difference of requirement 2.
- The application can only transmit multiples of largest-packet-size data packets, and a short packet. To transmit several largest-packet-size data packets and a short packet, the following conditions must be met:

Transfer size [epnum] = n * mps[epnum] + sp (where n and i are integers ≥ 0 , and $0 \leq sp < mps[epnum]$) If (sp > 0), packet count [epnum] = n + 1. Otherwise, packet count [epnum] = n, mc[epnum] = packet count [epnum]

- The application cannot transmit a zero-length data packet at the end of a transfer. But it can transmit a single zero-length data packet in itself, provided packet count [epnum] = 1, mc[epnum]
 packet count [epnum]
- 2. The application can only schedule data transfers of one frame at a time
- (OTGFS/HS_DIEPTSIZx.MC 1) * OTGFS/HS_DIEPCTLx.MPS ≤OTGFS/HS_DIEPTSIZx.XFERSIZ ≤OTGFS/HS_DIEPTSIZx.MC * OTGFS/HS_DIEPCTLx.MPS
- OTGFS/HS DIEPTSIZx.PKTCNT = OTGFS/HS DIEPTSIZx.MC
- If OTGFS/HS_DIEPTSIZx.XFERSIZ < OTGFS/HS_DIEPTSIZx.MC *
 OTGFS/HS_DIEPCTLx.MPS, the last data packet of the transfer is a short packet.
- 3. For periodic IN endpoints, one-frame data must be prefetched before the data transfer in the next frame. This can be done by enabling periodic IN endpoint 1 frame before the scheduling of the frame to be transmitted.
- 4. The complete data to be transmitted in a frame must be written to the transmit FIFO by the application before the periodic IN token is received. Even when one-WORD data to be transmitted per frame is missing in the transmit FIFO while the periodic IN token is received, the controller behaves as when the FIFO is empty. When the transmit FIFO is empty, a zero-length data packet would be transmitted on the USB, and An NAK handshake signal would be transmitted for INTR IN endpoints.

[Internal data flow]

- 1. The application must set the transfer size and packet count bits of the endpoint registers, and enable the endpoint to transmit the data.
- 2. The application must also write the required data to the associated transmit FIFO.
- 3. Each time the application writes a packet to the transmit FIFO, the transfer size for the endpoint is decremented by the packet size. Continue to write data until the transfer size for the endpoint becomes 0
- 4. When an IN token for a periodic endpoint is received, the application writes the data to the FIFO (If any). If the complete data for the frame is not present in the FIFO, the controller generates an INTKNTXFEMP interrupt.
- A zero-length data packet is transmitted on the USB for synchronous IN endpoints
- An NAK handshake signal is transmitted on the USB for interrupt IN endpoints.
- 5. The packet count for the endpoints is decremented by one under the following conditions:
- For synchronous endpoints, when a zero-or non-zero-length data packet is transmitted
- For interrupt endpoints, when an ACK handshake is transmitted
- When the transfer size and packet count are both 0, the transfer complete interrupt for the endpoint is generated and the endpoint enable bit is cleared.
- 6. In the "Periodic frame interval" (by the PERFRINT bit in the OTGFS/HS_DCFG register), when the controller finds non-empty any one of the IN endpoint FIFOs scheduled for the current frame non-empty, the controller generates an INCOMPISOIN interrupt in the OTGFS/HS GINTSTS register.

[Application programming sequence (frame transfers)]

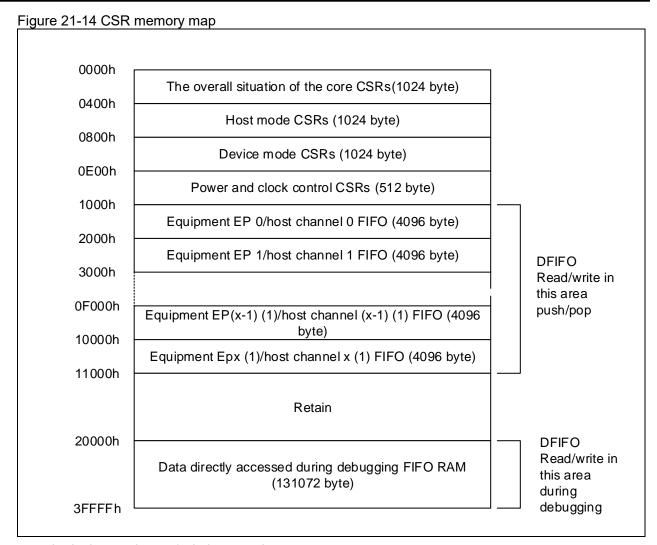
- 1. Program the OTGFS/HS_DIEPTSIZx register
- 2. Program the OTGFS/HS_DIEPCTLx register based on endpoint characteristics, and set the CNAK and endpoint enable bits
- 3. Write the data to be transmitted into the transmit FIFO.
- 4. The assertion of the INTKNTXFEMP interrupt indicates that the application has not yet written all data to be transferred into the transmit FIFO.

- 5. If the interrupt endpoint is already enabled while this interrupt is detected, ignore the interrupt. If it is not enabled, enable the endpoint to transmit data on the next IN token. If it is enabled while the interrupt is detected, refer to "Incomplete synchronous IN data transfers".
- 6. When the interrupt IN endpoint is set as a periodic endpoint, the controller internally can process the timeout on the interrupt IN endpoint, without the need of the application intervention. Therefore, the application can never detect the TIMEOUT interrupt (in the OTGFS/HS_DIEPINTx register) on the periodic interrupt IN endpoints.
- 7.The assertion of the XFERC interrupt in the OTGFS/HS_DIEPINTx register but without the INTKNTXFEMP interrupt indicates the successful completion of a synchronous IN transfer. When reading the OTGFS/HS_DIEPTSIZx register, only transfer size =0 and packet count =0 indicate that all data are transmitted on the USB line.
- 8. The assertion of the XFERC interrupt in the OTGFS/HS_DIEPINTx register, with or without the INTKNTXFEMP interrupt, indicates the successful completion of an interrupt IN transfer. When reading the OTGFS/HS_DIEPTSIZx register, only transfer size =0 and packet count =0 indicate that all data are transmitted on the USB line.
- 9. The assertion of the INCOMPISOIN interrupt but without the above-mentioned interrupts indicates that the controller did not receive at least one periodic IN token in the current frame. Refer to "Incomplete synchronous IN data transfers" for more information on synchronous IN endpoints.

21.6 OTGFS control and status registers

The application controls the OTGFS controller by reading from and writing to the control and status registers (CSRx) through the AHB slave interface. These registers are accessible by 32 bits, and the addresses are 32-bit aligned.

Only the controller global, power and clock control, data FIFO access and host port control and status registers are active in both host and device modes. When the OTGFS/HS controller operates in either host or device mode, the application must not access the register group from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and the MODMIS bit (in the OTGFS/HS_GINTSTS register) is affected.


When the controller switches from one mode to the other, the registers in the new mode must be reinitialized as they are after a power-on reset. These peripheral registers must be accessed by words (32-bit)

21.6.1 CSR register map

The host and device mode registers occupy different addresses. All registers are located in the AHB clock domain

2023.08.31 Page 442 Rev 2.00

x = 7 in device mode, x = 15 in host mode.

The OTGFS/HS control and status registers contain OTGFS global register, host mode register, device mode register, data FIFO register, power and clock control register.

- 1. OTGFS/HS global registers: They are active in both host and device modes. The register acronym is G.
- 2. Host-mode registers: They must be programmed every time the controller changes to host mode, The register acronym is H.
- 3. Device-mode registers: They must be programmed every time the controller changes to device mode, The register acronym is D.
- 4. Data FIFO access registers: These registers are valid in both in host and device modes, and are used to read or write the FIFO for a specific endpoint or channel in a given direction. If a host channel is of type IN, the FIFO can only be read. Similarly, if a host channel is of type OUT, the FIFO can only be written.
- 5. Power and clock control register: There is only one register for power and clock control. It is valid in both host and device modes.

21.6.2 OTGFS/HS register address map

Table 21-5 shows the USB OTG register map and their reset values.

These peripheral registers must be accessed by words (32 bits)

Table 21-5 OTGFS/HS register map and reset values

Register name	Offset	Reset value
OTGFS/HS_GOTGCTL	0x000	0x0001 0000
OTGFS/HS_GOTGINT	0x004	0x0000 0000
OTGFS/HS_GAHBCFG	0x008	0x0000 0000
OTGFS/HS_GUSBCFG	0x00C	0x0000 1400
OTGFS/HS_GRSTCTL	0x010	0x2000 0000
OTGFS/HS_GINTSTS	0x014	0x0400 0020
OTGFS/HS_GINTMSK	0x018	0x0000 0000
OTGFS/HS_GRXSTSR	0x01C	0x0000 0000
OTGFS/HS_GRXSTSP	0x020	0x0000 0000
OTGFS/HS_GRXFSIZ	0x024	0x0000 0200
OTGFS/HS_GNPTXFSIZ	0x028	0x0000 0200
OTGFS/HS_GNPTXSTS	0x02C	0x0008 0200
OTGFS/HS_GCCFG	0x038	0x0000 0000
OTGFS/HS_GUID	0x03C	0x0000 1000
OTGFS/HS_HPTXFSIZ	0x100	0x0200 0600
OTGFS/HS_DIEPTXF1	0x104	0x0200 0400
OTGFS/HS_DIEPTXF2	0x108	0x0200 0400
OTGFS/HS_DIEPTXF3	0x10C	0x0200 0400
OTGFS/HS_DIEPTXF4	0x110	0x0200 0400
OTGFS/HS_DIEPTXF5	0x114	0x0200 0400
OTGFS/HS_DIEPTXF6	0x118	0x0200 0400
OTGFS/HS_DIEPTXF7	0x11C	0x0200 0400
OTGFS/HS_DIEPTXF8	0x120	0x0200 0400
OTGFS/HS_HCFG	0x400	0x0000 0000
OTGFS/HS_HFIR	0x404	0x0000 EA60
OTGFS/HS_HFNUM	0x408	0x0000 3FFF
OTGFS/HS_HPTXSTS	0x410	0x0008 0100
OTGFS/HS_HAINT	0x414	0x0000 0000
OTGFS/HS_HAINTMSK	0x418	0x0000 0000
OTGFS/HS_HPRT	0x440	0x0000 0000
OTGFS/HS_HCCHAR0	0x500	0x0000 0000
OTGFS/HS_HCINT0	0x508	0x0000 0000
OTGFS/HS_HCSPLT0	0x504	0x0000 0000
OTGFS/HS_HCINTMSK0	0x50C	0x0000 0000
OTGFS/HS_HCTSIZ0	0x510	0x0000 0000
OTGHS_HCDMA0	0x514	0x0000 0000
OTGFS/HS_HCCHAR1	0x520	0x0000 0000
OTGFS/HS_HCINT1	0x528	0x0000 0000
OTGFS/HS_HCINTMSK1	0x52C	0x0000 0000

OTGFS/HS_HCTSIZ1	0x530	0x0000 0000
OTGHS_HCDMA1	0x534	0x0000 0000
OTGFS_HCDMAT	0x534 0x540	0x0000 0000
OTGFS/HS HCINT2	0x548	0x0000 0000
OTGFS/HS_HCINTMSK2	0x54C	0x0000 0000
OTGFS/HS_HCTSIZ2	0x550	0x0000 0000
OTGHS_HCDMA2	0x554	0x0000 0000
OTGFS/HS_HCCHAR3	0x560	0x0000 0000
OTGFS/HS_HCINT3	0x568	0x0000 0000
OTGFS/HS_HCINTMSK3	0x56C	0x0000 0000
OTGFS/HS_HCTSIZ3	0x570	0x0000 0000
OTGHS HCDMA3	0x574	0x0000 0000
OTGFS/HS_HCCHAR4	0x580	0x0000 0000
OTGFS/HS_HCINT4	0x588	0x0000 0000
OTGFS/HS_HCINTMSK4	0x58C	0x0000 0000
OTGFS/HS_HCTSIZ4	0x590	0x0000 0000
OTGHS_HCDMA4	0x594	0x0000 0000
OTGFS/HS_HCCHAR5	0x5A0	0x0000 0000
OTGFS/HS_HCINT5	0x5A8	0x0000 0000
OTGFS/HS_HCINTMSK5	0x5AC	0x0000 0000
OTGFS/HS_HCTSIZ5	0x5B0	0x0000 0000
OTGHS_HCDMA5	0x5B4	0x0000 0000
OTGFS/HS_HCCHAR6	0x5C0	0x0000 0000
OTGFS/HS_HCINT6	0x5C8	0x0000 0000
OTGFS/HS_HCINTMSK6	0x5CC	0x0000 0000
OTGFS/HS_HCTSIZ6	0x5D0	0x0000 0000
OTGHS_HCDMA6	0x5D4	0x0000 0000
OTGFS/HS_HCCHAR7	0x5E0	0x0000 0000
OTGFS/HS_HCINT7	0x5E8	0x0000 0000
OTGFS/HS_HCINTMSK7	0x5EC	0x0000 0000
OTGFS/HS_HCTSIZ7	0x5F0	0x0000 0000
OTGHS_HCDMA7	0x5F4	0x0000 0000
OTGFS/HS_HCCHAR8	0x600	0x0000 0000
OTGFS/HS_HCINT8	0x608	0x0000 0000
OTGFS/HS_HCINTMSK8	0x60C	0x0000 0000
OTGFS/HS_HCTSIZ8	0x610	0x0000 0000
OTGHS_HCDMA8	0x614	0x0000 0000
OTGFS/HS_HCCHAR9	0x620	0x0000 0000
OTGFS/HS_HCINT9	0x628	0x0000 0000
OTGFS/HS_HCINTMSK9	0x62C	0x0000 0000
OTGFS/HS_HCTSIZ9	0x630	0x0000 0000

OTGHS_HCDMA9	0x634	0x0000 0000
OTGFS/HS_HCCHAR10	0x640	0x0000 0000
OTGFS/HS_HCINT10	0x648	0x0000 0000
OTGFS/HS_HCINTMSK10	0x64C	0x0000 0000
OTGFS/HS_HCTSIZ10	0x650	0x0000 0000
OTGHS_HCDMA10	0x654	0x0000 0000
OTGFS/HS_HCCHAR11	0x660	0x0000 0000
OTGFS/HS_HCINT11	0x668	0x0000 0000
OTGFS/HS_HCINTMSK11	0x66C	0x0000 0000
OTGFS/HS_HCTSIZ11	0x670	0x0000 0000
OTGHS_HCDMA11	0x674	0x0000 0000
OTGFS/HS_HCCHAR12	0x680	0x0000 0000
OTGFS/HS_HCINT12	0x688	0x0000 0000
OTGFS/HS_HCINTMSK12	0x68C	0x0000 0000
OTGFS/HS_HCTSIZ12	0x690	0x0000 0000
OTGHS_HCDMA12	0x694	0x0000 0000
OTGFS/HS_HCCHAR13	0x6A0	0x0000 0000
OTGFS/HS_HCINT13	0x6A8	0x0000 0000
OTGFS/HS_HCINTMSK13	0x6AC	0x0000 0000
OTGFS/HS_HCTSIZ13	0x6B0	0x0000 0000
OTGHS_HCDMA13	0x6B4	0x0000 0000
OTGFS/HS_HCCHAR14	0x6C0	0x0000 0000
OTGFS/HS_HCINT14	0x6C8	0x0000 0000
OTGFS/HS_HCINTMSK14	0x6CC	0x0000 0000
OTGFS/HS_HCTSIZ14	0x6D0	0x0000 0000
OTGHS_HCDMA14	0x6D4	0x0000 0000
OTGFS/HS_HCCHAR15	0x6E0	0x0000 0000
OTGFS/HS_HCINT15	0x6E8	0x0000 0000
OTGFS/HS_HCINTMSK15	0x6EC	0x0000 0000
OTGFS/HS_HCTSIZ15	0x6F0	0x0000 0000
OTGHS_HCDMA15	0x6F4	0x0000 0000
OTGFS/HS_DCFG	0x800	0x0220 0000
OTGFS/HS_DCTL	0x804	0x0000 0002
OTGFS/HS_DSTS	0x808	0x0000 0010
OTGFS/HS_DIEPMSK	0x810	0x0000 0000
OTGFS/HS_DOEPMSK	0x814	0x0000 0000
OTGFS/HS_DAINT	0x818	0x0000 0000
OTGFS/HS_DAINTMSK	0x81C	0x0000 0000
OTGFS/HS_DIEPEMPMSK	0x834	0x0000 0000
OTGHS_DEACHINT	0x838	0x0000 0000
OTGHS_DEACHINTMSK	0x83C	0x0000 0000

OTGHS_DIEPEACHMSK1	0x844	0x0000 0000
OTGHS_DOEPEACHMSK1	0x884	0x0000 0000
OTGFS/HS_DIEPCTL0	0x900	0x0000 0000
OTGFS/HS_DIEPINT0	0x908	0x0000 0080
OTGFS/HS_DIEPTSIZ0	0x910	0x0000 0000
OTGHS_DIEPDMA0	0x914	0x0000 0000
OTGFS/HS_DTXFSTS0	0x918	0x0000 0200
OTGFS/HS_DIEPCTL1	0x920	0x0000 0000
OTGFS/HS_DIEPINT1	0x928	0x0000 0080
OTGFS/HS_DIEPTSIZ1	0x930	0x0000 0000
OTGHS_DIEPDMA1	0x934	0x0000 0000
OTGFS/HS_DTXFSTS1	0x938	0x0000 0200
OTGFS/HS_DIEPCTL2	0x940	0x0000 0000
OTGFS/HS_DIEPINT2	0x948	0x0000 0080
OTGFS/HS_DIEPTSIZ2	0x950	0x0000 0000
OTGHS_DIEPDMA2	0x954	0x0000 0000
OTGFS/HS_DTXFSTS2	0x958	0x0000 0200
OTGFS/HS_DIEPCTL3	0x960	0x0000 0000
OTGFS/HS_DIEPINT3	0x968	0x0000 0080
OTGFS/HS_DIEPTSIZ3	0x970	0x0000 0000
OTGHS_DIEPDMA3	0x974	0x0000 0000
OTGFS/HS_DTXFSTS3	0x978	0x0000 0200
OTGFS/HS_DIEPCTL4	0x980	0x0000 0000
OTGFS/HS_DIEPINT4	0x988	0x0000 0080
OTGFS/HS_DIEPTSIZ4	0x990	0x0000 0000
OTGHS_DIEPDMA4	0x994	0x0000 0000
OTGFS/HS_DTXFSTS4	0x998	0x0000 0200
OTGFS/HS_DIEPCTL5	0x9A0	0x0000 0000
OTGFS/HS_DIEPINT5	0x9A8	0x0000 0080
OTGFS/HS_DIEPTSIZ5	0x9B0	0x0000 0000
OTGHS_DIEPDMA5	0x9B4	0x0000 0000
OTGFS/HS_DTXFSTS5	0x9B8	0x0000 0200
OTGFS/HS_DIEPCTL6	0x9C0	0x0000 0000
OTGFS/HS_DIEPINT6	0x9C8	0x0000 0080
OTGFS/HS_DIEPTSIZ6	0x9D0	0x0000 0000
OTGHS_DIEPDMA6	0x9D4	0x0000 0000
OTGFS/HS_DTXFSTS6	0x9D8	0x0000 0200
OTGFS/HS_DIEPCTL7	0x9E0	0x0000 0000
OTGFS/HS_DIEPINT7	0x9E8	0x0000 0080
OTGFS/HS_DIEPTSIZ7	0x9F0	0x0000 0000
OTGHS_DIEPDMA7	0x9F4	0x0000 0000

OTGFS/HS_DTXFSTS7	0x9F8	0x0000 0200
OTGFS/HS_DOEPCTL0	0xB00	0x0000 8000
OTGFS/HS_DOEPINT0	0xB08	0x0000 0080
OTGFS/HS_DOEPTSIZ0	0xB10	0x0000 0000
OTGHS_DOEPDMA0	0xB14	0x0000 0000
OTGFS/HS_DOEPCTL1	0xB20	0x0000 0000
OTGFS/HS_DOEPINT1	0xB28	0x0000 0080
OTGFS/HS_DOEPTSIZ1	0xB30	0x0000 0000
OTGHS_DOEPDMA1	0xB34	0x0000 0000
OTGFS/HS_DOEPCTL2	0xB40	0x0000 0000
OTGFS/HS_DOEPINT2	0xB48	0x0000 0080
OTGFS/HS_DOEPTSIZ2	0xB50	0x0000 0000
OTGHS_DOEPDMA2	0xB54	0x0000 0000
OTGFS/HS_DOEPCTL3	0xB60	0x0000 0000
OTGFS/HS_DOEPINT3	0xB68	0x0000 0080
OTGFS/HS_DOEPTSIZ3	0xB70	0x0000 0000
OTGHS_DOEPDMA3	0xB74	0x0000 0000
OTGFS/HS_DOEPCTL4	0xB80	0x0000 0000
OTGFS/HS_DOEPINT4	0xB88	0x0000 0080
OTGFS/HS_DOEPTSIZ4	0xB90	0x0000 0000
OTGHS_DOEPDMA4	0xB94	0x0000 0000
OTGFS/HS_DOEPCTL5	0xBA0	0x0000 0000
OTGFS/HS_DOEPINT5	0xBA8	0x0000 0080
OTGFS/HS_DOEPTSIZ5	0xBB0	0x0000 0000
OTGHS_DOEPDMA5	0xBB4	0x0000 0000
OTGFS/HS_DOEPCTL6	0xBC0	0x0000 0000
OTGFS/HS_DOEPINT6	0xBC8	0x0000 0080
OTGFS/HS_DOEPTSIZ6	0xBD0	0x0000 0000
OTGHS_DOEPDMA6	0xBD4	0x0000 0000
OTGFS/HS_DOEPCTL7	0xBE0	0x0000 0000
OTGFS/HS_DOEPINT7	0xBE8	0x0000 0080
OTGFS/HS_DOEPTSIZ7	0xBF0	0x0000 0000
OTGHS_DOEPDMA7	0xBF4	0x0000 0000
OTGFS/HS_PCGCCTL	0xE00	0x0000 0000

21.6.3 OTGFS/HS global registers

These registers are available in both host and device modes, without the need of extra configuration when switching between two modes.

21.6.3.1 OTGFS/HS status and control register (OTGFS/HS_GOTGCTL)

This register is used to control the OTG function and reflect its status.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 22	Reserved	0x0000	resd	Kept at default value.
				Current Mode of Operation
				Accessible in both host and device modes
Bit 21	CURMOD	0x0	ro	This bit indicates the current operation mode.
				0: Device mode
				1: Host mode
Bit 20: 17	Reserved	0x0000	resd	Kept at default value.
				Accessible in both host mode and device mode
				Connector ID status
Bit 16	CONIDSTS	0x1	ro	This bit indicates the connecter ID status.
				0: OTGFS controller is in A-device mode
				1: OTGFS controller is in B-device mode
Bit 15: 0	Reserved	0x0000	resd	Kept at default value.

21.6.3.2 OTGFS/HS interrupt status control register (OTGFS/HS_GOTGINT)

The application reads this register to know about which kind of OTG interrupt is generated, and writes this register to clear the OTG interrupt.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 3	Reserved	0x0000	resd	Kept at default value.
				Available in both host mode and device mode Session end detected
Bit 2	SESENDDET	0x0	rw1c	The controller sets this bit when a Bvalid (Vbus) signal is disconnected. This register can only be set by hardware. Writing 1 by software clears this bit.
Bit 1: 0	Reserved	0x0000	resd	Kept at default value.

21.6.3.3 OTGFS/HS AHB configuration register (OTGFS/HS_GAHBCFG)

This register is used to configure the controller after power-on or mode change. This register mainly contains AHB-related parameters. Do not change this register after the initial configuration. The application must configure this register before starting transmission on either the AHB or USB.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 9	Reserved	0x000000	resd	Kept at default value.
				Accessible in host mode only
				Periodic TxFIFO empty level
				It indicates when the periodic TxFIFO empty interrupt bit
Bit 8	PTXFEMPLVL	0x0	mar	in the GINTSTS register is triggered.
DILO	FIAFEIVIFLVL	UXU	rw	0: PTXFEMP (GINTSTS) interrupt indicates that the
				periodic TxFIFO is half empty
				1: PTXFEMP (GINTSTS) interrupt indicates that the
				periodic TxFIFO is fully empty
				Accessible in both host mode and device mode
				Non-Periodic TxFIFO empty level
		0x0 r		In host mode, this bit indicates when the non-periodic
				TxFIFO empty interrupt (NPTXFEMP in GINTSTS) is
	NPTXFEMPLVL			triggered.
Bit 7			mar	In device mode, this bit indicates when the IN endpoint
DIL 1			rw	TxFIFO empty interrupt (TXFEMP bit in DIEPINTn) is
				triggered.
				0: The TxFEMP (in DIEPINTn) interrupt indicates that the
				IN endpoint TxFIFO is half empty
				1: The TxFEMP (in DIEPINTn) interrupt indicates that the
				IN endpoint TxFIFO is fully empty
Bit 6	Reserved	0x0	resd	Kept at default value.
		0x0 rw		Accessible in master mode and device mode
D:+ E	DMAEs			DMA is enabled
Bit 5	DMAEn		ſW	0: Slave mode
				1: DMA mode

Bit 4: 1	HBstLen	0x0	rw	In master mode and device mode Burst length/type 0000 :Single 0001 :INCR4 0011 :INCR8 0101 :INCR16
				Others: reserved
Bit 0	GLBINTMSK	0x0	rw	Accessible in both host mode and device modes Global interrupt mask The application uses this bit to mask or unmask the interrupts sent by the interrupt line to itself. 0: Mask the interrupts sent to the application 1: Unmask the interrupts sent to the application

21.6.3.4 OTGFS/HS USB configuration register (OTGFS/HS_GUSBCFG)

This register is used to configure the controller after power-on or a change between host mode and device mode. This register contains USB and USB-PHY related parameters. The application must program the register before handling any transaction on either the AHB or USB. Do not change this register after the initial configuration.

Bit	Abbr.	Reset value	Type	Description
				Accessible in both host mode and device mode
Bit 31	COTXPKT	0x0	rw	Corrupt Tx packet
				This bit is for debug purpose only. Do not set this bit to 1.
				Accessible in both host mode and device modes
				Force device mode
				Writing 1 to this bit forces the controller to go into device
Bit 30	FDEVMODE	0x0	rw	mode, irrespective of the status of the ID input point.
Dit 00	IBEVINOBE	0.00	1 **	0: Normal mode
				1: Force device mode
				After setting this bit, the application must wait at least
				25ms before the configuration takes effect.
				Accessible in both host mode and device mode
				Force host mode
				Writing 1 to this bit forces the controller to go into host
Bit 29	FHSTMODE	0x0	rw	mode, irrespective of the status of the ID input point.
				0: Normal mode
				1: Force host mode
				After setting this bit, the application must wait at least
Bit 28: 15	Reserved	0x0000	rood	25ms before the configuration takes effect. Kept at default value.
Bit 14	Reserved	0x0000	resd resd	Kept at default value.
DIL 14	Reserveu	UXU	resu	Accessible in device mode
				USB Turnaround Time
				This field sets the turnaround time in PHY clocks. It
				defines the response time when the MAC sends a
				request to the packet FIFO controller (PFC) to fetch data
				from the DFIFO (SPRAM). These bits must be configured
				as follows:
Bit 13: 10	USBTRDTIM	0x5	rw	0101: When the MAC interface is 16-bit UTMI+
				1001: When the MAC interface is 8-bit UTMI+
				Note: The aforementioned values are calculated based
				on a minimum of 30MHz AHB frequency. The USB
				turnaround time is critical for certifications with long
				cables and 5-Hub. If you want the AHB to run below 30
				MHz, and don't care about the USB turnaround time, you
				can set larger values for these bits.
Bit 9: 7	Reserved	0x00	resd	Kept at default value.
				Accessible in device mode only (support OTGHS)
Bit 6	PHYSEL	0x0	rw	OTG PHY Selection
				0: USB 2.0 high-speed UTMI+ PHY
				U. USB 2.0 HIGH-Speed UTIVIIT FITT

2023.08.31 Page 450 Rev 2.00

-				1: Reserved, please do not use
Bit 5: 3	Reserved	0x00	resd	Kept at default value.
Bit 2: 0	TOUTCAL	0x0	rw	Accessible in both host mode and device mode FS/HS Timeout calibration The number of PHY clocks that the application programs in these bits is added to the full-speed/high-speed interpacket timeout duration in order to compensate for any additional latency introduced by the PHY. This action can be required, because the delay triggered by the PHY while generating the line state condition can vary from one PHY to another. In full-speed mode, the USB standard timeout value is 16~18 (inclusive) bit times. In high-speed mode, the USB standard timeout value is 736 ~ 816 (inclusive) bit times. The application must program these bits according to the enumeration speed. The number of bit times added per PHY clock is as follows:
				High-speed mode:
				PHY clock (30MHz) = 16 bit times
				PHY clock (60MHz) = 8 bit times
				Full-speed mode:
				PHY clock (30MHz) = 0.4 bit times
				PHY clock (60MHz) = 0.2 bit times PHY clock (48MHz) = 0.25bit times

21.6.3.5 OTGFS/HS reset register (OTGFS/HS_GRSTCTL)

The application resets various hardware modules in the controller through this register.

Bit	Abbr.	Reset value	Type	Description
Bit 31	AHBIDLE	0x1	ro	Accessible in both host mode and device modes AHB master Idle This bit indicates that the AHB master state machine is in idle condition.
Bit 30: 11	Reserved	0x000	resd	Kept at default value.
Bit 10: 6	TXFNUM	0x00	rw	Accessible in both host mode and device mode TxFIFO number This field indicates the FIFO number that must be refreshed through the TxFIFO Flush bit. Do not make changes to this field until the controller clears the TxFIFO Flush bit. 00000: - Non-periodic TxFIFO in host mode - Tx FIFO 0 in device mode 00001: - Periodic TxFIFO in host mode - TXFIFO 1 in device mode 00010: - TXFIFO 2 in device mode 01111: - TXFIFO 15 in device mode 10000: - Refresh all the transmit FIFOs in device or host mode
Bit 5	TXFFLSH	0x0	rw1s	Accessible in both host mode and device mode TxFIFO Flush This bit selectively refreshes a single or all transmit FIFOs, but can do so when the controller is not in the process of a transaction. The application must write this bit only after checking tha the controller is neither writing to nor reading from the TxFIFO. Verify using these registers:

				Read: NAK effective interrupt (NAK Effective Interrupt) ensures that the controller is not reading from the FIFO Write: AHBIDLE bit in GRSTCTL ensures that the controller is not writing to the FIFO. For FIFO reprogramming, it is usually recommended to carry out flushing operation. In device endpoint disable state, it is also advised to use FIFO flushing operation. The application must wait until the controller clears this bit, before performing other operations. It takes 8 clocks to clear this bit (slowest of phy_clk or hclk) Accessible in both host mode and device mode
				RxFIFO flush The application can refresh the entire RxFIFO using this
				bit, but must first ensure that the controller is not in the
Bit 4	RXFFLSH	0x0	rw1s	process of a transaction. The application must only write to this bit after checking that the controller is neither reading from nor writing to the RxFIFO. The application must wait until the controller clears this bit, before performing other operations. It takes 8 clocks
				to clear this bit (slowest of PHY or AHB)
Bit 3	Reserved	0x0	resd	Kept at default value.
Bit 2	FRMCNTRST	0x0	rw1s	Accessible in both host mode and device mode Host frame counter reset The application uses this bit to reset the frame number counter inside the controller. After the frame counter is reset, the subsequent SOS sent out by the controller has a frame number of 0. If the application writes 1 to this bit, it may not be able to read the value, because this bit is cleared after a few clock cycles by the controller
Bit 1	PIUSFTRST	0x0	rw1s	Accessible in both host mode and device mode PIU FS dedicated controller soft reset This bit is used to reset PIU full-speed dedicated controller All state machines in the PIU full-speed dedicated controller are reset to the idle state. When the PHY remains in the receive state for more than one-frame time due to PHY errors (such as operation interrupted or babble), this bit can be used to reset the PIU full-speed dedicated controller. This is can be cleared automatically, the controller this clear this bit after all the necessary logic is reset in the controller.
Bit 0	CSFTRST	0x0	rw1s	Accessible in both host mode and device mode Controller soft reset Resets the hclk and phy_clock domain as follows: Clears all interrupts and CSR registers except for the following bits: - HCFG.FSLSPCS - DCFG.DECSPD - DCTL.SFTDIS Resets all state machines (except AHB slave) to the idle state, and clears all the transmit and receive FIFOs. All transactions on the AHB master are terminated as soon as possible after completing the last phase of an AHB data transfer. All transactions on the USB are terminated immediately. The application can write to this bit at any time to reset the controller. This is can be cleared automatically, the controller this clear this bit after all the necessary logic is reset in the controller. The controller could take several clocks to clear this bit, depending on the current state of the controller. Once this bit is cleared, the application

must wait at least 3 PHY clocks before accessing the PHY domain (synchronization delay).

Additionally, the application must ensure that the bit 31 in this register is set (AHB master is in idle state) before performing other operations.

Typically, the software set is used during software development and also when the user dynamically changes the PHY selection bits in the above-listed USB configuration registers. To change the PHY, the corresponding PHY clock is selected and used in the PHY domain. After a new clock is selected, the PHY domain has to be reset for normal operation.

21.6.3.6 OTGFS/HS interrupt register (OTGFS/HS_GINTSTS)

This register interrupts the application due to system-level events in the current mode (device or host mode), as shown in *Figure 21-3*.

Some of the bits in this register are valid only in host mode, while others are valid in device mode only. Besides, this register indicates the current mode.

The FIFO status interrupts are read-only. The FIFO interrupt conditions are cleared automatically as soon as the software reads from or writes to the FIFO while processing these interrupts.

The application must clear the GINTSTS register at initialization before enabling an interrupt bit to avoid any interrupt generation prior to initialization.

Bit	Abbr.	Reset value	Type	Description
Bit 31	WKUPINT	0x0	rw1c	Accessible in both host mode and device mode Resume/Remote wakeup detected interrupt In device mode, this interrupt is generated only when a resume signal (triggered by host) is detected on the USB bus. In host mode, this interrupt is generated only when a remote wakeup signal (triggered by device) is detected on the USB bus.
Bit 30	Reserved	0x0	resd	Kept at default value.
Bit 29	DISCONINT	0x0	rw1c	Accessible in host mode only Disconnect detected interrupt The interrupt is generated when a device disconnect is detected.
Bit 28	CONIDSCHG	0x0	rw1c	Accessible in both host mode and device modes Connector ID status change This bit is set by the controller when there is a change in connector ID status.
Bit 27	Reserved	0x0	resd	Kept at default value.
Bit 26	PTXFEMP	0x1	ro	Accessible in host mode only Periodic TxFIFO Empty The interrupt is generated when the Periodic Transmit FIFO is either half or completely empty and there is space for a request to be written in the periodic request queue. The half or completely empty status depends on the periodic transmit FIFO empty level bit in the AHB configuration register.
Bit 25	HCHINT	0x0	ro	Host channel interrupt The controller sets this bit to indicate that an interrupt is pending on one of the channels in the controller (in host mode). The application must read the Host All Channels Interrupt register to determine the exact number of the channel on which the interrupt occurred, and then read the Host Channel-n Interrupt register to determine the interrupt event source. The application must clear the corresponding status bit in the HCINTn (Host All Channels Interrupt) register to clear this bit.
Bit 24	PRTINT	0x0	ro	Host port interrupt The controller sets this bit to indicate a change in port

				status and of the north. The application would be a different
				status one of the ports. The application must read the Host Port Control and Status register to determine the
				exact event source. The application must clear the Host Port Control and Status register to clear this bit.
Bit 23: 22	Reserved	0x0	resd	Kept at default value.
				Incomplete periodic transfer
				Accessible in host mode only
				In host mode, the controller sets this interrupt bit when there are incomplete periodic transfers still pending in the
				current frame.
Dit 21	INCOMPIP	0.40	nu10	Incomplete Isochronous OUT Transfer
Bit 21	INCOMPISOOUT	0x0	rw1c	Accessible in device mode only
				In device mode, the controller sets this interrupt bit to
				indicate that there is at least one synchronous OUT endpoint with incomplete transfers in the current frame.
				This interrupt is generated along with the End of Periodic
				Frame Interrupt bit in this register.
				Accessible in device mode only
				Incomplete Isochronous IN Transfer
Bit 20	INCOMPISOIN	0x0	rw1c	The controller sets this interrupt to indicate that there is at least one synchronous IN endpoint with incomplete
DIL ZU	INCOMPISOIN	UXU	TWTC	transfers in the current frame. This interrupt is generated
				along with the End of Periodic Frame Interrupt bit in this
				register.
				Accessible in device mode only
				OUT endpoints interrupt The controller sets this bit to indicate that an interrupt is
				pending on one of the OUT endpoints in the controller.
				The application must read the Device All Endpoints
Bit 19	OEPTINT	0x0	ro	Interrupt register to determine the exact number of the
Dit 10	OLI TIIVI	OXO	10	OUT endpoint on which the interrupt occurred, and then
				read the corresponding Device OUT Endpoint-n Interrupt register to determine the exact source of the interrupt.
				The application must clear the corresponding status bit in
				the corresponding Device OUT Endpoint-n Interrupt
				register to clear this bit.
				Accessible in device mode only
				IN Endpoints interrupt The controller sets this bit to indicate that an interrupt is
				pending one of the IN endpoints in the controller (in
				device mode). The application must read the Device All
Bit 18	IEPTINT	0x0	ro	Endpoints Interrupt register to determine the exact
				number of the IN endpoint on which the interrupt
				occurred, and then read the corresponding Device IN Endpoint-n Interrupt register to determine the exact
				source of the interrupt. The application must clear the
				corresponding status bit in the corresponding Device IN
				Endpoint-n Interrupt register to clear this bit.
Bit 17: 16	Reserved	0x0	resd	Kept at default value. Accessible in device mode only
				End of periodic frame interrupt
Bit 15	EOPF	0x0	rw1c	This bit indicates that the period programmed in the
				periodic frame interval bit of the Device Configuration
				register has been reached in the current frame.
				Accessible in device mode only Isochronous OUT packet dropped interrupt)
Bit 14				The controller sets this bit on the following condition: the
	ISOOUTDROP	0x0	rw1c	controller fails to write a synchronous OUT packet into
				the receive FIFO because the receive FIFO does not
				have enough space to accommodate a maximum size
				packet for the synchronous OUT endpoint. Accessible in device mode only
Bit 13	ENUMDONE	0x0	rw1c	Enumeration done
-				The controller sets this bit to indicate that speed

2023.08.31 Page 454 Rev 2.00

				enumeration is done. The application must read the Device Status register to
				obtain the enumeration speed.
				Accessible in device mode only
Bit 12	USBRST	0x0	rw1c	USB Reset
DIL 12	USBNST	OXO	TWIC	The controller sets this bit to indicate that a reset is
				detected on the USB bus.
				Accessible in device mode only
				USB Suspend The controller sets this bit to indicate that a suspend is
Bit 11	USBSUSP	0x0	rw1c	detected on the USB bus. The controller enters the
				Suspend state when there is no activity on the bus for a
				long period of time.
-				Accessible in device mode only
Bit 10	ERLYSUSP	0x0	rw1c	Early suspend
Dit 10	LIKETOOOI	OXO	IWIO	The controller sets this bit to indicate that the idle state
D:1 0 0		0.0		has been detected on the USB bus for 3 ms.
Bit 9: 8	Reserved	0x0	resd	Kept at default value.
				Accessible in device mode only Global OUT NAK effective
				This bit indicates that the Set Global OUT NAK bit in the
Bit 7	GOUTNAKEFF	0x0	ro	Device Control register (set by the application) has taken
				effect. This bit can be cleared by writing the Clear Global
				OUT NAK bit in the Device Control register.
				Accessible in device mode only
				Global IN Non-periodic NAK effective
				This bit indicates that the Set Global Non-periodic IN NA bit in the Device Control register (set by the application)
				has taken effect. That is, the controller has sampled the
Bit 6	GINNAKEFF	0x0	ro	Global IN NAK bit set by the application. This bit can be
				cleared by writing the Clear Global Non-periodic IN NA bit
				in the Device Control register. This interrupt does not
				necessarily mean that a NAK handshake signal is sent
				out on the USB bus. The STALL bit has priority over the NAK bit.
				Accessible in both host and device mode
				Non-periodic TxFIFO empty
				This interrupt is generated when the Non-periodic TxFIFO
Bit 5	NPTXFEMP	0x1	ro	is either half or completely empty and there is enough
		OXI		space for at least one request to be written to the Non-
				periodic Transmit Request Queue. The half or completely empty depends on the Non-periodic TxFIFO Empty Level
				bit in the Core AHB Configuration register.
				Accessible in both host and device modes
Bit 4	RXFLVL	0x0	ro	RxFIFO Non-Empty
DIL 4	RAFLVL	UXU	ro	Indicates that there is at least one packet to be read from
				the receive FIFO.
				Accessible in both host and device mode
				Start of Frame In host mode, the controller sets this bit to indicate that an
				SOF (full-speed) or Keep-Alive (low-speed) is transmitted
				on the USB bus. The application must set this bit to 1 to
				clear this interrupt.
				In device mode, the controller sets this bit to indicate that
D:4 0	205	00	4	an SOF token has been received on the USB bus. The
Bit 3	SOF	0x0	rw1c	application must read the Device Status register to get
				the current frame number. This interrupt can be generated only when the controller is running in FS
				mode. This bit is set by the controller. The application
				must write 1 to clear this bit.
				Note: Reading this register immediately after power-on
				reset may return the value 0x1. If this register is read as
				0x1 immediately after power-on reset, it does not mean
				that an SOF has been transmitted (in host mode) or

				received (in device mode). The reading of this register is valid only when an effective connection has been established between the host and the device. If this bit is set after power-on reset, the application can clear this bit.
Bit 2	OTGINT	0x0	ro	Accessible in both host and device mode OTG interrupt The controller sets this bit to indicate that an OTG protocol event is generated. The application must read the OTGFS_GOTGINT register to determine the exact source that caused this interrupt. The application must clear the corresponding status bit in the OTGFS_GOTGINT register to clear this bit.
Bit 1	MODEMIS	0x0	rw1c	Accessible in both host and device mode Mode mismatch interrupt The controller sets this bit when the application is attempting to access: A host-mode register, when the controller is running in device mode A device-mode register, when the controller is running in host mode An OKAY response occurs when the register access is completed on the AHB, but it is ignored by the controller internally, and does not affect the operation of the controller. This bit can be set by the controller only. The application must write 1 to clear this bit.
Bit 0	CURMOD	0x0	ro	Accessible in both host and device modes Current mode of operation This bit indicates the current mode. 0: Device mode 1: Host mode

21.6.3.7 OTGFS/HS interrupt mask register (OTGFS/HS_GINTMSK)

This register works with the Interrupt Register to interrupt the application. When an interrupt bit is masked, the interrupt related to this interrupt bit is not generated. However, the Interrupt Register bit corresponding to this interrupt is still set.

Interrupt mask: 0
Interrupt unmask: 1

Bit	Abbr.	Reset value	Type	Description
Bit 31	WKUPINTMSK	0x0	mar	Accessible in both host and device modes
ו טוו	VVKUPIINTIVISK	UXU	rw	Resume/Remote wakeup detected interrupt mask
Bit 30	Reserved	0x0	resd	Kept at default value.
Dit 20	DISCONINTMSK	0x0	m.u.	Accessible in both host and device modes
Bit 29	DISCOMINTIVISK	UXU	rw	Disconnect detected interrupt mask
Bit 28	CONIDECTIONSK	0x0	m.u.	Accessible in both host and device modes
	CONIDSCHGMSK	UXU	rw	Connector ID status change mask
Bit 27	Reserved	0x0	resd	Kept at default value.
Bit 26	PTXFEMPMSK	0.0	rw	Accessible in host mode only
	PIAFEINIPINISK	0x0		Periodic TxFIFO empty mask
Bit 25	HCHINTMSK	0x0	rw	Accessible in host mode only
				Host channels interrupt mask
Bit 24	PRTINTMSK	0x0	ro	Accessible in host mode only
DIL 24	PRIMINISK			Host port interrupt mask
Bit 23: 22	Reserved	0x0	resd	Kept at default value.
		00		Incomplete periodic transfer mask
Bit 21	INCOMPIPMSK			Accessible in host mode only
DIL Z I	INCOMPISOOUTMSK	, 0x0	rw	Incomplete isochronous OUT transfer mask
				Accessible in device mode only
Bit 20	INCOMISOINMSK	0x0	201	Accessible in device mode only
DIL ZU	INCOMISCIMMSK	UXU	rw	Incomplete isochronous IN transfer mask
Dit 10	OEPTINTMSK	0v0	DA/	Accessible in device mode only
Bit 19	OEFTINTIVISK	0x0	rw	OUT endpoints interrupt mask

Bit 18	IEPTINTMSK	0x0	rw	Accessible in device mode only
			1 **	IN endpoints interrupt mask
Bit 17	Reserved	0x0	rw	Kept at default value.
Bit 16	Reserved	0x0	resd	Kept at default value.
Bit 15	EOPFMSK	0x0	rw	Accessible in device mode only
םונ וט	EUFFINISK	UXU	I VV	End of periodic frame interrupt mask
Bit 14	ISOOUTDROPMSK	0x0	rw	Device only isochronous OUT packet dropped interrupt mask
Bit 13	ENUMDONEMSK	0x0	rw	Accessible in device mode only Enumeration done mask
Bit 12	USBRSTMSK	0x0	rw	Accessible in device mode only
				USB Reset mask
Bit 11	USBSUSPMSK	0x0	rw	Accessible in device mode only
				USB suspend interrupt mask
Bit 10 ERLYS	ERLYSUSPMSK	0x0	rw	Accessible in device mode only
				Early suspend interrupt mask
Bit 9: 8	Reserved	0x0	resd	Kept at default value.
Bit 7	GOUTNAKEFFMSK	0x0	rw	Accessible in device mode only
				Global OUT NAK effective mask
Bit 6	GINNAKEFFMSK	0x0	rw	Accessible in device mode only
	OH WIND IN CELL THROUGH	0,10		Global Non-periodic IN NAK effective mask
Bit 5	NPTXFEMPMSK	0x0	rw	Accessible in both host and device modes
	TVI T/XI LIVII WOX	OXO	1 44	Non-periodic TxFIFO empty mask
Bit 4	RXFLVLMSK	0x0	rw	Accessible in both host and device modes
	TOU EVENIOR	UNU .	1 44	Receive FIFO Non-empty mask
Bit 3	SOFMSK	0x0	rw	Accessible in both host and device modes
DIC 5	OOI WOR	0.00	1 VV	Start of Frame mask
Bit 2	OTGINTMSK	0x0	rw	Accessible in both host and device modes
DIL Z	O I GIN I WOR	UXU	I VV	OTG interrupt mask
Bit 1	MODEMISMSK	0x0	nw.	Accessible in both host and device modes
DILI	MODEMISMSK	UXU	rw	Mode mismatch interrupt mask
Bit 0	Reserved	0x0	resd	Kept at default value.

21.6.3.8 OTGFS/HS receive status debug read/OTG status read and POP registers (OTGFS/HS_GRXSTSR / OTGFS/HS_GRXSTSP)

A read to the Receive Status Debug Read register returns the data of the top of the Receive FIFO. A read to the Receive Status Read and Pop register pops the data of the top of the Receive FIFO.

The receive status contents are interpreted differently in host and device modes. Then controller ignores the receive status pop/read when the receive FIFO is empty and returns the value of 0x0000 0000. The application can only pop the receive status FIFO when the receive FIFO non-empty bit of the Core Interrupt register is set.

Host mode:

Bit	Abbr.	Reset value	Type	Description
Bit 31: 21	Reserved	0x000	resd	Kept at default value.
Bit 20: 17	PKTSTS	0x0	ro	Packet status Indicates the status of the received data packet. 0010: IN data packet received 0011: IN transfer completed (triggers an interrupt) 0101: Data toggle error (triggers an interrupt) 0111: Channel halted (triggers an interrupt) Others: Reserved Reset value: 0
Bit 16: 15	DPID	0x0	ro	Data PID Indicates the data PID of the received data packet. 00: DATA0 10: DATA1 01: DATA2 11: MDATA Reset value: 0
Bit 14: 4	BCNT	0x000	ro	Byte count Indicates the byte count of the received IN data packet.

				Channel number
Bit 3: 0	CHNUM	0x0	ro	Indicates the channel number to which the currently received data packet belongs.

Device mode:

Bit	Abbr.	Reset value	Type	Description
Bit 31: 25	Reserved	0x00	resd	Kept at default value.
Bit 24: 21	FN	0x0	ro	Frame number Indicates the least significant 4 bits of the frame number of the data packet received on the USB bus. This field is applicable only when the synchronous OUT endpoints are supported.
Bit 20: 17	PKTSTS	0x0	ro	Packet status Indicates the status of the received data packet. 0001: Global OUT NAK (triggers an interrupt) 0010: OUT data packet received 0011: OUT transfer completed (triggers an interrupt) 0100: SETUP transaction completed (triggers an interrupt) 0110: SETUP data packet received Others: Reserved
Bit 16: 15	DPID	0x0	ro	Data PID Indicates the data PID of the received OUT data packet. 00: DATA0 10: DATA1 01: DATA2 11: MDATA
Bit 14: 4	BCNT	0x000	ro	Byte count Indicates the byte count of the received data packet.
Bit 3: 0	EPTNUM	0x0	ro	Endpoint number Indicates the endpoint number to which the currently received data packet belongs.

21.6.3.9 OTGFS/HS receive FIFO size register (OTGFS/HS_GRXFSIZ)

The application can program the SRAM size that must be allocated to the receive FIFO.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value.
				RxFIFO Depth
				This value is in terms of 32-bit words.
D# 45. 0	DVEDED	0.40000	l	·
Bit 15: 0	RXFDEP 0x0200	0X0200	ro/rw	Maximum value is 512
				The power-on reset value of this register is defined as the largest receive data FIFO depth during the configuration.

21.6.3.10 OTGFS/HS non-periodic Tx FIFO size (OTGFS/HS_GNPTXFSIZ)/Endpoint 0 Tx FIFO size registers (OTGFS/HS_DIEPTXF0)

The application can program the SRAM size and start address of the non-periodic transmit FIFO. The fields of this register varies with host mode or device mode.

Host:

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	NPTXFDEP	0x0000	ro/rw	Non-periodic TxFIFO depth This value is in terms of 32-bit words. Minimum value is 16 Maximum value is 256
Bit 15: 0	NPTXFSTADDR	0x0200	ro/rw	Non-periodic transmit SRAM start address This field contains the memory start address of the Non- periodic Transmit FIFO SRAM.

Bit 15: 0

AT32F402_405 Series Reference Manual

Endpoint FIFO0 transmit SRAM.

IN Endpoint FIFO0 transmit SRAM start address

This field contains the memory start address of the IN

Device:						
Bit	Abbr.	Reset value	Type	Description		
Bit 31: 16	INEPT0TXDEP	0x0000	ro/rw	N Endpoint TxFIFO 0 depth This value is in terms of 32-bit words. Minimum value is 16 Maximum value is 256		

21.6.3.11 OTGFS/HS non-periodic Tx FIFO size/request queue status register (OTGFS/HS_GNPTXSTS)

ro/rw

INEPTOTXSTADDR 0x0200

This register is valid in host mode only. It is a read-only register that contains the available space information for the Non-periodic TxFIFO and the Non-periodic Transmit Request Queue.

Bit	Abbr.	Reset value	Type	Description
Bit 31	Reserved	0x0	resd	Kept at its default value.
Bit 30: 24	NPTXQTOP	0x00	ro	Top of the Non-periodic transmit request queue Indicates that the MAC is processing the request from the non-periodic transmit request queue. Bit [30: 27]: Channel/Endpoint number Bit [26: 25]: 00: IN/OUT token 01: Zero-length transmit packet (device IN/host OUT) 10: PING/CSPLIT token 11: Channel halted command Bit [24]: Terminate (last request for the selected channel/endpoint)
Bit 23: 16	NPTXQSPCAVAIL	0x08	ro	Non-periodic transmit request queue space available Indicates the amount of space available in the non-periodic transmit request queue. This queue supports both IN and OUT requests in host mode. 00: Non-periodic transmit request queue is full 01: 1 location available 02: 2 locations available N: n locations available (0 ≤ n ≤ 8) Others: Reserved Reset value: Configurable
Bit 15: 0	NPTXFSPCAVAIL	0x0200	ro	Non-periodic TxFIFO space available Indicates the amount of space available in the non- periodic TxFIFO. Values are in terms of 32-bit words. 00: Non-periodic transmit FIFO is full 01: 1 location available 02: 2 locations available N: n locations available (0 ≤ n ≤ 256) Others: Reserved Reset value: Configurable

21.6.3.12 OTGFS/HS general controller configuration register (OTGFS_GCCFG)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at default value.
Bit 22	WAIT_CLK_RCV	0x0	rw	Wait clksoure recover (For OTGHS mode only) When the PHY is in Suspend state, after the USB is remotely woke up, the PHY will have to wait for the stabilization of external clock until this signal is cleared. Then PHY needs to wait 1 ms before starting work. In Suspend handler, this bit is set to 1 by software. In wakeup handler, this bit is cleared by software after the current PHY clock source becomes stable. 0: This bit is cleared after the stabilization time of external clock 1: PHY must keep waiting for the stabilization time of

				external clock
				VBUS ignored
				When this bit is set, the OTGFS controller does not
Bit 21				monitor the Vbus pin voltage, and assumes that the Vbus
	VBUSIG	0x0	rw	is always active in both host and device modes, and
				leaves the Vbus pin for other purposes.
				0: Vbus is not ignored
				1: Vbus is ignored, and is deemed as always active
-				SOF output enable
Bit 20	SOFOUTEN	0x0	rw	0: No SOF pulse output
				1: SOF pulse output on PIN
Bit 19: 18	Reserved	0x0	resd	Kept at default value.
	LP_MODE		rw	Low-power mode
		0x0		This bit is used to control the OTG PHY consumption.
				When this bit is set to 1 by software, the OTG PHY enters
Bit 17				low-power mode; when this bit is cleared by software, the
				OTG PHY operates in normal mode.
				0: Non-low-power mode
				1: Low-power mode
				Power down
				This bit is used to activate the transceiver in
				transmission/reception. It must be pre-configured to allow
Bit 16	PWRDOWN	0x0	rw	USB communication.
Dit 10	IWINDOWN	0.00	I VV	0: Power down enable
				1: Power down disable (Transceiver active)
				Note: A delay of 1ms is required after power down mode
				is disabled to continue operating OTGHS PWRDOWN bit.
Bit 15: 0	Reserved	0x0000	resd	Kept at default value.

21.6.3.13 OTGFS/HS controller ID register (OTGFS/HS_GUID)

This is a read-only register containing the production ID.

Bit	Abbr.	Reset value	Type	Description
31: 0	USERID	0x0000 1000	rw	Product ID field The application can program the ID field.

21.6.3.14 OTGFS/HS host periodic Tx FIFO size register (OTGFS/HS_HPTXFSIZ)

This register contains the size and memory start address of the periodic transmit FIFO.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	PTXFSIZE	0x02000	ro/rw	Host periodic TxFIFO depth Values are in terms of 32-bit words. Minimum value is 16 Maximum value is 512
Bit 15: 0	PTXFSTADDR	0x0600	ro/rw	Host Periodic TxFIFO start address The power-on reset value of this register is the sum of the largest receive FIFO depth and the largest non-periodic transmit FIFO depth.

2023.08.31 Page 460 Rev 2.00

21.6.3.15 OTGFS/HS device IN endpoint Tx FIFO size register (OTGFS/HS_DIEPTXFn) (x=1...15, where n is the FIFO number)

This register holds the depth and memory start address of the IN endpoint transmit FIFO in device mode. Each of the FIFOs contains an IN endpoint data. This register can be used repeatedly for instantiated IN endpoint FIFO1~15. The GNPTXFSIZ register is used to program the depth and memory start address of the IN endpoint FIFO 0.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	INEPTXFDEP	0x0200	ro/rw	IN Endpoint TxFIFO depth Values are in terms of 32-bit words. Minimum value is 16 Maximum value is 512 The reset value is the maximum possible IN endpoint transmit FIFO depth
Bit 15: 0	INEPTXFSTADDR	0x0400	ro/rw	IN Endpoint FIFOn transmit SRAM start address This field contains the SRAM start address of the IN endpoint n transmit FIFO

21.6.4 Host-mode registers

Host-mode registers affect the operation of the controller in host mode. Host-mode register are not accessible in device mode (as the results are undefined in device mode). Host-mode registers contain as follows:

21.6.4.1 OTGFS/HS host mode configuration register (OTGFS/HS_HCFG)

This register is used to configure the controller after power-on. Do not change this register after initialization.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 3	Reserved	0x0000 00000	resd	Kept at its default value.
Bit 2	FSLSSUPP	0x0	ro	FS- and LS-only support The application uses this bit to control the controller's enumeration speed. With this bit, the application can make the controller enumerate as a full-speed host mode, even if the connected device supports high-speed communication. Do not change this bit after initial programming. 0: HS/FS/LS, depending on the largest speed supported by the connected device. 1: FS/LS-only, even if the connected device supports high-speed.
Bit 1: 0	FSLSPCLKSEL	0x0	rw	FS/LS PHY clock select When the controller is in FS host mode: 01: PHY clock is running at 48MHz Others: Reserved When the controller is in LS host mode: 00: PHY clock is running at 30/60 MHz 01: PHY clock is running at 48 MHz 10: PHY clock is running at 6 MHz. If 6 MHz clock is selected, reset must be done by software. 11: Reserved

21.6.4.2 OTGFS/HS host frame interval register (OTGFS/HS_HFIR)

This register is used to program the frame interval for the current speed.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
Bit 16	HFIRRLDCTRL	0x0	rw	Reload control This bit is used to disable/enable dynamic reload for the host frame register at runtime. 1: Reload control disable 0: Reload control enable This bit must be configured at initialization. Do not

				change its value at runtime.
Bit 15: 0	FRINT	0xEA60	rw	Frame interval The application uses this filed to program the interval between two consecutive SOFs (full speed) or micro-SOFs (high speed) or Keep-Alive tokens. The number of PHY locks in this field indicates the frame interval. The application can write a value to the host frame interval register only after the port enable bit in the host port control and status register has been set. If no value is programmed, the controller calculates the value based on the PHY clock frequency defined in the FS/LS PHY clock select bit of the host configuration register. Do not change the value of this field after initial configuration. 125us * (high speed PHY clock frequenc)
				1 ms * (FS/LS PHY clock frequency)

21.6.4.3 OTGFS/HS host frame number/frame time remaining register (OTGFS/HS_HFNUM)

This register indicates the current frame number, and also the time remaining in the current frame (in terms of the number of PHY clocks).

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	FTREM	0x0000	ro	Frame time remaining Indicates the time remaining in the current frame (FS/HS/LS), in terms of the number of PHY clocks. This field decrements with the number of PHY clocks. When it reaches zero, this filed is reloaded with the value of the frame interval register, and a new SOF is transmitted on the USB bus.
Bit 15: 0	FRNUM	0x3FFF	ro	Frame number This field increments every time a new SOP is transmitted on the USB bus, and is cleared to 0 when the value reaches 16'h3FFF.

21.6.4.4 OTGFS/HS host periodic Tx FIFO/request queue register (OTGFS/HS_HPTXSTS)

This is a ready-only register containing the free space information of the periodic Tx FIFO and the periodic transmit request queue.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	PTXQTOP	0x00	ro	Top of the periodic transmit request queue) Indicates that the MAC is processing the request from the periodic transmit request queue. This register is used for debugging. Bit [31]: Odd/Even frame 0: Transmit in even frame 1: Transmit in odd frame Bit [30: 27]: Channel/Endpoint number Bit [26: 25]: Type 00: IN/OUT 01: Zero-length packet 10: Reserved 11: Channel command disable Bit [24]: Terminate (last request for the selected channel or endpoint)
Bit 23: 16	PTXQSPCAVAIL	0x08	ro	Periodic transmit request queue space available Indicates the number of free space available to be written in the periodic transmit request queue. This queue contains both IN and OUT requests. 00: Periodic transmit request queue is full 01: 1 space available 10: 2 space available

				N: n space available (0 ≤ n ≤ 8) Others: Reserved
Bit 15: 0	PTXFSPCAVAIL	0x0100	rw	Periodic transmit data FIFO space available Indicates the number of free space available to be written in the periodic transmit FIFO, in terms of 32-bit words. 0000: Periodic transmit FIFO is full 0001: 1 space available 0010: 2 space available N: n space available (0 ≤ n ≤ 512) Others: Reserved

21.6.4.5 OTGFS/HS host all channels interrupt register (OTGFS/HS_HAINT)

When a flag event occurs on a channel, the host all channels interrupt register interrupts the application through the host channels interrupt bit of the controller interrupt register, as shown in *Figure 22-2*. There is one interrupt bit for each channel, up to 16 bits. The application sets or clears this register by setting or clearing the appropriate bit in the corresponding host channel-n interrupt register.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
Bit 15: 0	HAINT	0x0000	ro	Channel interrupts One bit per channel: bit 0 for channel 0, bit 15 for channel 15.

21.6.4.6 OTGFS/HS host all channels interrupt mask register (OTGFS/HS_HAINTMSK)

The host all channels interrupt mask register works with the host all channels interrupt register to interrupt the application when an event occurs on a channel. There is one interrupt mask bit per one channel, 16 bits in total.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value.
Bit 15: 0	HAINTMSK	0x0000	rw	Channel interrupt mask One bit per channel: bit 0 for channel 0, bit 15 for channel 15.

21.6.4.7 OTGFS/HS host port control and status register (OTGFS/HS_HPRT)

This register is valid only in host mode. Currently, the OTG host supports only one port.

This register contains USB port-related information such as USB reset, enable, suspend, resume, connect status and test mode, as show in *Figure 22-2*. The register of type rw1c can interrupt the application through the host port interrupt bit in the controller interrupt register. Upon a port interrupt, the application must read this register and clear the bit that caused the interrupt. For the register of type rw1c, the application must write 1 to clear the interrupt.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 19	Reserved	0x0000	resd	Kept at default value.
				Port speed
				Indicates the speed of the device connected to this port.
Bit 18: 17	PRTSPD	0x0	ro	00: High speed
DIL 10. 17	FRISED	UXU	10	01: Full speed
				10: Low speed
				11: Reserved
	PRTTSTCTL 0x0			Port test control
				The application writes a non-zero value to this field to put
				the port into test mode, and the port gives a
				corresponding signal.
				0000: Test mode disabled
Bit 16: 13		0x0	rw	0001: Test_J mode
				0010: Test_K mode
				0011: Test_SE0_NAK mode
				0100: Test_Packet mode
				0101: Test_Force_Enable
				Others: Reserved
Bit 12	PRTPWR	0x0	rw	Port power

				The application uses this bit to control power supply to this port (by writing 1 or 0) 0: Power off 1: Power on Note: This bit is not associated with interfaces. The application must follow the programming manual to set
				this bit for various interfaces.
Bit 11: 10	PRTLNSTS	0x0	ro	Port line status Indicates the current logic status of the USB data lines. Bit [10]: Logic level of D+ Bit [11]: Logic level of D–
Bit 9	Reserved	0x0	resd	Kept at default value.
Bit 8	PRTRST	0x0	rw	Port reset When this bit is set by the application, a reset sequence is started on this port. The application must calculate the time required for the reset sequence, and clear this bit after the reset sequence is complete. 0: Port not in reset 1: Port in reset The application must keep this bit set for a minimum duration defined in Section 7.1.7.5 of USB 2.0 specification to start a reset on the port. In addition to this, the application can make this bit set for another 10 ms to the minimum duration, before clearing this bit.
Bit 7	PRTSUSP	0x0	rw1s	There is no maximum limit set by the USB standard. Port suspend The application sets this bit to put this port in suspend mode. In this case, the controller only stops sending SOF. The application must set the port clock stop bit in order to disable the PHY clock. The read value of this bit reflects the current suspend status of the port. This bit is cleared by the controller when a remote wakeup signal is detected or when the application sets the port reset bit or port resume bit in this register, or sets the resume/remote wakeup detected interrupt bit or disconnect detected interrupt bit in the controller interrupt register. The controller can still clear this bit, even if the device is disconnected with the host. 0: Port not in suspend mode 1: Port in suspend mode
Bit 6	PRTRES	0x0	rw	Port resume The application sets this bit to drive resume signaling on the port. The controller continues to trigger the resume signal until the application clears this bit. If the controller detects a USB remote wakeup sequence (as indicated by the port resume/remote wakeup detected interrupt bit of the controller interrupt register), the controller starts driving resume signaling without the intervention of the application. The read value of this bit indicates whether the controller is currently driving resume signaling. 0: No resume triggered 1: Resume triggered
Bit 5	PRTOVRCCHNG	0x0	rw1c	Port overcurrent change The controller sets this bit when the status of the port overcurrent active bit (bit 4) in this register changes. This bit can only be set by the controller. The application must write 1 to clear this bit.
Bit 4	PRTOVRCACT	0x0	ro	Port overcurrent active Indicates the overcurrent status of the port. 0: No overcurrent 1: Overcurrent condition

2023.08.31 Page 464 Rev 2.00

Bit 3	PRTENCHNG	0x0	rw1c	Port enable/disable change The controller sets this bit when the status of the port enable bit 2 in this register changes. This bit can only be set by the controller. The application must write 1 to clear this bit.
Bit 2	PRTENA	0x0	rw1c	Port enable A port is enabled only by the controller after a reset sequence. This port is enabled by an overcurrent condition, a disconnected condition ro by the application. The application cannot set this bit by a register write operation. It can only clear this bit to disable the port. This bit does not trigger any interrupt. 0: Port disabled 1: Port enabled
Bit 1	PRTCONDET	0x0	rw1c	Port connect detected On a device connection detected, the controller sets this bit using the host port interrupt bit in the controller register. This bit can only be set by the controller. The application must write 1 to clear this bit.
Bit 0	PRTCONSTS	0x0	ro	Port connect status 0: No device is connected to the port 1: A device is connected to the port

21.6.4.8 OTGFS/HS host channelx characteristics register (OTGFS/HS_HCCHARx) (x = 0...15, where x= channel number)

Bit	Abbr.	Reset value	Type	Description
Bit 31	CHENA	0x0	rw1s	Channel enable This bit is set by the application and cleared by the OTG host. 0: Channel disabled 1: Channel enabled
Bit 30	CHDIS	0x0	rw1s	Channel disable The application sets this bit to stop transmitting or receiving data on a channel, even before the transfer on that channel is complete. The application must wait for the generation of the channel disabled interrupt before treating the channel as disabled.
Bit 29	ODDFRM	0x0	rw	Odd frame This bit is set / cleared by the application to indicate that the OTG host must perform a transfer in an odd frame. This bit is applicable for periodic transfers (synchronous and interrupt) only. 0: Even frame 1: Odd frame
Bit 28: 22	DEVADDR	0x00	rw	Device address This field is used to select the device that can serve as the data source or receiver.
Bit 21: 20	МС	0x0	rw	Multi count (MC) This field indicates to the host the number of transfers that must be performed per frame for the periodic endpoint. 00: Reserved. This field generates undefined results. 01: 1 transaction 10: 2 transactions per frame 11: 3 transactions per frame This field must be set to at least 0x01.
Bit 19: 18	EPTYPE	0x0	rw	Endpoint type Indicates the transfer type selected. 00: Control transfer 01: Synchronous transfer 10: Bulk transfer 11: Interrupt transfer
Bit 17	LSPDDEV	0x0	rw	Low-speed device

2023.08.31 Page 465 Rev 2.00

				The application sets this bit to indicate that this channel is communicating to a low-speed device.
Bit 16	Reserved	0x0	resd	Kept at default value.
Bit 15	EPTDIR	0x0	rw	Endpoint direction Indicates whether the transfer is in IN or OUT. 0: OUT 1: IN
Bit 14: 11	EPTNUM	0x0	rw	Endpoint number Indicates the endpoint number on the device (serving as data source or receiver)
Bit 10: 0	MPS	0x000	rw	Maximum packet size Indicates the maximum packet size of the corresponding port.

21.6.4.9 OTGFS/HS host channelx split register (OTGFS/HS_HCSPLTx) (x = 0...15, where x= channel number)

Bit	Abbr.	Reset value	Туре	Description
Bit 31	SPLTENA	0x0	rw	Split Enable This bit is set by application to indicate that this channel is enabled to perform split transactions. 0: Split is disabled 1: Split is enabled
Bit 30: 17	Reserved	0x0000	resd	Kept at default value.
Bit 16	COMPSPLT	0x0	rw	Do Complete Split This bit is set by application to request the OTG host to perform a complete split transaction. 0: Complete split transaction is disabled 1: Complete split transaction is enabled
Bit 15: 14	XACTPOS	0x0	rw	Transaction Position This field is used to determine whether to send all, first, middle, or last payloads with each OUT transaction. 11: All. This is the entire data payload of this transaction (which is less than or equal to 188 bytes) 10: First. This is the first data payload of this transaction (which is larger than 188 bytes) 00: Middle. This is the middle payload of this transaction (which is larger than 188 bytes) 01: Last. This is the last data payload of this transaction (which is larger than 188 bytes)
Bit 13: 7	HUBADDR	0x00	rw	Hub Address This field holds the hub address of the transaction translator'hub
Bit 6: 0	PRTADDR	0x00	rw	Port Address This field holds the endpoint number of the recipient transaction translator.

2023.08.31 Page 466 Rev 2.00

21.6.4.10 OTGFS/HS host channelx interrupt register (OTGFS/HS_HCINTx) (x = 0...15, where x= channel number)

This register contains the status of a channel related to USB and AHB events, as shown in *Figure 22-2*. The application must read this register when the host channels interrupt bit is set in the controller interrupt register. Before reading this register, the application must read the host all channels interrupt register to get the exact channel number for the host channel-n interrupt register. The application must clear the corresponding bit in this register to clear the corresponding bits in the OTGFS_HAIN and OTGFS_GINTSTS registers.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 11	Reserved	0x000000	resd	Kept at default value.
				Data toggle error
Bit 10	DTGLERR	0x0	rw1c	This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				Frame overrun
Bit 9	FRMOVRUN	0x0	rw1c	This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				Babble error
Bit 8	BBLERR	0x0	rw1c	This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				Transaction error
				Indicates one of the following errors occurred on the USB
				bus:
				CRC check failure
Bit 7	XACTERR	0x0	rw1c	Timeout
				Bit stuffing error
				EOP error
				This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				NYET Received Interrupt Response
Bit 6	NYET	0x0	rw1c	This bit can only be set by the controller. It is cleared by
				the application writing "1".
				ACK response received/Transmitted interrupt
Bit 5	ACK	0x0	rw1c	This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				NAK response received interrupt
Bit 4	NAK	0x0	rw1c	This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				STALL response received interrupt
Bit 3	STALL	0x0	rw1c	This bit can only be set by the controller. The application
				must write 1 to clear this bit.
				AHB Error (For OTGHS mode only)
Bit 2	AHBERR	0x0	rw1c	This bit is set when AHB read/write error occurs in DMA
DIL Z	ALIDERN	UXU	TWTC	mode. The application will read the corresponding DMA
				channel address registion to obtain error information.
				Channel hated
Bit 1	CHHLTD	0x0	rw1c	Indicates that the transfer completed abnormally either
	CHILLID	UXU	TWTC	because of any transfer error or in response to a disable
				request by the application.
				Transfer completed
Dit O	VEEDC	0v0	nu10	Transfer completed normally, without any error. This bit
Bit 0	XFERC	0x0	rw1c	can only be set by the controller. The application must
				write 1 to clear this bit.

2023.08.31 Page 467 Rev 2.00

21.6.4.11 OTGFS/HS host channelx interrupt mask register (OTGFS/HS_HCINTMSKx) (x = 0...15, where x= channel number)

This register is used to mask the channels described in the previous section.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 11	Reserved	0x000000	resd	Kept at default value.
Bit 10	DTGLERRMSK	0x0	rw	Data toggle error mask
Bit 9	FRMOVRUNMSK	0x0	rw	Frame overrun mask
Bit 8	BBLERRMSK	0x0	rw	Babble error mask
Bit 7	XACTERRMSK	0x0	rw	Transaction error mask
Bit 6	NYETMSK	0x0	rw	NYET response received interrupt mask
Bit 5	ACKMSK	0x0	rw	ACK response received/transmitted interrupt mask
Bit 4	NAKMSK	0x0	rw	NAK response received interrupt mask
Bit 3	STALLMSK	0x0	rw	STALL response received interrupt mask
Bit 2	AHBERRMSK	0x0	rw	AHB Error Mask (for OTGHS only)
Bit 1	CHHLTDMSK	0x0	rw	Channel halted mask
Bit 0	XFERCMSK	0x0	rw	Transfer completed mask

21.6.4.12 OTGFS/HS host channelx transfer size register (OTGFS/HS_HCTSIZx) (x = 0...15, where x= channel number)

•	-	, ,	•	,
Bit	Abbr.	Reset value	Туре	Description
Bit 31	DOPNG	0x0	resd	Do Ping This bit is only used for OUT transfer. When this bit is set to 1, it indicates that the host implements PING protocol. Note: Do not set it to 1 when IN transfer mode, otherwise, it will be disabled.
Bit 30: 29	PID	0x0	rw	PID (Pid) The application programs this field with the type of PID used for the initial transfer. The host controls this filed for the rest of transfers. 00: DATA0 01: DATA2 10: DATA1 11: MDATA(non-control)/SETUP(control)
Bit 28: 19	PKTCNT	0x000	rw	Packet count The application programs this field with the expected number of packets to be transmitted or received. The host decrements the packet count on every successful transmission or reception of an OUT/IN packet. When this count reaches zero, the application is interrupted to indicate normal completion of the transfer.
Bit 18: 0	XFERSIZE	0x00000	rw	Transfer size For an OUT transfer, this field indicates the number of data bytes the host sends during a transfer. For an IN transfer, this field indicates the buffer size that the application has reserved for the transfer. For an IN transfer (periodic and non-periodic), the application must program this field as an integer multiple of the maximum packet size.

21.6.4.13 OTGFS/HS host channel-x DMA address register (OTGFS/HS_HCDMAx) (x = 0...15, where x= channel number)

			DMA Address
Bit 31: 0 DMAADDR	0x00000000	rw	This field hods DMA address from which the host obtains data from a device endpint or sends data to a device endpoint This register is incremental each time at the end of the AHB transfer.

21.6.5 Device-mode registers

These registers are applicable in device mode only. They are not supported in host mode due to unknown access results. Some of the registers affect all the endpoints, while some affect only one endpoint.

21.6.5.1 OTGFS/HS device configure register (OTGFS/HS_DCFG)

This register configures the controller in device mode after power-on or after certain control commands or enumeration. Do not change this register after initial programming.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 13	Reserved	0x0110	resd	Kept at default value.
Bit 12: 11	PERFRINT	0x0	rw	Periodic frame interval This field indicates the time within a frame at which the periodic frame end interrupt is generated. The application can use this interrupt to determine if the synchronous transfer has been completed in a frame. 00: 80% of the frame interval 01: 85% of the frame interval 10: 90% of the frame interval 11: 95% of the frame interval
Bit 10: 4	DEVADDR	0x00	rw	Device address The application must program this field every time a SetAddress command is received.
Bit 3	Reserved	0x0	resd	Kept at default value.
Bit 2	NZSTSOUTHSHK	0x0	rw	Non-zero-length status OUT handshake The application can use this field to select the handshake the controller sends on receiving a non-zero-length data packet during a control transfer' status stage. 1: Send a STALL handshake on a non-zero-length status OUT transfer and do not send the received OUT packet to the application 0: Send the received OUT packet to the application (zero-length or non-zero-length), and send a handshake based on the NAK and STALL bits in the device endpoint control register.
Bit 1: 0	DEVSPD	0x0	rw	Device speed This field indicates the speed at which the application needs the controller to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the entire sequence is complete, and is based on the speed of the USB host to which the controller is connected. 00: High speed 01: Full speed (USB2.0 PHY, clock at 30 MHz or 60 MHz) 10: Reserved 11: Full speed (USB1.1 transceiver, clock is 48MHz)

21.6.5.2 OTGFS/HS device control register (OTGFS/HS_DCTL)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at default value.
Bit 11	PWROPRGDNE	0x0	wo	Power-on programming done The application uses this bit to indicate that the register configuration is complete after a wakeup from power-down mode.
Bit 10	CGOUTNAK	0x0	wo	Clear global OUT NAK Writing 1 to this bit clears the global OUT NAK.
Bit 9	SGOUTNAK	0x0	wo	Set global OUT NAK Writing to this bit sets the global OUT NAK. The application uses this bit to send a NAK handshake on all OUT endpoints. The application must set this bit only after checking that the global OUT NAK effective bit in the controller interrupt register is cleared.
Bit 8	CGNPINNAK	0x0	WO	Clear Global Non-periodic IN NAK Writing to this bit clears the global Non-periodic OUT

-				NAK.
Bit 7	SGNPINNAK	0x0	wo	Set global Non-periodic IN NAK Writing to this bit sets the global Non-periodic OUT NAK. The application uses this bit to send a NAK handshake on all non-periodic IN endpoints. The application must set this bit only after checking that the global IN NAK effective bit in the controller interrupt register is cleared.
Bit 6: 4	TSTCTL	0x0	rw	Test control 000: Test mode disabled 001: Test_J mode 010: Test_K mode 011: Test_SE0_NAK mode 100: Test_Packet mode 101: Test_Force_Enable Others: Reserved
Bit 3	GOUTNAKSTS	0x0	ro	Global OUT NAK status 0: A handshake is sent based on the FIFO status, NAK and STALL bit settings. 1: No data is written to the receive FIFO, irrespective of space availability. Sends a NAK handshake on all packets (except on SETUP transfers). Drops all synchronous OUT packets.
Bit 2	GNPINNAKSTS	0x0	ro	Global Non-periodic IN NAK status 0: A handshake is sent based on the data status in the transmit FIFO 1: A NAK handshake is sent on all non-periodic IN endpoints, irrespective of the data status in the transmit FIFO.
Bit 1	SFTDISCON	0x1	rw	Software disconnect The application uses this bit to indicate the OTGFS controller to perform software disconnected. Once this bit is set, the host finds the device disconnected, and the device does not receive signals on the USB bus. The controller stays in the disconnected state until the application clears this bit. O: Normal operation. When this bit is cleared after a software disconnect, the controller issues a device connect event to the host. Then the USB host restarts device enumeration.
Bit 0	RWKUPSIG	0x0	rw	Remote wakeup signaling When this bit is set by the application, the controller initiates a remote signal to wakeup the USB host. The application must set this bit to indicate the controller to exit the suspend mode. Per USB2.0 standards, the application must clear this bit 1-15 ms after setting it.

Table 21-6 lists the minimum duration at which the software disconnect bit must be set in various states for the USB host to detect a device disconnect. To accommodate clock jitter, it is advised that the application adds some extra delay to the specified minimum duration.

Table 21-6 Minimum duration for software disconnect

Operating speed	Device state	Minimum duration
Full speed	Suspend	1ms + 2.5us
Full speed	Idle	2.5us
Full speed	No idle or suspend (performing transfers)	2.5us
High speed	No idle or suspend (performing transfers)	125us

21.6.5.3 OTGFS/HS device status register (OTGFS/HS_DSTS)

This register indicates the status of the controller related to OTGFS events. It must be read on interrupt events from the device all interrupts register (OTGFS_DAINT).

Bit	Abbr.	Reset value	Type	Description
Bit 31: 22	Reserved	0x000	resd	Kept at its default value.
Bit 21: 8	SOFFN	0x0000	ro	Frame number of the received SOF Note: The read value of this field immediately after power-on reset reflects a non-zero value. If a non-zero value is returned after reading this field immediately after power-on reset, it does not mean that the host has received a SOP. The read value of this field is valid only
				when the host is connected to the device.
Bit 7: 4	Reserved	0x1	resd	Kept at default value.
Bit 3	ETICERR	0x0	ro	Erratic error This error causes the controller to enter suspend mode, and interrupt is generated with the early suspend bit of the controller interrupt register. If the early suspend is asserted due to an erratic error, the application can only perform a software disconnect recover.
Bit 2: 1	ENUMSPD	0x0	ro	Enumerated speed Indicates the speed at which the controller has determined after speed detection through a sequence. 00: High speed 01: Full speed (PHY clock is running at 30MHz or 60MHz) 11: Full speed (PHY clock is running at 48MHz) Others: Reserved
Bit 0	SUSPSTS	0x0	ro	Suspend status In device mode, this bit is set as long as a suspend condition is detected on the USB bus. The controller enters the suspend state when there is no activity on the USB bus. The controller exits the suspend state on the following conditions: When there is an activity on the USB bus When the application writes to the remote wakeup signal bit in the device control register.

21.6.5.4 OTGFS/HS device OTGFSIN endpoint common interrupt mask register (OTGFS/HS_DIEPMSK)

This register works with each of the device IN endpoint interrupt register for all endpoints to generate an IN endpoint interrupt. The IN endpoint interrupt for a specific status in the OTGFS_DIEPINTx register can be masked by writing to the corresponding bit in the OTGFS_DIEPMSK register. Status bits are masked by default.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x000000	resd	Kept at default value.
				NAK interrupt mask
Bit 13	NAKMSK	0x0	rw	0: NAK interrupt mask
				1: NAK interrupt unmask
Bit 12: 10	Reserved	0x0	resd	Kept at default value.
				BNA interrupt mask
Bit 9	BNAINMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				FIFO underrun mask
Bit 8	TXFIFOUDRMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
Bit 7	Reserved	0x0	resd	Kept at default value.
				IN endpoint NAK effective mask
Bit 6	INEPTNAKMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
Bit 5	INTKNEPTMISMSK	0x0	rw	IN token received with EP mismatch mask

				0: Interrupt masked
				1: Interrupt unmasked
				IN token received when TxFIFO empty mask
Bit 4	INTKNTXFEMPMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				Timeout condition mask (Non-isochronous endpoints))
Bit 3	TIMEOUTMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				AHB Error Mask (for OTGHS mode only)
Bit 2	AHBERRMSK	0x0	rw	0: AHB Error mask
				1: AHB Error unmask
				Endpoint disabled interrupt mask
Bit 1	EPTDISMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				Transfer completed interrupt mask
Bit 0	XFERCMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked

21.6.5.5 OTGFS/HS device OUT endpoint common interrupt mask register (OTGFS/HS_DOEPMSK)

This register works with each of the OTGFS_DOEPINTx registers for all endpoints to generate an OUT endpoint interrupt. Each of the bits in the OTGFS_DOEPINTx registers can be masked by writing to the register. All interrupts are masked by default.

Bit	Abbr.	Reset value	Type	Description
Bit 31:15	Reserved	0x000000	resd	Kept at default value.
				NYET interrupt mask
Bit 14	NYETMSK	0x0	rw	0: NYET interrupt masked
				1: NYET interrupt unmasked
				NAK interrupt mask
Bit 13	NAKMSK	0x0	rw	0: NAK interrupt masked
				1: NAK interrupt unmasked
				Babble error interrupt mask
Bit 12	BERRMSK	0x0	rw	0: Babble error interrupt masked
				1: Babble error interrupt unmasked
Bit 11:10	Reserved	0x0	resd	Kept at default value.
				BNA interrupt mask
Bit 9	BNAOUTMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				OUT packet error mask
Bit 8	OUTPERRMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
Bit 7	Reserved	0x0	resd	Kept at default value.
-				Back-to-back SETUP packets received mask
Bit 6	B2BSETUPMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
Bit 5	Reserved	0x0	resd	Kept at default value.
-				OUT token received when endpoint disabled mask
Bit 4	OUTTEPDMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				SETUP phase done mask
D:1 0	OFTUDANCE	2.2		Applies to control endpoints only.
Bit 3	SETUPMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				AHB Error mask
D:1 0	ALIDEDDMOL	0.0		Valid for control endpoints only.
Bit 2	AHBERRMSK	0x0	rw	0: AHB Error masked
				1: AHB Error unmasked
				Endpoint disabled interrupt mask
Bit 1	EPTDISMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
D:1 0	VEEDOMOV	0.0		Transfer completed interrupt mask
Bit 0	XFERCMSK	0x0	rw	0: Interrupt masked
				1

2023.08.31 Page 472 Rev 2.00

1: Interrupt unmasked

21.6.5.6 OTGFS/HS device all endpoints interrupt mask register (OTGFS/HS_DAINT)

When an event occurs on an endpoint, The IN/OUT endpoint interrupt bits in the OTGS_DAINT register can be used to interrupt the application. There is one interrupt pit per endpoint, up to 8 interrupt bits for OUT endpoints and 8 bits for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt bits are used at the same time. The corresponding bits in this register are set and cleared when the application sets and clears the bits in the corresponding device endpoint-x interrupt register.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	Reserved	0x0000	resd	Kept at default value.
Bit 23: 16	OUTEPTINT	0x0000	ro	OUT endpoint interrupt bits One OUT endpoint per bit. Bit 16 for OUT endpoint 0, bit 18 for OUT endpoint 2.
Bit 15: 8	Reserved	0x0000	resd	Kept at default value.
Bit 7: 0	INEPTINT	0x0000	ro	IN endpoint interrupt bits One IN endpoint per bit. Bit 0 for IN endpoint 0, bit 7 for IN endpoint 7.

21.6.5.7 OTGFS/HS all endpoints interrupt mask register (OTGFS/HS_DAINTMSK)

When an event occurs on a device endpoint, the device endpoint interrupt mask register works with the device endpoint interrupt register to interrupt the application. However, the device all endpoints interrupt register corresponding to this interrupt is still set.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 24	Reserved	0x0000	resd	Kept at default value.
				OUT EP interrupt mask bits
				One OUT endpoint per bit. Bit 16 for OUT endpoint 0, bit
Bit 23: 16	OUTEPTMSK	0x0000	rw	18 for OUT endpoint 2.
				0: Interrupt masked
				1: Interrupt unmasked
Bit 15: 8	Reserved	0x0000	resd	Kept at default value.
				IN EP interrupt mask bits
				One IN endpoint per bit. Bit 0 for IN endpoint 0, bit 7 for
Bit 7: 0	INEPTMSK	0x0000	rw	IN endpoint 7.
				0: Interrupt masked
				1: Interrupt unmasked

21.6.5.8 OTGFS/HS device IN endpoint FIFO empty interrupt mask register (OTGFS/HS_DIEPEMPMSK)

This register works with the TXFE OTGFS DIEPINTx register to generate an interrupt.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 8	Reserved	0x0000	resd	Kept at default value.
Bit 7: 0	INEPTXFEMSK	0x0000	rw	IN endpoint Tx FIFO empty interrupt mask bits These bits serve as mask bits for the device IN endpoint interrupt register. A transmit FIFO empty interrupt bit per IN endpoint. Bit 0 for IN endpoint 0, bit 7 for IN endpoint 7.
				0: Interrupt masked 1: Interrupt unmasked

21.6.5.9 OTGHS device all endpoints interrupt register (OTGHS_DEACHINT)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 18	Reserved	0x0000	resd	Kept at default value
Bit 17	OEP1INT	0x0	rw	OUT EP1 interrupt
Bit 16: 2	Reserved	0x0000	resd	Kept at default value.
Bit 1	IEP1INT	0x0	rw	IN EP1 interrupt
Bit 0	Reserved	0x0000	resd	Kept at default value

21.6.5.10 OTGHS device all endpoints interrupt register (OTGHS_DEACHINTMSK)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 18	Reserved	0x0000	resd	Kept at default value
Bit 17	OEP1INTMSK	0x0	rw	OUT EP1 interrupt mask
Bit 16: 2	Reserved	0x0000	resd	Kept at default value.
Bit 1	IEP1INTMSK	0x0	rw	IN EP1 interrupt mask
Bit 0	Reserved	0x0000	resd	Kept at default value

21.6.5.11 OTGHS device IN endpoint 1 interrupt mask register (OTGHS_DIEPEACHMSK1)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at default value
Bit 13	NAKMSK	0x0	rw	IN EP1 NAK mask
Bit 12: 9	Reserved	0x0000	resd	Kept at default value
Bit 8	TXFIFOUDRMSK	0x0	rw	IN EP1 txfifo underrun mask
Bit 7	Reserved	0x0000	resd	Kept at default value
Bit 6	INEPTNAKMSK	0x0	rw	IN EP1 NAK effective mask)
				IN token received with EP mismatch mask)
Bit 5	INTKNEPTMISMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				IN token received when TxFIFO empty mask)
Bit 4	INTKNTXFEMPMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				Timeout condition mask (Non-isochronous endpoints)
Bit 3	TIMEOUTMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				AHB Error mask
Bit 2	AUDEDDMOK	0x0	mar	For control points only.
DIL Z	AHBERRMSK		rw	0: Interrupt masked
				1: Interrupt unmasked
Bit 1	EPTDISMSK	0x0	rw	Endpoint disabled interrupt mask

2023.08.31 Page 474 Rev 2.00

				0: Interrupt masked	
-				1: Interrupt unmasked	
				Transfer completed interrupt mask	
Bit 0	XFERCMSK	0x0	rw	0: Interrupt masked	
				1: Interrupt unmasked	

21.6.5.12 OTGHS device OUT endpoint 1 interrupt mask register (OTGHS_DOEPEACHMSK1))

Bit	Abbr.	Reset value	Type	Description
Bit 31: 15	Reserved	0x00000	resd	Kept at default value
				NYET interrupt mask
Bit 14	NYETMSK	0x0	rw	0: NYET interrupt is masked
				1: NYET interrupt is not masked
				NAK interrupt mask
Bit 13	NAKMSK	0x0	rw	0: NAK interrupt is masked
				1: NAK interrupt is not masked
				Babble error interrupt mask
Bit 12	BBLEERRMSK	0x0	rw	0: Babble error interrupt is masked
				1: Babble error interrupt is not masked
Bit 11: 10	Reserved	0x0	resd	Kept at default value
				BNA interrupt mask
Bit 9	BNAOUTMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
			rw	OUT packet error mask
Bit 8	OUTPERRMSK	0x0		0: Interrupt masked
				1: Interrupt unmasked
Bit 7	Reserved	0x0	resd	Kept at default value
		0x0	rw	Back-to-back SETUP packets received mask
Bit 6	B2BSETUPMSK			0: Interrupt masked
				1: Interrupt unmasked
Bit 5	Reserved	0x0	resd	Kept at default value
				OUT token received when endpoint disabled mask)
Bit 4	OUTTEPDMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				SETUP phase done mask
Bit 3	SETUPMSK	0x0		For control endpoints only.
סוו ט	SETUPINISK	UXU	rw	0: Interrupt masked
				1: Interrupt unmasked
				AHB Error mask
D:+ 0	AUDEDDMOK	0.40	mar	For control endpoints only.
Bit 2	AHBERRMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				Endpoint disabled interrupt mask
Bit 1	EPTDISMSK	0x0	rw	0: Interrupt masked
				1: Interrupt unmasked
				Transfer completed interrupt mask
Bit 0	XFERCMSK	0x0	rw	0: Interrupt masked
-				1: Interrupt unmasked

2023.08.31 Page 475 Rev 2.00

21.6.5.13 OTGFS/HS device control IN endpoint 0 control register (OTGFS/HS_DIEPCTL0)

This section describes the control IN endpoint 0 control register. Nonzero control endpoint uses registers for endpoints 1-7.

Bit	Abbr.	Reset value	Type	Description
				Endpoint enable The application sets this bit to start data transmission on
				the endpoint 0.
Bit 31	EPTENA	0x0	rw1s	The controller clears this bit before generating the
				following interrupts:
				 Endpoint disabled
				- Transfer completed.
				Endpoint disable
				The application sets this bit to stop data transmission on
Bit 30	EPTDIS	0x0	ro	an endpoint. The application must wait for the endpoint disabled interrupt before treating the endpoint as
DIL 30	EFIDIS	UXU	ro	disabled. The controller clears this bit before setting the
				endpoint disabled interrupt. The application must set this
				bit only when the endpoint is enabled.
Bit 29: 28	Reserved	0x0	resd	Kept at default value.
Dit 20. 20	110001100	0.00	1000	Set NAK
				A write to this bit sets the NAK bit of the endpoint. The
	01111			application can use this bit to control the transmission of
Bit 27	SNAK	0x0	wo	NAK handshakes on the endpoint. The controller also
				sets this bit when a SETUP data packet is received on
				the endpoint.
D:# 00	CNIAIZ	0.40		Clear NAK
Bit 26	CNAK	0x0	WO	A write to this bit clears the NAK bit for the endpoint.
Bit 25: 22	TXFNUM	0x0	n.v.	TxFIFO number
DIL 23. 22	IAFINOIVI	UXU	rw	The endpoint 0 can only use FIFO0.
				STALL handshake
				The application sets this bit, and the controller clears this
Bit 21	STALL	0x0	rw1s	bit when a SETUP token is received. If a NAK bit, a
				global non-periodic IN NAK or global OUT NAK bit is set
				along with this bit, the STALL bit has priority.
Bit 20	Reserved	0x0	resd	Kept at default value.
Bit 19: 18	EPTYPE	0x0	ro	Endpoint type Set to 0 by hardware for control endpoints.
				NAK status
				Indicates the following:
				0: The controller is transmitting non-NAK handshakes
				based on the FIFO status
				1: The controller is transmitting NAK handshakes on this
Bit 17	NAKSTS	0x0	ro	endpoint
				When this bit is set, either by the application or controller
				the controller stops transmitting data, even if there are
				space available in the receive FIFO. The controller
				always responds to SETUP data packets with an ACK
				handshake, irrespective of this bit's setting.
Bit 16	Reserved	0x0	resd	Kept at default value.
				USB active endpoint
Bit 15	USBACEPT	0x0	ro	This bit is always set to 1, indicating that the control
Dit 10	OOD/(OE) 1	OXO	10	endpoint 0 is always active in all configurations and
Bu 44 =		0.000		interfaces.
Bit 14: 2	Reserved	0x0000	resd	Kept at default value.
				Applies to IN and OUT endpoints
				The application uses this bit to program the maximum
D:4 4 C	MDO	0. 0		packet size for the current logical endpoint.
Bit 1: 0	MPS	0x0	rw	00: 64 bytes
				01: 32 bytes
				10: 16 bytes
				11: 8 bytes

21.6.5.14 OTGFS/HS device IN endpoint-x control register (OTGFS/HS_DIEPCTLx) (x=1...7, where x is endpoint number)

The application uses this register to control the behavior of the endpoints other than endpoint 0.

Bit	Abbr.	Reset value	Type	Description
Bit 31	EPTENA	0x0	rw1s	Endpoint enable The application sets this bit to start transmitting data on an endpoint. The controller clears this bit before the generation one of the following interrupts on this endpoint: SETUP stage done Endpoint disabled
Bit 30	EPTDIS	0x0	rw1s	Transfer completed Endpoint disable The application sets this bit to stop transmitting data on an endpoint, even if the transfer on that endpoint is incomplete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The controller clears this bit before setting the endpoint disabled interrupt. The application must set this bit only when the endpoint enabled set.
Bit 29	SETD1PID/ SETODDFR	0x0	wo	Set DATA1 PID Applies to interrupt/bulk IN endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA1. Set odd frame Applies to synchronous IN endpoints only. Writing to this bit sets the Even/Odd frame to odd frame. 0: Disabled Set DATA1 PID disabled or Do not force odd frame 1: Set DATA1 PID enabled or forced odd frame
Bit 28	SETD0PID/ SETEVENFR	0x0	rw	Set DATA0 PID Applies to interrupt/bulk IN endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set Even frame Applies to synchronous IN endpoints only. Writing to this bit sets the Even/Odd frame to even frame. 0:Disabled Set DATA0 PID disabled or Do not force even frame
Bit 27	SNAK	0x0	wo	1: Set DATAOPID or set the EOFRNUM to even frame Set NAK A write to this bit sets the NAK bit for the endpoint. The application uses this bit to control the transmission of NAK handshakes on an endpoint. The controller sets this bit on a Transfer completed interrupt or after receiving a SETUP packet. Values: 0: Do not set NAK 1: Set NAK
Bit 26	CNAK	0x0	wo	Clear NAK A write to this bit clears the NAK bit for this endpoint. 0: Not clear NAK 1: Clear NAK
Bit 25: 22	TXFNUM	0x0	rw	TxFIFO number Allocate FIFO number to the corresponding endpoint. A separate FIFO number is allocated to each valid IN endpoint. This bit applies to IN endpoints only.
Bit 21	STALL	0x0	rw	STALL handshake Applies to non-control, non-synchronous IN and OUT endpoints. The application sets this bit to stall all tokens from the

				USB host to this endpoint. If a NAK bit, global non- periodic IN NAK bit or global OUT NAK bit is set along with this bit, the STALL bit has priority. Only the application can clear this bit, but the controller never. 0: Stall all invalid tokens
				1: Stall all valid tokens
Bit 20	Reserved	0x0	resd	Kept at default value.
Bit 19: 18	EPTYPE	0x0	rw	Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Synchronous 10: Bulk
				11: Interrupt
Bit 17	NAKSTS	0x0	ro	NAK status Indicates the following status: 0: The controller is sending non-NAK handshakes based on the FIFO status 1: The controller is sending NAK handshakes When this bit is set (either by the application or the controller), - The controller stops receiving any data on an OUT endpoint, even if there is space in the receive FIFO to accommodate the incoming data packets. - For non-synchronous IN endpoints: the controller stops transmitting data on the endpoint, even if there is data pending in the transmit FIFO. - For synchronous IN endpoints: the controller sends a zero-length data packet, even if there is space in the transmit FIFO. The controller always responds to SETUP data packets with an ACK handshake, regardless of whether this bit is set or not.
Bit 16	DPID/ EOFRNUM	0x0	ro	Endpoint data PID Applies to interrupt/bulk IN endpoints only. This bit contains the PID of the packet to be transmitted on this endpoint. The application must program the PID of the initial data packet to be received or transmitted on this endpoint, after the endpoint is enabled. The application programs DATA0 or DATA1 PID through the SetD1PID and SetD0PID of this register. 0: DATA0 1: DATA1 Even/Odd frame Applies to synchronous IN endpoints only. Indicates the frame number in which the controller transmits synchronous data on this endpoint. The application must program the even/odd frame number in which it tends to transmit or receive synchronous data through the SETEVNFR and SETODDFR bits in this register. 0: Even frame 1: Odd frame
Bit 15	USBACEPT	0x0	rw	USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The controller clears this bit for all endpoints except for endpoint 0 after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program the endpoint registers and set this bit. 0: Inactive 1: Active
Bit 14: 11	Reserved	0x0	resd	Kept at default value.
Bit 10: 0	MPS	0x000	rw	Maximum packet size

The application uses this field to set the maximum packet size for the current logical endpoint. The values are in bytes.

21.6.5.15 OTGFS/HS device control OUT endpoint 0 control register (OTGFS/HS_DOEPCTL0)

This section describes the control OUT endpoint 0 control register. Non-zero control endpoints use registers for endpoints 1-7.

Bit	Abbr.	Reset value	Type	Description
Bit 31	EPTENA	0x0	rw1s	Endpoint enable The application sets this bit to start transmitting data on endpoint 0. The controller clears this bit before setting any one of the following interrupts on this endpoint: SETUP stage done Endpoint disabled Transfer completed
Bit 30	EPTDIS	0x0	ro	Endpoint disable The application cannot disable control OUT endpoint 0.
Bit 29: 28	Reserved	0x0	resd	Kept at default value.
Bit 27	SNAK	0x0	wo	Set NAK A write to this bit sets the NAK bit for this endpoint. The application can use this bit to control the transmission of NAK handshakes on an endpoint. The controller sets this bit on a transfer completed interrupt or when a SETUP data packet is received.
Bit 26	CNAK	0x0	wo	Clear NAK
				A write to this bit clears the NAK for the endpoint.
Bit 25: 22 Bit 21	Reserved STALL	0x0 0x0	resd rw1s	Kept at default value. STALL handshake The application sets this bit and the controller clears this bit when a SETUP token is received for this endpoint. If a NAK bit, global non-periodic OIT NAK bit is set along with this bit, the STALL bit has priority. The controller always responds to SETUP data packets, regardless of whether this bit is set or not.
Bit 20	SNP	0x0	rw	Snoop mode This bit configures the endpoint to Snoop mode. In this mode, the controller does not check the correctness of OUT packets before transmitting OUT packets to the application memory.
Bit 19: 18	EPTYPE	0x0	ro	Endpoint type Hardware sets this bit to 0 to control endpoint type.
Bit 17	NAKSTS	0x0	ro	NAK status Indicates the following: 0: The controller is sending non-NAK handshakes based on the FIFO status 1: The controller is sending NAK handshakes When this bit is set (either by the application or the controller), the controller stops receiving any data on an OUT endpoint, even if there is space in the receive FIFO. The controller always responds to SETUP data packets with an ACK handshake, regardless of whether this bit is set or not.
Bit 16	Reserved	0x0	resd	Kept at default value.
Bit 15	USBACEPT	0x1	ro	USB active endpoint This bit is always set to 1, indicating that a control endpoint 0 is always active in all configurations and interfaces.
Bit 14: 2	Reserved	0x0000	resd	Kept at default value.
Bit 1: 0	MPS	0x0	ro	Maximum packet size The maximum packet size of the control OUT endpoint 0 is the same as that of the control IN endpoint 0. 00: 64 bytes

2023.08.31 Page 479 Rev 2.00

01: 32 bytes 10: 16 bytes 11: 8 bytes

21.6.5.16 OTGFS/HS device control OUT endpoint-x control register (OTGFS/HS_DOEPCTLx) (x=1...7, where x if endpoint number)

This application uses this register to control the behavior of all endpoints other than endpoint 0.

Bit 31 EPTENA 0x0 rw1s Bit 31 EPTENA 0x0 rw1s Bit 31 EPTENA 0x0 rw1s Bit 32 EPTENA 0x0 rw1s Bit 34 EPTENA 0x0 rw1s Bit 35 EPTENA 0x0 rw1s Bit 36 EPTENA 0x0 rw1s Bit 37 EPTENA 0x0 rw1s Bit 38 EPTENA 0x0 rw1s Bit 39 EPTENA 0x0 rw1s Bit 30 EPTENA 0x0 rw1s Bit 26 CNAK 0x0 rw1s Bit 26 CNAK 0x0 rw2 rw2s Bit 27 SNAK 0x0 rw2 rw3	Bit	Abbr.	Reset value	Type	Description
The application sets this bit to stop transmitting data or an endpoint, even if the transfer on that endpoint is incomplete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The controller clears this bit before setting the endpoint disabled interrupt before treating the endpoint as disabled. The controller clears this bit before setting the endpoint disabled when the endpoint enabled set. 9: No effect 1: Endpoint disabled Set DATA1 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA1. Set odd frame DaTA1. Set odd frame O: Disabled Set DATA1 PID disabled or Do not force or frame 1: Set DATA1 PID enabled or Do not force or frame Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set DATA1 PID enabled or forced odd frame. Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set Even frame Applies to synchronous OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set Even frame Applies to synchronous OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set Even frame 1: Set DATA0 PID disabled or Do not force even frame. O: Disabled Set DATA0 PID disabled or Do not force even frame. Set NAK A write to this bit sets the NAK bit for the endpoint. The application uses this bit to control the transmission of NAK handshakes on an endpoint. The controller sets bit on a Transfer completed interrupt or after receiving SETUP packet. Values: O: Do not set NAK Set NAK Ox0 wo Disabled Set DATA0 PID disabled or Do not force even frame. O: Not clear NAK A write to this bit clears the NAK bit for the endpoint. The controller sets bit to this bit clears the NAK bit for the endpoint. On NAK handshakes on an endpoint. The controller sets	Bit 31	EPTENA	0x0	rw1s	Indicates that the descriptor structure and data buffer for data reception has been configured. The controller clears this bit before setting any one of the following interrupts on this endpoint: — SETUP stage done — Endpoint disabled
Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA1. Set odd frame Applies to synchronous OUT endpoints only. Writing to this bit sets the Even/Odd frame to odd frame. 0: Disabled Set DATA1 PID disabled or Do not force of frame 1: Set DATA1 PID enabled or forced odd frame 2: Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. SETEVENFR Bit 28 SETDOPID/ SETEVENFR Ox0 TW Applies to synchronous OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set Even frame Applies to synchronous OUT endpoints only. Writing to this bit sets the Even/Odd frame to even frame. 0: Disabled Set DATA0 PID disabled or Do not force even frame 1: Set DATA0PID or set the EOFRNUM to even frame Set NAK A write to this bit sets the NAK bit for the endpoint. The application uses this bit to control the transmission of NAK handshakes on an endpoint. The controller sets: 0: Do not set NAK 1: Set NAK Clear NAK 1: Set NAK Clear NAK A write to this bit clears the NAK bit for the endpoint. 0: Not clear NAK 1: Set NAK A write to this bit clears the NAK bit for the endpoint. 0: Not clear NAK 1: Clear NAK 1: Clear NAK 1: Clear NAK Bit 25: 22 Reserved Ox0 RW Rept at default value.	Bit 30	EPTDIS	0x0	ro	The application sets this bit to stop transmitting data on an endpoint, even if the transfer on that endpoint is incomplete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The controller clears this bit before setting the endpoint disabled interrupt. The application must set this bit only when the endpoint enabled set. O: No effect
Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Bit 28 SETD0PID/ SETEVENFR Ox0 TW SETEVENFR Ox0 TW SETEVENFR Ox0 TW SETEVEN frame Applies to synchronous OUT endpoints only. Writing to this bit sets the Even/Odd frame to even frame. 0:Disabled Set DATA0 PID disabled or Do not force even frame 1: Set DATA0PID or set the EOFRNUM to even frame Set NAK A write to this bit sets the NAK bit for the endpoint. The application uses this bit to control the transmission of NAK handshakes on an endpoint. The controller sets: 0: Do not set NAK 1: Set NAK Clear NAK A write to this bit clears the NAK bit for the endpoint. 0: Do not set NAK 1: Set NAK Clear NAK A write to this bit clears the NAK bit for the endpoint. 0: Not clear NAK 1: Clear NAK	Bit 29		0x0	rw	Set DATA1 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA1. Set odd frame Applies to synchronous OUT endpoints only. Writing to this bit sets the Even/Odd frame to odd frame. 0: Disabled Set DATA1 PID disabled or Do not force odd frame
A write to this bit sets the NAK bit for the endpoint. The application uses this bit to control the transmission of NAK handshakes on an endpoint. The controller sets of NAK handshakes on an endpoint. The contr	Bit 28		0x0	rw	Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this bit sets the endpoint data PID bit in this register to DATA0. Set Even frame Applies to synchronous OUT endpoints only. Writing to this bit sets the Even/Odd frame to even frame. 0:Disabled Set DATA0 PID disabled or Do not force
Bit 26 CNAK 0x0 wo A write to this bit clears the NAK bit for the endpoint. 0: Not clear NAK 1: Clear NAK Bit 25: 22 Reserved 0x0 resd Kept at default value.	Bit 27	SNAK	0x0	wo	A write to this bit sets the NAK bit for the endpoint. The application uses this bit to control the transmission of NAK handshakes on an endpoint. The controller sets this bit on a Transfer completed interrupt or after receiving a SETUP packet. Values: 0: Do not set NAK
· · · · · · · · · · · · · · · · · · ·				wo	A write to this bit clears the NAK bit for the endpoint. 0: Not clear NAK 1: Clear NAK
Bit 21 STALL 0x0 rw Applies to non-control non-synchronous IN and OUT			0x0	resd	
	Bit 21	STALL	0x0	rw	Applies to non-control, non-synchronous IN and OUT

				endpoints. The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit , global non-periodic IN NAK bit or global OUT NAK bit is set along with this bit, the STALL bit has priority. Only the application can clear this bit, but the controller never.
Bit 20	SNP	0x0	rw	Snoop mode This bit configures the endpoint to Snoop mode. In this mode, the controller does not check the correctness of OUT packets before transmitting OUT packets to the application memory.
Bit 19: 18	EPTYPE	0x0	rw	Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Synchronous 10: Bulk 11: Interrupt
Bit 17	NAKSTS	0x0	ro	NAK status Indicates the following: 0: The controller is sending non-NAK handshakes based on the FIFO status 1: The controller is sending NAK handshakes When this bit is set (either by the application or the controller), The controller stops receiving any data on an OUT endpoint, even if there is space in the receive FIFO to accommodate the incoming data packets. For non-synchronous IN endpoints: the controller stops transmitting data on the endpoint, even if there is data pending in the transmit FIFO. For synchronous IN endpoints: the controller sends a zero-length data packet, even if there is space in the transmit FIFO. The controller always responds to SETUP data packets with an ACK handshake, regardless of whether this bit is set or not.
Bit 16	DPID/ EOFRNUM	0x0	ro	Endpoint data PID Applies to interrupt/bulk OUT endpoints only. This bit contains the PID of the packet to be transmitted on this endpoint. The application must program the PID of the initial data packet to be received or transmitted on this endpoint, after the endpoint is enabled. The application programs DATA0 or DATA1 PID through the SetD1PID and SetD0PID of this register. 0: DATA0 1: DATA1 Even/Odd frame Applies to synchronous OUT endpoints only. Indicates the frame number in which the controller transmits synchronous data on this endpoint. The application must program the even/odd frame number in which it tends to transmit or receive synchronous data through the SETEVNFR and SETODDFR bits in this register. 0: Even frame 1: Odd frame
Bit 15	USBACEPT	0x0	rw	USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The controller clears this bit for all endpoints except for endpoint 0 after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program the endpoint registers and set this bit.

				0: Inactive
				1: Active
Bit 14: 11	Reserved	0x0	resd	Kept at default value.
Bit 10: 0	MPS	0x000	rw	Maximum packet size The application uses this field to set the maximum packet size for the current logical endpoint. The values are in bytes.

21.6.5.17 OTGFS/HS device IN endpoint-x interrupt register (OTGFS_DIEPINTx) (x=0...7, where x if endpoint number)

This register indicates the status of an endpoint when USB and AHB-related events occurs, as shown in *Figure 21-3*. When the IEPINT bit of the OTGFS/HS_GINTSTS register is set, the application must first read the OTGFS_DAINT register to get the exact endpoint number in which the event occurs, before reading the endpoint interrupt registers. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTGFS/HS DAINT and OTGFS/HS GINTST registers.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at default value.
Bit 7	TXFEMP	0x0	ro	Transmit FIFO empty This interrupt is generated when the transmit FIFO for this endpoint is half or completely empty. The half or completely empty status depends on the transmit FIFO empty level bit in the controller AHB configuration register.
Bit 6	INEPTNAK	0x0	rw1c	IN endpoint NAK effective This bit can be cleared by writing 1 to the CNAK bit in the DIEPCTLx register. This interrupt indicates that the IN endpoint NAB bit set by the application has taken effect. This interrupt does not guarantee that a NAK handshake is sent on the USB line. A STALL bit has priority over a NAK bit. This bit applies to the scenario only when the endpoint is enabled.
Bit 5	Reserved	0x0	resd	Kept at default value.
Bit 4	INTKNTXFEMP	0x0	rw1c	N token received when TxFIFO is empty Indicates that an IN token was received when the associated transmit FIFO (periodic or non-periodic) was empty. An interrupt is generated on the endpoint for which an IN token was received.
Bit 3	TIMEOUT	0x0	rw1c	Timeout condition Applies to control IN endpoints only. This bit indicates that the controller has detected a timeout condition for the last IN token on this endpoint.
Bit 2	AHBERR	0x0	rw1c	AHB Error (For OTGHS mode only) This bit is set when AHB read/write error occurs in DMA mode. The application reads the corresponding DMA channel address register to obtain error information.
Bit 1	EPTDISD	0x0	rw1c	Endpoint disabled interrupt This bit indicates that the endpoint is disabled according to the application's request.
Bit 0	XFERC	0x0	rw1c	Transfer completed interrupt Indicates that the programmed transfers are complete on the AHB and on the USB for this endpoint.

2023.08.31 Page 482 Rev 2.00

21.6.5.18 OTGFS/HS device OUT endpoint-x interrupt register (OTGFS/HS_DOEPINTx) (x=0...7, where x if endpoint number)

This register indicates the status of an endpoint with respect to USB and AHB-related events, as shown in *Figure 21-3*. When the OEPINT bit of the OTGFS/HS_GINTSTS register is set, the application must first read the OTGFS_DAINT register to get the exact endpoint number in which the event occurs, before reading the endpoint interrupt registers. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTGFS/HS DAINT and OTGFS/HS GINTST registers.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 15	Reserved	0x00000	resd	Kept at default value.
Bit 14	NYETINTRPT	0x0	rw1c	NYET interrupt This interrupt is generated when a NYET response is transmitted for a nonisochronous OUT endpoint.
Bit 13	NAKINTRPT	0x0	rw1c	NAK interrupt This interrupt is generated when a NAK is transmitted or received by the device. In case of isochronous IN endpoints the interrupt gets generated when a zero length packet is transmitted du to unavailability of data in the TXFIFO.
Bit 12: 7	Reserved	0x00	resd	Kept at default value.
Bit 6	B2BSTUP	0x0	rw1c	Back-to-back SETUP packets received Indicates that more than three back-to-back SETUP packets are received.
Bit 5	Reserved	0x0	resd	Kept at its default value.
Bit 4	OUTTEPD	0x0	rw1c	OUT token received when endpoint disabled Applies to control OUT endpoints only. Indicates that an OUT token was received when the endpoint has not yet been enabled. An interrupt is generated on the endpoint for which an OUT token was received.
Bit 3	SETUP	0x0	rw1c	SETUP phase done Applies to control OUT endpoints only. Indicates that the SETUP stage for the control endpoint is complete and no more back-to-back SETUP packets were received for the current control transfer. Upon this interrupt, the application can decode the received SETUP data packets.
Bit 2	AHBERR	0x0	rw1c	AHB Error (For OTGHS mode only) This bit is set when AHB read/write error occurs in DMA mode. The application reads the corresponding DMA channel address register to obtain error information.
Bit 1	EPTDISD	0x0	rw1c	Endpoint disabled interrupt Indicates that the endpoint is disabled according to the application's request.
Bit 0	XFERC	0x0	rw1c	Transfer completed interrupt Indicates that the programmed transfers are complete on the AHB and on the USB for this endpoint.

2023.08.31 Page 483 Rev 2.00

21.6.5.19 OTGFS/HS device IN endpoint 0 transfer size register (OTGFS/HS_DIEPTSIZ0)

The application must set this register before enabling endpoint 0. Once the endpoint 0 is enabled using the endpoint enable pin in the device endpoint 0 control register, the controller modifies this register. The application can only read this register as long as the controller clears the endpoint enable bit.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 21	Reserved	0x000	resd	Kept at default value.
Bit 20: 19	PKTCNT	0x0	rw	Packet count Indicates the total number of USB packets that constitute the transfer size of data for the endpoint 0. This field is decremented every time a packet is read from the transmit FIFO (maximum packet size or short packet)
Bit 18: 7	Reserved	0x000	resd	Kept at default value.
Bit 6: 0	XFERSIZE	0x00	rw	Transfer size Indicates the transfer size (in bytes) for the endpoint 0. The controller interrupts the application when the transfer size becomes 0. The transfer size can be set to the maximum packet size of the endpoint at the end of each packet. The controller decrements this field every time a packet from the external memory is written to the transmit FIFO.

21.6.5.20 OTGFS/HS device OUT endpoint 0 transfer size register (OTGFS/HS_DOEPTSIZ0)

The application must set this register before enabling endpoint 0. Once the endpoint 0 is enabled using the endpoint enable pin in the device endpoint 0 control register, the controller modifies this register. The application can only read this register as long as the controller clears the endpoint enable bit.

Bit	Abbr.	Reset value	Type	Description
Bit 31	Reserved	0x0	resd	Kept at default value.
				SETUP packet count
				Indicates the number of back-to-back SETUP data
Bit 30: 29	SUPCNT	0x0	ru.	packets the endpoint can receive.
DIL 30. 29	SUPCINI	UXU	rw	01: 1 packet
				10: 2 packets
				11: 3 packets
Bit 28: 20	Reserved	0x000	resd	Kept at default value.
				Packet count
Bit 19	PKTCNT	0	rw	This bit is decremented to 0 after a packet is written to
				the receive FIFO.
Bit 18: 7	Reserved	0x000	resd	Kept at default value.
				Transfer size
				Indicates the transfer size (in bytes) for the endpoint 0.
				The controller interrupts the application when the transfer
				size becomes 0. The transfer size can be set to the
Bit 6: 0	XFERSIZE	0x00	rw	maximum packet size of the endpoint, to be interrupted at
Dit 0. 0	AFERSIZE	UXUU	I VV	the end of each packet.
				The controller decrements this field every time a packet
				from the external memory is written to the transmit FIFO.
				The controller decrements this field every time a packet
				from the receive FIFO is written to the external memory.

2023.08.31 Page 484 Rev 2.00

21.6.5.21 OTGFS/HS device IN endpoint-x transfer size register (OTGFS/HS_DIEPTSIZx) (x=1...7, where x is endpoint number)

The application must set this register before enabling endpoint x. Once the endpoint x is enabled using the endpoint enable pin in the device endpoint x control register, the controller modifies this register. The application can only read this register as long as the controller clears the endpoint enable bit.

Bit	Abbr.	Reset value	Type	Description
Bit 31	Reserved	0x0	resd	Kept at default value.
				Multi count For periodic IN endpoints, this field indicates the number of packets to be transmitted on the USB for each frame.
Bit 30: 29	MC	0x0	rw	The controller uses this field to calculate the data PID transmitted on synchronous IN endpoints. 01: 1 packet
				10: 2 packets 11: 3 packets
Bit 28: 19	PKTCNT	0x000	rw	Packet count Indicates the total number of USB packets (data transfer size on the endpoint) this field is decremented every time a packet is read from the transmit FIFO (maximum packet size and short packet).
Bit 18: 0	XFERSIZE	0x00000	rw	Transfer Size Indicates the transfer size (in bytes) for the current endpoint. The controller interrupts the application when the transfer size becomes 0. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The controller decrements this field every time a packet from the external memory is written to the transmit FIFO.

21.6.5.22 OTGHS device IN endpoint-x DMA address register (OTGHS_DIEPDMAx) (x=1...7, where x is endpoint number)

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 0	DMAADDR	0x00000000	rw	DMA Address This bit holds the start address of the external memory for storing or fetching endpoint data. Note: For control endpoints, this field stores control OUT data packets as well as SETUP transaction data packets. When more than three SETUP packets are received back to back, the SETUP data packet in the memory is overwritten. This register is incremented on every AHB transaction. The application can give only a word-aligned address.

21.6.5.23 OTGFS/HS device IN endpoint transmit FIFO status register (OTGFS/HS_DTXFSTSx) (x=1...7, where x is endpoint number)

This is a ready-only register containing the free space information for device IN endpoint transmit FIFO.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at default value.
				IN endpoint TxFIFO space available
				Indicates the amount of free space in the endpoint
				transmit FIFO. Values are in terms of 32-bit words.
				0x0: Endpoint transmit FIFO is full
Bit 15: 0	INEPTXFSAV	0x0200	ro	0x1: 1 word available
				0x02: 2 words available
				0xn: n words available (0 < n < 512)
				0x200: Remaining 512 words
				Others: Reserved

21.6.5.24 OTGFS/HS device OUT endpoint-x transfer size register (OTGFS/HS_DOEPTSIZx) (x=1...7, where x is endpoint number)

The application must set this register before enabling endpoint x. Once the endpoint x is enabled using the endpoint enable pin in the device endpoint x control register, the controller modifies this register. The application can only read this register as long as the controller clears the endpoint enable bit.

Bit	Abbr.	Reset value	Type	Description
Bit 31	Reserved	0x0	resd	Kept at default value.
Bit 30: 29	RXDPID	0x0	ro	Received data PID Applies to synchronous OUT endpoints only. This is the data PID received in the last packet. 00: DATA0 01: DATA2 10: DATA1 11: MDATA SETUP packet count Applies to synchronous OUT endpoints only. Indicates the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets
Bit 28: 19	PKTCNT	0x000	rw	Packet count Indicates the number of USB packets transmitted on the endpoint. This field is decremented every time a packet is written to the receive FIFO (maximum packet size and short packet)
Bit 18: 0	XFERSIZE	0x00000	rw	Transfer size Indicates the transfer size (in bytes) for the current endpoint. The controller interrupts the application when the transfer size becomes 0. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The controller decrements this field every time a packet is read from the receive FIFO and written to the external memory.

21.6.5.25 OTGHS device OUT endpoint-x DMA address register (OTGHS_DOEPDMAx) (x=1...7, where x is endpoint number)

Bit	Abbr.	Reset value	Type	Description
Bit 31:0	DMAADDR	0x00000000	rw	DMA Address This bit holds the start address of the external memory for storing or fetching endpoint data. Note: For control endpoints, this filed controls OUT data packets as well as SETUP transaction data packets. When more than three SETUP packets are received back-to-back, the SETUP data packet in the memory is overwritten. This register is incremented on every AHB transaction. The application can give only a word-aligned address.

2023.08.31 Page 486 Rev 2.00

21.6.6 Power and clock control registers

21.6.6.1 OTGFS/HS power and clock gating control register (OTGFS/HS_PCGCCTL)

This register is available in host and device modes.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 5	Reserved	0x0000000	resd	Kept at its default value.
Bit 4	SUSPENDM	0x0	ro	PHY suspend Indicates that the PHY has been suspended.
Bit 3: 1	Reserved	0x0	resd	Kept at default value.
Bit 0	STOPPCLK	0x0	rw	Stop PHY clock The application uses this bit to stop PHY clock when the USB is suspended, session is invalid or device is disconnected. The application clears this bit when the USB is resumed or a new session starts.

2023.08.31 Page 487 Rev 2.00

22 HICK auto clock calibration (ACC)

22.1 ACC introduction

HICK auto clock calibration (HICK ACC), which uses the SOF signal (1 ms of period) generated as a reference signal, implements the sampling and calibration for the HICK clocks.

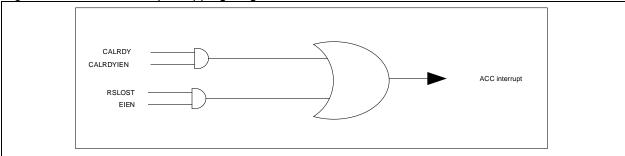
The main purpose of this module is to provide a clock of 48MHz±0.25% for the USB device.

It is able to make the calibrated frequency as close to the target frequency as possible by means of "cross and return" algorithm.

22.2 Main features

- Programmable center frequency
- Programmable boundary frequency that triggers calibration function
- Center frequency precision ±0.25%
- Status detection flags
 - Calibration ready flag
 - Error detection flag
 - Reference signal lost error flag
- Two interrupt sources with flags
 - Calibration ready flag
 - Reference signal lost error flag
- Two calibration modes: coarse calibration and smooth calibration

22.3 Interrupt requests


Table 22-1 ACC interrupt requests

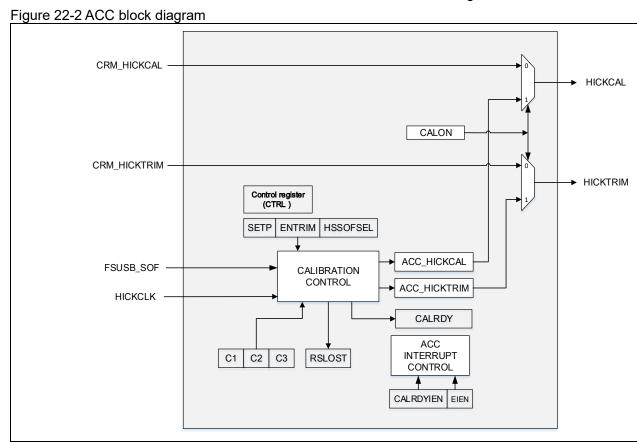
Calibration ready CALRDY CALRDYIEN	Interrupt event	Event flag	Enable bit
	Calibration ready	CALRDY	CALRDYIEN

ACC interrupt events are linked to the same interrupt vector (see Figure 22-1). Interrupt events include:

• During calibration process: When the calibration gets ready or reference signal lost occurs, the corresponding interrupt will be generated if the corresponding enable bit is enabled.

Figure 22-1 ACC interrupt mapping diagram

22.4 Functional description

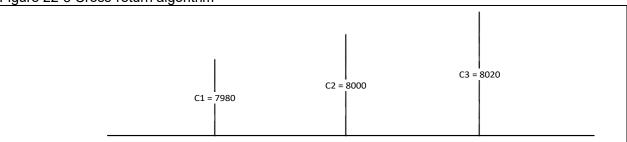

Auto clock calibration (HICK ACC), which uses the SOF signal (1 ms of period) generated on USB module as a reference signal, implements the sampling and calibration for the HICK clocks. In particular, the HICK clock frequency can be calibrated to a precision of $\pm 0.25\%$ so as to meet the needs of the high-precision clock applications such as USB.

The signals of the module are connected to the CRM and HICK inside the microcontroller instead of being connected to the pins externally.

- CRM_HICKCAL: the HICKCAL signal in the CRM control module. This signal is used to calibrate the HICK in bypass mode. Its value is defined by the HICKCAL[7:0] in the CRM_CTRL register.
- CRM_HICKTRIM: the HICKTRIM signal in the CRM control module. This signal is used to calibrate the HICK in bypass mode. Its value is defined by the HICKTRIM[5: 0] in the CRM_CTRL register.
 - The default value of the HICK is 32, which can be calibrated to $8 \text{MHz} \pm 0.25 \%$. The HICK frequency can be adjusted by 20 kHz (design value) each time when the CRM_HICKTWK value changes. In other words, the HICK output frequency will increase by 20 kHz each time the CRM_HICKTWK value is decremented by one; the HICK output frequency will reduce by 20 kHz each time the CRM_HICKTWK value is decremented by one.
- USB_SOF: USB Start-of-Frame signal given by the USB device. Its high-level width is 64 system clock cycles with 1 ms period of pulse signal.
- HICKCLK: HICK clock. The original HICK output clock frequency is 48MHz, but the sampling clock used by the HICK calibration module is frequency divider (1/6) clock, about 8MHz.
- HICKCAL: HICK module calibration signal. For the HICK clock divided by 6, the HICK clock frequency will change by 40KHz (design value) each time the HICKCAL changes, which is positively correlated. In other words, the HICK clock frequency will increase by 40KHz (design value) each time the HICKCAL is incremented by one; the HICK clock frequency will reduce by 40KHz each time the HICKCAL is decremented by one.
- HICKTRIM: HICK module calibration signal. For the HICK clock divided by 6, the HICK clock frequency will change by 20KHz (design value) each time the HICKTRIM changes, which is positively correlated

Refer to Section 22.6 for more information about the bit definition in the registers.

2023.08.31 Page 489 Rev 2.00



22.5 Principles

USB_SOF period signal: 1ms of period must be accurate, which is a prerequisite for the normal operation of an auto calibration module.

Cross-return algorithm: This is used to calculate a calibration value closest to the theoretic value. In theory, the actual frequency after calibration can be adjusted to be within an accurate range of about 0.5 steps from the target frequency (8MHz).

Figure 22-3 Cross-return algorithm

From the above figure, auto calibration function will adjust the HICKCAL or HICKTWK according to the specified step as soon as the condition for triggering auto calibration is reached.

Cross:

If the auto calibration condition is met, the actual sampling data within the first 1ms period will be either less than C2, or greater than C2.

When this value is less than C2, the auto calibration module will start increasing either the HICKCAL or HICKTWK according to the step definition until the actual sampling value is greater than C2. In this way, the actual value will cross over C2 from small to large.

When this value is greater than C2, the auto calibration module will decrease either the HICKCAL or HICKTWK according to the step definition until the actual sampling value become less than C1. In this way, the actual value will cross over C2 from large to small.

Return:

After cross operation is completed, the actual value closest to C2 can be obtained by comparing the difference (calculated as absolute value) between the actual sampling value and C2 before and after crossing C2 so as to get the best calibration value HICKCAL or HICKTWK.

If the difference after crossing is less than the one before crossing C2, the calibration value after crossing prevails, and stops the calibration process until the next condition for auto calibration appears.

If the difference after crossing is greater than the one before crossing C2, the calibration value before crossing prevails, and it will return by one step to the one before crossing, and stops the calibration process until the next condition for auto calibration appears.

According to the cross-return strategy, in theory, it is possible to get the frequency accuracy that is 0.5 steps away from the center frequency.

Four conditions for enabling auto calibration function are as follows:

- 1. The rising edge of the CANLON (from 0 to 1)
- 2. When CALON=1, reference signal is lost and restored
- 3. When the sample counter is less than C1
- 4. When the sample counter is greater than C3

Even though the sampling counter is between C1 and C3, at the rising edge the CANLON, the auto calibration module can also be activated so that the HICK frequency can be adjusted to be within a range of 0.5 steps of the center frequency as soon as the CANLON is enabled.

Under one of the above-mentioned circumstances, the HICK frequency can be calibrated to be within 0.5 steps of the center frequency. To achieve the best calibration accuracy, it is recommended to remain step as 1 (default value). If the step is set to 0, either HICKCAL or HICKTWK cannot be calibrated.

22.6 Register description

Refer to the list of abbreviations used in register descriptions.

These peripheral registers must be accessed by words (32 bits).

22.6.1 ACC register map

Table 22-2 ACC register map and reset values

Register name	Offset	Reset value
ACC_STS	0x00	0x0000 000
ACC_CTRL1	0x04	0x0000 0100
ACC_CTRL2	0x08	0x0000 2080
ACC_C1	0x0C	0x0000 1F2C
ACC_C2	0x10	0x0000 1F40
ACC C3 0x14		0x00000 1F54

22.6.2 Status register (ACC_STS)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 9	Reserved	0x0000000	resd	Kept at default value.
				Reference Signal Lost
				0: Reference Signal is not lost
				1: Reference Signal is lost
				Note: During the calibration, when the sample counter of
				the calibration module is twice that of C2, if a SOF
				reference signal is not detected, it means that the
Bit 1	RSLOST	0x0	ro	reference signal is lost. The internal statue machine will
				move to the idle state unless another SOF signal is
				detected, otherwise, the internal clock sample counter
				remains 0. The RSLOST bit is immediately cleared after
				the CALON bit is cleared or when the RSLOST is written
				with 0. Reference signal detection occurs only when
				CALON=1.
				Internal high-speed clock calibration ready
				0: Internal 8MHz oscillator calibration is not ready
				1: Internal 8MHz oscillator calibration is ready
Bit 0	CALRDY	0x0	ro	Note: This bit is set by hardware to indicate that internal
Dit 0	O/ILIND I	OXO	10	8MHz oscillator has been calibrated to the frequency
				closest to 8MHz. The CALRDY is immediately cleared
				after the CALON bit is cleared or when the CALRDY is
				written with 0.

22.6.3 Control register 1 (ACC_CTRL1)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Forced to 0 by hardware.
Bit 11: 8	STEP	0x1	rw	Calibrated step This field defines the value after each calibration. Note: It is recommended to set the step bit in order to get a more accurate calibration result. While ENTRIM=0, only the HICKCAL is calibrated. If the step is incremented or decremented by one, the HICKCAL will be incremented or decremented by one accordingly, and the HICK frequency will increase or decrease by 40KHz (design value). This is a positive relationship. While ENTRIM=1, only the HICKTRIM is calibrated. If the step is incremented or decremented by one, the HICKTRIM will be incremented or decremented by one accordingly, and the HICK frequency will increase or decrease by 20KHz (design value). This is a positive

-				
				relationship.
Bit 7: 6	Reserved	0x0	rw	Forced by hardware to 0
				CALRDY interrupt enable
				This bit is set or cleared by software.
Bit 5	CALRDYIEN	0x0	rw	0: Interrupt generation disabled
				1: ACC interrupt is generated when CALRDY=1 in the
				ACC_STS register
				RSLOST error interrupt enable
				This bit is set or cleared by software.
Bit 4	EIEN	0x0	rw	0: Interrupt generation disabled
				1: ACC interrupt is generated when RSLOST=1 in the
				ACC_STS register
Bit 3: 2	Reserved	0x0	rw	Forced to 0 by hardware
				Enable trim
				This bit is set or cleared by software.
Bit 1	ENTRIM	0.40	mar	0: HICKCAL is calibrated.
DIL I	EIN I KIIVI	0x0	rw	1: HICKTRIM is calibrated.
				Note: It is recommended to set ENTRIM=1 in order to get
				higher calibration accuracy.
				Calibration on
				This bit is set or cleared by software.
				0: Calibration disabled
				1: Calibration enabled, and starts searching for a pulse
Bit 0	CALON	0x0	rw	on the USB SOF.
				Note: This module cannot be used without the USB_SOF
				reference signal. If there are no requirements on the
				accuracy of the HICK clock, it is unnecessary to enable
				this module.

22.6.4 Control register 2 (ACC_CTRL2)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Forced to 0 by hardware
Bit 13: 8	HICKTRIM	0x20	ro	Internal high-speed auto clock trimming This field is read only, but not written. Internal high-speed clock is adjusted by ACC module, which is added to the ACC_HICKCAL[7: 0] bit. These bits allow the users to input a trimming value to adjust the frequency of the HICKRC oscillator according to the variations in voltage and temperature. The default value is 32, which can trim the HICK to 8MHz±0.25. The trimming value is 20kHz (design value) between two consecutive ACC_HICKTWK steps.
Bit 7: 0	HICKCAL	0x80	ro	Internal high-speed auto clock calibration This field is read only, but not written. Internal high-speed clock is adjusted by ACC module. These bits allow the users to input a trimming value to adjust the frequency of the HICKPC oscillator according to the variations in voltage and temperature. The default value is 128, which can trim the HICK to 8MHz±0.25. The trimming value is 40kHz (design value) between two consecutive ACC_HICKCAL steps.

2023.08.31 Page 492 Rev 2.00

22.6.5 Compare value 1 (ACC_C1)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to 0 by hardware
Bit 15: 0	C1	0x1F2C	rw	Compare 1 This value is the lower boundary for triggering calibration, and its default value is 7980. When the number of clocks sampled by ACC in 1ms period is less than or equal to C1, auto calibration is triggered automatically. When the actual sampling value (number of clocks in 1ms) is greater than C1 but less than C3, auto calibration is not enabled.

22.6.6 Compare value 2 (ACC_C2)

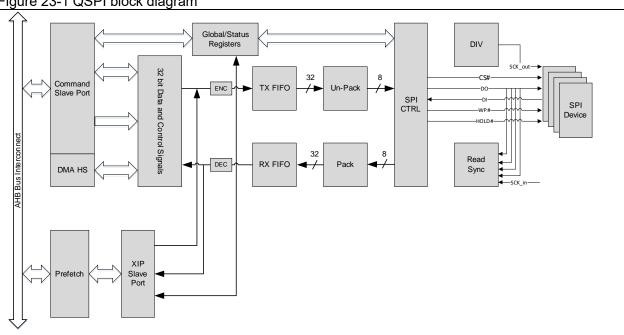
Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to 0 by hardware
Bit 15: 0	C2	0x1F40	rw	Compare 2 This value defines the number of clocks sampled for 8MHz (ideal frequency) clock in 1ms period, and its default value is 8000 (theoretical value) As a center point of cross-return strategy, this value is used to calculate the calibration value closest to the theoretical value. In theory, the actual frequency after calibration can be trimmed to be within an accuracy of 0.5 steps from the target frequency (8MHz)

22.6.7 Compare value 3 (ACC_C3)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to 0 by hardware
Bit 15: 0	С3	0x1F54	rw	Compare 3 This value is the upper boundary for triggering calibration. When the number of clock sampled by ACC in 1ms period is greater than or equal to C3, auto calibration is triggered automatically. When the actual sampling value (number of clocks in 1ms period) is greater than C1 but less than C3, auto calibration is not enabled.

2023.08.31 Page 493 Rev 2.00

23 Quad-SPI interface (QSPI)


23.1 QSPI introduction

The QSPI interface consists of a command-based slave port, an XIP slave port (direct address map access) and QSPI controller dedicated to SPI Flash command execution. The command-based slave port is used to access registers and data ports, and the XIP slave port reads data from direct address mapping. Additionally, the QSPI allows uses to access data via AHB data port in IPO or DMA mode.

23.2QSPI main features

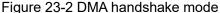
- DMA handshake mode and CPU PIO mode
- SPI serial mode, dual/quad output mode, dual/quad I/O mode and DPI/QPI mode
- XIP port (direct address map read/write)
- XIP port prefetch function (2-channel read cache)
- 128-byte TxFIFO/RxFIFO depth
- Programmable divider
- Data encryption

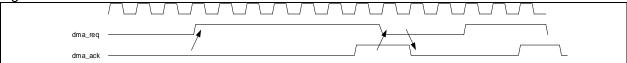
Figure 23-1 QSPI block diagram

23.3 QSPI functional overview

23.3.1 QSPI command slave port

The QSPI has a command slave port that contains registers and data ports. The users can access registers or data ports using such port. The command word register must be written sequentially (CMD W3 is the last to be written) and is accessible in words, while any other registers (including data port register) can be accessed by bytes, half-words and words.


23.3.2 CPU PIO mode


The data port can be accessed in either PIO or DMA mode. In PIO mode, there is a need for users to poll the RxFIFO / TxFIFO registers (0x18). When the RxFIFO is ready, it allowes users to read or store the entire RxFIFO data. When the TxFIFO is ready, it can be written with the entire data. As a result, polling these registers is required in PIO mode.

23.3.3 DMA handshake mode

The DMA mode is another option to access data ports. The DMA controller register must be programmed as DMA handshake mode. In this mode, the host controller sends a DMA request when the receive/transmit FIFO threshold is reached. The threshold values are in terms of words. The DMA request is still sent when the last data transfer is less than the threshold.

23.3.4 XIP port (direct address map read/write)

The QSPI offers a XIP slave port (direct address mapping read/write) for users to perform a direct access to system addresses. In this case, users can only use 0x10 register to select a command slave port or a XIP port, or read other registers than data register (0x100).

It should be noted that when reading Flash memory using this XIP port, the Abort function (bit [8] in the 0x10 register) cannot be used (meaning that the bit [20] of the 0x10 register is set to 1), and the XIP port cannot be aborted with this bit, which means that port switch must be performed in sequence. The user's system must have a main Flash memory, in which the user can load the port switch code and perform switching operation.

23.3.5 XIP port prefetch

The XPI port supports read prefetch with 2-channel associated read cache.

23.3.6 SPI device operation

Command phase

The QSPI operations are implemented using commands. These commands indicate operational purposes and SPI operating modes (multiple-line communication).

Note: The command phase can be configured as 1 or 2 byte. When it is configured as 2 byte, it sends two duplicate 1-byte commands – only 1 byte register is used to store command words.

Address phase

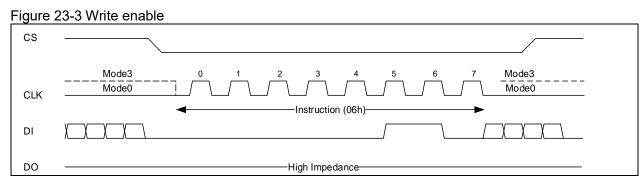
An address is required when reading, writing or erasing memories.

In command mode, the address length can be 0-4 bytes; in XIP mode, the address length can be 3 bytes or 4 bytes.

Dummy-cycles phase

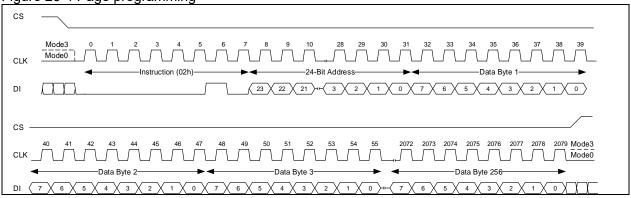
This dummy-cycles phase is ued to allow the memory to prepare for the to-be-read data. This phase is available in XIP mode and command mode, which is configured through DUM2 and XIPR_DUM2 respectively. Besides, the writing timing in XIP mode provides time required to configure dummy cycles through the XIPW_DUM2. It is usually configured to 0 intead.

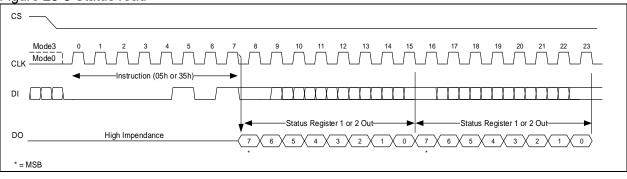
Data phase


It is used as input while reading memory data/status register, and as output while writing memory.

Serial interface mode (1-1-1)

The host controller supports a SPI protocol (mode 0 and mode 3). The command queue register must be configured according to SPI device specification. Refer to Figure 23-3 and Figure 23-10 for more information on how to program a command queue.


To execute a write enable command, set instruction code to 06h, write enable, and set instruction length to 1. Refer to Figure 23-3 for details.


To execute page programming command, set instruction code to 02h, address register, address size, write enable and set instruction length to 1.

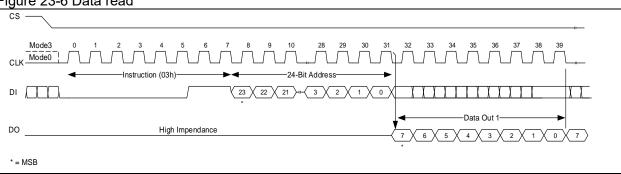
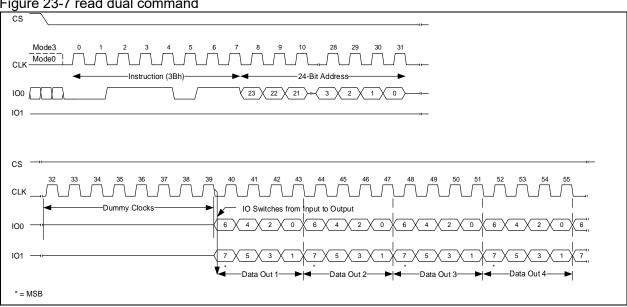

To execute a read status command, set instruction code to 05h/35h, enable read status, select read status through hardware or software, and set instruction length to 1. Refer to Figure 28-5 for more information.

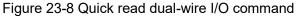
Figure 23-5 Status read

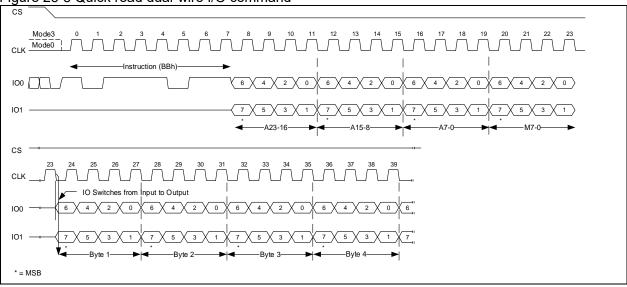
To execute a read data command, set instruction code and length to 1 byte, address/address size to 3 bytes, and set write instruction to 0. Refer to Figure 28-6 for more information.

Figure 23-6 Data read

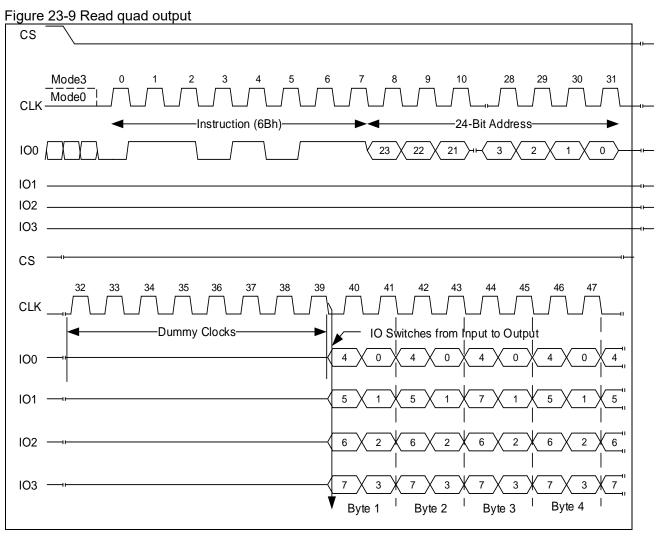


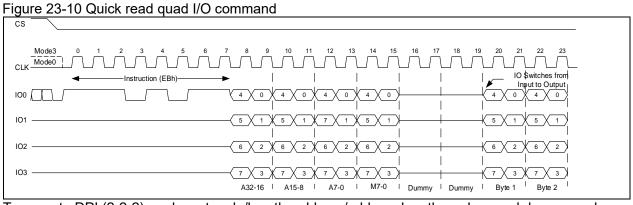
Dual mode (1-1-2)


To execute a quick read dual output command, set instruction code/length to 1, address/address size to 3 bytes, set the second dummy cycle to 8, and enable dual mode. Refer to Figure 28-7 for details

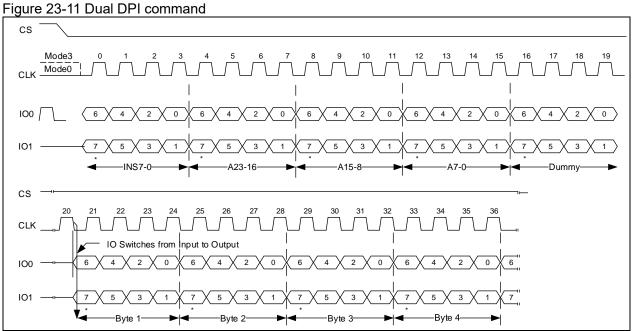

Figure 23-7 read dual command

Dual I/0 mode (1-2-2)

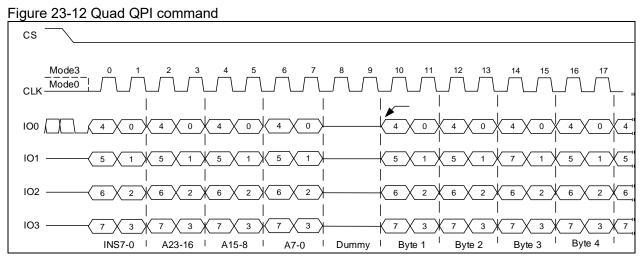

To execute a quick read dual I/O command, set code/ length, address/address size, enable continuous read mode, continuous read mode code and dual IO mode operation commands, see Figure 23-8 for details.


Quad mode (1-1-4)

To execute a quick read quad command, set instruction code/length, address/address size, enable second dummy period and enable quad mode. Refer to Figure 23-9 for more information.



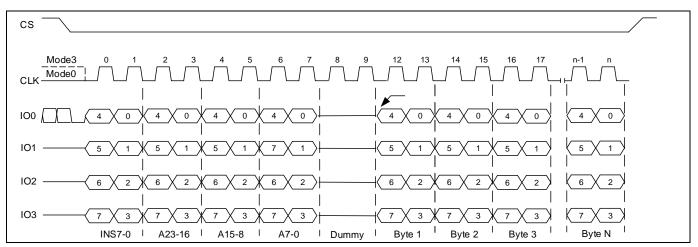
Quad I/O mode (1-4-4)


To execute a quick read quad I/O command, set instruction code/length, address/address size, the second dummy period, enable continuous read mode/continuous read mode code and enable quad I/O mode. Refer to Figure 23-10 for more information.

To execute DPI (2-2-2) mode, set code/length, address/address length, and second dummy cycles and dual DPI mode operating command. For more information, see Figures below.

To execute QPI (4-4-4) mode, please set code/length, address/address length, and second dummy cycles and QPI mode operating command. For more information, see Figures below.

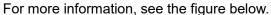
XIP read/wirte D mode

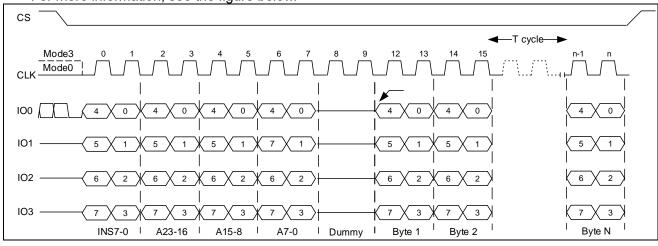

To execute XIP read/write D mode, please set instruction code/length, address/address length, the second dummy cycle, select serial/dual/dual IO/quad IO or DPI/QPI mode, set read/write D mode and program D mode counter with upper threshold value.

When reading/writing continued address by XIP port, it will keep reading/writing data until the upper threshold value is reached or until an address is interrupted.

While reading, N(byte) = XIPR_DCNT*8; while writing, N(byte) = XIPW_DCNT*8+4

For more information, see the figure below.




XIP read/write T mode

To execute XIP read/write T mode, please set instruction code/length, address/address length, the second dummy cycle, select serial/dual/dual IO/quad IO or DPI/QPI mode, set read/write T mode and program T mode counter.

While XIP port reading/writing continued address at an interval, it will disable CLK waites after reading or writing data. If the waiting time run above the upper threshold value or when the next address for read or write access is interrupted (becomes discontinuous), the continued read or write operation stops.

While reading, T(cycle) = XIPR_TCNT; while writing, T(cycle) = XIPW_TCNT

23.4QSPI registers

These registers must be accessed by bytes (8-bit), half-words (16-bit) or words (32-bit). Table 23-1 SPI register map and reset values

	•	
Register	Offset	Reset value
CMD_W0	0x0	0x0000 0000
CMD_W1	0x4	0x0100 0003
CMD_W2	0x8	0x0000 0000
CMD_W3	0xC	0x0000 0000
CTRL	0x10	0x0010 0083
FIFOSTS	0x18	0x0000 0001
CTRL2	0x20	0x0000 0000
CMDSTS	0x24	0x0000 0000
RSTS	0x28	0x0000 0000
FSIZE	0x2C	0xF0000 0000
XIP CMD_W0	0x30	0x0000 3000
XIP CMD_W1	0x34	0x0000 2000
XIP CMD_W2	0x38	0x0F01 0F01
XIP CMD_W3	0x3C	0x0000 0000
REV	0x50	0x0001 0500
DT	0x100	0x0000 0000

23.4.1 Command word 0 (CMD_W0)

No-wait states, assessable by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	SPIADR	0x0	rw	SPI Flash address This register defines the values of SPI Flash addresses, and sends them to SPI Flash. The address byte is based on the bit [2: 0] of 004h.

23.4.2 Command word 1 (CMD_W1)

No-wait states, assessable by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 29	Reserved	0x0	resd	Kept at its default value.
Bit 28	PEMEN	0x0	rw	Performance enhanced mode enable Locates between the address and the second dummy state. In this mode, the command status after the second read command can be removed. Do not set this bit when CMD_W2=0. 0: Performance enhanced mode disabled 1: 1-byte Performance enhanced mode enabled
Bit 27: 26	Reserved	0x0	resd	Kept at its default value.

2023.08.31 Page 501 Rev 2.00

Bit 25: 24	INSLEN	0x1	rw	Instruction code length Instruction code is required for SPI Flash command execution. The instruction code length varies from SPI Flash supplier to SPI Flash supplier. Thus this register can be used to program the desired instruction code length. Typically, the instruction code is one-byte length. However, if the user sets two-byte instruction code, the host controller sends this instruction code twice. 00: No instruction code. It cannot be used until the continuous read mode command is completed. 01: 1-byte instruction code 10: 2-byte instruction code (repeated instruction code) 11: Reserved
Bit 23: 16	DUM2	0x0	rw	Second dummy state cycle The second dummy cycle is located between the address and data state, excluding performance enhanced mode status. The user can check there is a dummy state between the address and data status in SPI Flash specification. The host controller sends logic 1 in a dummy cycle. 0: No second dummy state 1~32: 1 dummy second period~32 dummy second period
Bit 15: 3	Reserved	0x0	resd	Kept at its default value.
Bit 2: 0	ADRLEN	0x3	rw	SPI address length This field defines the number of bytes of the SPI Flash address, ranging from one to four bytes. 000: No address state 001: 1-byte address 010: 2-byte address 011: 3-byte address 100: 4-byte address Others: Reserved When the address length is 0, the second dummy period is not preset.

23.4.3 Command word 2 (CMD_W2)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	DCNT	0x0	rw	Read/Write data counter This bit must be set to 0 when executing read status command. 0: No read/write data 1~FFFFFFFF: 1~FFFFFFF byte data Note: This register must not be padded with 0 for data read or write. However, for "read status" or "write enable" instruction, this register must be set to 0.

23.4.4 Command word 3 (CMD_W3)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 24	INSC	0x00	rw	Instruction code This code is set to enable SPI Flash command.

2023.08.31 Page 502 Rev 2.00

The user must send a SPI read state command. 0: Hardware read. The controller keeps polling until the state is ready (not busy) and feedbacks to the status register. 1: Software read. Read status ones and feedback to the status register until the user is able to read it. Read SPI status enable This bit is valid when WEN ="0", and the user must send of Read SPI status disabled 1: Read SPI status enabled Write data enable This bit is used to enable SPI write data, excluding read data or read status (read data return path); the user must set write enable bit=1 for other SPI commands. Bit 1 WEN 0x0 rw Note: Write enable must be set to 1 in data write or Flash	Bit 23: 16	PEMOPC	0x00	rw	Performance enhanced mode operation code This field works with the PEMEN bit. This code can be padded to execute performance enhanced mode. Follow the corresponding Flash specification document to write the corresponding value.
Bit 7: 5 OPMODE Ox0 RW OTI: Dual-wire mode (1-1-1) 001: Quad mode (1-1-4) 101: Quad mode (1-1-4) 101: Dual-wire l/O mode (1-2-2) 100: Quad I/O mode (1-2-2) 100: Quad I/O mode (1-2-2) 110: OPI mode (2-2-2) 110: OPI mod	Bit 15: 10	Reserved	0x0	resd	Kept at its default value.
Read SPI status configuration This bit is valid only when read state and write is enabled The user must send a SPI read state command. 0: Hardware read. The controller keeps polling until the state is ready (not busy) and feedbacks to the status register. 1: Software read. Read status ones and feedback to the status register until the user is able to read it. Read SPI status enable This bit is valid when WEN ="0", and the user must send SPI read status command. 0: Read SPI status disabled 1: Read SPI status enabled Write data enable This bit is used to enable SPI write data, excluding read data or read status (read data return path); the user must set write enable bit=1 for other SPI commands. Bit 1 WEN 0x0 rw Note: Write enable must be set to 1 in data write or Flast erase command. The write enable must be set to 0 only in read data or read status command. 0: Disabled 1: Enabled	Bit 7: 5	OPMODE	0x0	rw	000: Serial mode (1-1-1) 001: Dual-wire mode (1-1-2) 010: Quad mode (1-1-4) 011: Dual-wire I/O mode (1-2-2) 100: Quad I/O mode (1-4-4) 101: DPI mode (2-2-2) 110: QPI mode (4-4-4)
This bit is valid only when read state and write is enabled The user must send a SPI read state command. O: Hardware read. The controller keeps polling until the state is ready (not busy) and feedbacks to the status register. 1: Software read. Read status ones and feedback to the status register until the user is able to read it. Read SPI status enable This bit is valid when WEN ="0", and the user must send to read status ones and feedback to the status register until the user is able to read it. Read SPI status enable This bit is valid when WEN ="0", and the user must send to read SPI status disabled 1: Read SPI status disabled 1: Read SPI status enable This bit is used to enable SPI write data, excluding read data or read status (read data return path); the user must set write enable bit=1 for other SPI commands. Bit 1 WEN 0x0 rw Note: Write enable must be set to 1 in data write or Flast erase command. The write enable must be set to 0 only in read data or read status command. 0: Disabled 1: Enabled	Bit 4	Reserved	0x0	resd	Kept at its default value.
Bit 2 RSTSEN Ox0 rw SPI read status command. 0: Read SPI status disabled 1: Read SPI status enabled Write data enable This bit is used to enable SPI write data, excluding read data or read status (read data return path); the user muss set write enable bit=1 for other SPI commands. Bit 1 WEN Ox0 rw Note: Write enable must be set to 1 in data write or Flast erase command. The write enable must be set to 0 only in read data or read status command. 0: Disabled 1: Enabled	Bit 3	RSTSC	0x0	rw	This bit is valid only when read state and write is enabled. The user must send a SPI read state command. 0: Hardware read. The controller keeps polling until the state is ready (not busy) and feedbacks to the status register. 1: Software read. Read status ones and feedback to the
This bit is used to enable SPI write data, excluding read data or read status (read data return path); the user mus set write enable bit=1 for other SPI commands. Bit 1 WEN 0x0 rw Note: Write enable must be set to 1 in data write or Flash erase command. The write enable must be set to 0 only in read data or read status command. 0: Disabled 1: Enabled	Bit 2	RSTSEN	0x0	rw	This bit is valid when WEN ="0", and the user must send SPI read status command. 0: Read SPI status disabled
Bit 0 Reserved 0x0 resd Kept at its default value.	Bit 1	WEN	0x0	rw	This bit is used to enable SPI write data, excluding read data or read status (read data return path); the user must set write enable bit=1 for other SPI commands. Note: Write enable must be set to 1 in data write or Flash erase command. The write enable must be set to 0 only in read data or read status command. 0: Disabled
	Bit 0	Reserved	0x0	resd	Kept at its default value.

23.4.5 Control register (CTRL)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 22	Reserved	0x000	resd	Kept at its default value.
Bit 21	KEYEN	0x0	rw	SPI data encryption key enable 0: SPI data encryption key disabled 1: SPI data encryption key enabled When this bit is enabled, raw data is converted into ciphertext and written into the QSPI peripheral through QSPIKEY. While read, data is decrypted into plaintext and sends to the CPU.

2023.08.31 Page 503 Rev 2.00

Bit 20	XIPSEL	0x1	rw	XIP port selection Read SPI Flash data from the following ports: 0: Command slave port 1: XIP port When this bit is switched, the QSPI sends automatically an Abort signal. The user can send a command only after the completion of Abort function.
Bit 19	XIPRCMDF	0x0	rw	XIP read command flush
Bit 18: 16	BUSY	0x0	rw	Busy bit of SPI status The host polls this busy bit and remains in hardware read state. 000~111: bit 0~bit7
Bit 15: 9	Reserved	0x00	resd	Kept at its default value.
Bit 8	ABORT	0x0	rw	Refresh all commands/FIFOs and reset state machine When switching command and XIP mode, this bit must be written (This bit is automatically cleared to 0). 0: No effect 1: Enabled
Bit 7	XIPIDLE	0x1	ro	XIP port idle status 0: XIP port is busy 1: XIP port is idle
Bit 6: 5	Reserved	0x0	resd	Kept at its default value.
Bit 4	SCKMODE	0x0	rw	sckout mode 0: For mode 0, the sck_out is low in idle state, and data is sampledon the first edge 1: For mode 3, the ck_out is high in idle state, and data is sampled on the second edge
Bit 3	Reserved	0x0	resd	Kept at its default value.
Bit 2: 0	CLKDIV	0x3	rrw	Clk divider 000: Divided by 2 001: Divided by 4 010: Divided by 6 011: Divided by 8 100: Divided by 3 101: Divided by 5 110: Divided by 10 111: Divided by 12

23.4.6 FIFO status register (FIFOSTS)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 2	Reserved	0x0000 0000	resd	Kept at its default value.
	RXFIFORDY	0x0	ro	RxFIFO ready status
Bit 1				When this bit is set, it indicates the following:
				1: RxFIFO full
				2: The remaining data in the RxFIFO is less than the depth
				of RxFIFO, but it is the last data.
Bit 0	TXFIFORDY	0x1	ro	TxFIFO ready status
				When the TxFIFO is ready, it indicates that the TxFIFO will
				get empty so that data can be transmitted into it until it becomes full.

23.4.7 Control register 2 (CTRL2)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 14	Reserved	0x0000 0	resd	Kept at its default value.
Bit 13: 12	RXFIFO THOD	0x0	rw	This field is used to program the level value to trigger RxFIFO threshold interrupt for DMA handshake mode. The value is in terms of word. The trigger value is the data in the RxFIFO. 00: 8 WORD 01: 16 WORD 10: 24 WORD 11: Reserved
Bit 11: 10	Reserved	0x0	resd	Kept at its default value.
Bit 9: 8	TXFIFO THOD	0x0	rw	This field is used to program the level value to trigger TxFIFO threshold interrupt for DMA handshake mode. The value is in terms of word. The trigger value is the data in the TxFIFO. 00: 8 WORD 01: 16 WORD 10: 24 WORD 11: Reserved
Bit 7: 2	Reserved	0x00	resd	Kept at its default value.
Bit 1	CMDIE	0x0	rw	Command complete Interrupt enable 0: Command complete Interrupt disabled 1: Command complete Interrupt enabled
Bit 0	DMAEN	0x0	rw	DMA enable Note: This bit must be disabled before moving from command-based slave port to XIP port.

23.4.8 Command status register (CMDSTS)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 1	Reserved	0x0000 0000	resd	Kept at its default value.
Bit 0	CMDSTS	0x0	rw1c	Command complete status Set at the end of a command.

23.4.9 Read status register (RSTS)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 1	Reserved	0x0000 00	resd	Kept at its default value.
Bit 7: 0	SPISTS	0x00	ro	SPI Read status The host sends a read SPI Flash status command and stores the returned data in this register. By reading it, the user can check the status of SPI Flash.

2023.08.31 Page 505 Rev 2.00

23.4.10 Flash size register (FSIZE) (FSIZE)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	SPIFSIZE	0xF000 0000	rw	SPI Flash Size In direct address map mode, system address is always greater than that of SPI Flash. The user must mask the upper bits of the system address to match SPI Flash size.

23.4.11 XIP command word 0 (XIP CMD_W0)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Kept at its default value.
Bit 19: 12	XIPR_INSC	0x03	rw	XIP read instruction code This field is set to execute SPI Flash command of XPI read.
Bit 11	XIPR_ADRLEN	0x0	rw	XIP read address length This bit defines the number of bytes of SPI Flash address. The user can uses this bit to program a 3-byte or 4-byte XIP read address. 0: 3-byte address 1: 4-byte address
Bit 10: 8	XIPR_OPMODE	0x0	rw	XIP read Operation mode 000: Serial mode (1-1-1) 001: Dual-wire mode (1-1-2) 010: Quad mode (1-1-4) 011: Dual-wire IO mode (1-2-2) 100: Quad IO mode (1-4-4) 101: DPI mode (2-2-2) 110: QPI mode (4-4-4) 111: Reserved
Bit 7: 0	XIPR_DUM2	0x00	rw	XIP Read second dummy cycle The second dummy state is located between the address and data status, excluding continuous read mode status. The user can check if there is a dummy state between the address and data status in SPI Flash specification. The host controller issues logic 1 in a dummy cycle. 0: No second dummy state 1~32: 1 dummy second period~32 dummy second periods

23.4.12XIP command word 1 (XIP CMD_W1)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 18	Reserved	0x000	resd	Kept at its default value.
Bit 19: 12	XIPW_INSC	0x02	rw	XIP write instruction code The user can set this field to enable a SPI Flash command of XIP write.
Bit 11	XIPW_ADRLEN	0x0	rw	XIP write address length This bit defines the number of bytes of SPI Flash address. The user can uses this bit to program a 3-byte or 4-byte XIP write address. 0: 3-byte address 1: 4-byte address

Bit 10: 8	XIPW_OPMODE	0x0	rw	XIP write operation mode 000: Serial mode (1-1-1) 001: Dual-wire mode (1-1-2) 010: Quad mode (1-1-4) 011: Dual IO mode (1-2-2) 100: Quad IO mode (1-4-4)
				101: DPI mode (2-2-2) 110: QPI mode (4-4-4) 111: Reserved
Bit 7: 0	XIPW_DUM2	0x00	rw	XIP Write second dummy cycle The second dummy state is located between the address and data status, excluding continuous read mode status. The user can check if there is a dummy state between the address and data status in SPI Flash specification. The host controller issues logic 1 in a dummy cycle. 0: No second dummy state 1~32: 1 dummy second period~32 dummy second periods

23.4.13 XIP command word 2 (XIP CMD_W2)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31	XIPW_SEL	0x0	rw	XIP write mode select 0: Mode D 1: Mode T The XIP slave port can be used for the improvement of read/write process and performance. Mode D: When data are written to the consecutive addresses, put a limit on the maximum data count (DCNT) in a single write operation Mode T: When two consecutive data are written and the addresses are also continuous, and the interval is less than a specified time (TCNT), then they are combined into one command.
Bit 30: 24	XIPW_TCNT	0x0F	rw	This indicates the time counter that is used to judge time interval in mode T. Value is in terms of sck_out period. This counter is valid when mode T is selected.
Bit 23: 22	Reserved	0x0	resd	Kept at its default value.
Bit 21: 16	XIPW_DCNT	0x01	rw	This indicates the time counter that is used to judge the maximum data count in mode D. Value is in terms of word, and must not be 0. This counter is valid when mode D is selected.
Bit 15	XIPR_SEL	0x0	rw	XIP read mode select 0: Mode D 1: Mode T The XIP slave port can be used for the improvement of read/write process and performance. Mode D: When data are read from the consecutive addresses, put a limit on the maximum data count (DCNT) in a single write operation Mode T: When two consecutive data are read and the addresses are also continuous, and the interval is less than a specified time (TCNT), then they are combined into one command.

Bit 14: 8	XIPR_TCNT	0x0F	rw	This indicates the time counter that is used to judge time interval in mode T. Value is in terms of sck_out period. This counter is valid when mode T is selected.
Bit 7: 6	Reserved	0x0	resd	Kept at its default value.
Bit 5: 0	XIPR_DCNT	0x01	rw	This indicates the time counter that is used to judge the maximum data count in mode D. Value is in terms of word, and must not be 0. This counter is valid when mode D is selected.

23.4.14XIP command word 3 (XIP CMD_W3)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 4	Reserved	0x0000 000	resd	Kept at its default value.
				Cache Status
Bit 3	CSTS	0x0	r	0: Cache verified
				1: Cache failed
Bit 2: 1	Reserved	0x0	resd	Kept at its default value.
				Bypass Cache Function
Dit O	BYPASSC	0.40	mar	When this bit is set, the high-speed cache feature is
Bit 0	DIPASSU	0x0	rw	deactivated, and all read transfers do not check high-
				speed cache.

23.4.15 Revision register (REV)

No-wait states, accessible by bytes, half-words and words.

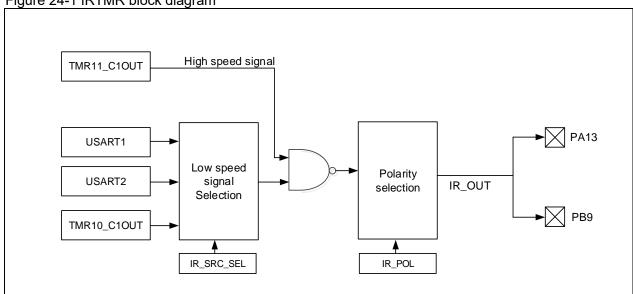
Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	REV	0x0001 0500	ro	Indicates IP version.

23.4.16 Data port register (DT)

No-wait states, accessible by bytes, half-words and words.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	DT	0x0000 0000	rw	Data port register This port is used for data read or write.

2023.08.31 Page 508 Rev 2.00



24 Infrared timer (IRTMR)

The IRTMR (Infrared Timer) is used to generate the IR_OUT signal that drives the infrared LED to achieve infrared control.

The IR_OUT signals consists of a low-frequency modulation envelope and high-frequency carrier signals. The low-frequency modulation envelope signal selects from TMR10_C1OUT, USART1 and USART2 through the IR_SRC_SEL[1: 0] bit in the SCFG_CFG1 register, while the high-frequency carrier signal is provided by the TMR11_C1OUT register. The IR_POL bit in the SCFG_CFG1 register controls whether the IR_OUT output is reversed or not. The IR_OUT signal is output through multiplexed function via PB9 or PA13 (multiplexed mode needs to be configured in advance).

Figure 24-1 IRTMR block diagram

25 Debug (DEBUG)

25.1 Debug introduction

Cortex[®]-M4F core provides powerful debugging features including halt and single step support, as well as trace function that is used for checking the details of the program execution. The debug features are implemented with a serial wire debug interface.

ARM Cortex®-M4F reference documentation:

- Cortex®-M4 Technical Reference Manual (TRM)
- ARM Debug Interface V5
- ARM CoreSight Design Kit revision r1p0 Technical Reference Manual

25.2 Debug and Trace

Cortex®-M4F core supports debugging different peripherals. The working status of peripherals can also be configured during debugging. For timers and watchdogs, the user can select whether or not to stop or continue counting during debugging; For CAN, the user can select whether or not to stop or continue updating receive registers during debugging; For I2C, the user can select whether or not to stop or continue SMBUS timeout counting.

In addition, code debugging is supported in Low-power mode. In Sleep mode, the clock programmed by code remains active for HCLK and FCLK to continue to work. In Deepsleep mode, HICK oscillator is enabled to feed FCLK and HCLK.

There are several ID codes inside the MCU, which is accessible by the debugger using the DEBUG_IDCODE at address 0xE0042000. It is part of the DEBUG and is mapped on the external PPB bus. These codes are accessible using the JTAG debug port or the SWD debug port or by the user software. They are even accessible while the MCU is under system reset.

25.3I/O pin control

The entire AT32F402/405 series supports SWJ-DP debugging. It offers five general-purpose IO ports for the purpose of debugging. After reset, the SW-DP can be immediately used by the debugger by default. GPIO and IOMUX registers can be configured to allow users to switch between debug ports or disable debugging feature.

25.4DEGUB registers

Table 25-1 shows DEBUG register map and reset values.

These peripheral registers must be accessed by word (32 bits)

Table 25-1 DEBUG register address and reset value

Register name	Offset	Reset value			
DEBUG_IDCODE	0xE004 2000	0xXXXX XXXX			
DEBUG_CTRL	0xE004 2004	0x0000 0000			
DEBUG_APB1_PAUSE	0xE004 2008	0x0000 0000			
DEBUG_APB2_PAUSE	0xE004 200C	0x0000 0000			
DEBUG_SER_ID	0xE004 2020	0x0000 XX0X			

25.4.1 DEBUG device ID (DEBUG_IDCODE)

MCU integrates an ID code that is used to identify MCU's revision code. The DEBUG_IDCODE register is mapped on the external PPB bus at address 0xE0042000. This code is accessible by the SW debug port or by the user code.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	PID	0xXXXX XXXX	ro	PID information

PID [31: 0]	AT32 part number	FLASH size	Packages
0x7005_3240	AT32F405RCT7	256KB	LQFP64
0x7004_21C1	AT32F405RBT7	128KB	LQFP64
0x7005_3242	AT32F405RCT7-7	256KB	LQFP64
0x7004_21C3	AT32F405RBT7-7	128KB	LQFP64
0x7005_3244	AT32F405CCT7	256KB	LQFP48
0x7004_21C5	AT32F405CBT7	128KB	LQFP48
0x7005_3246	AT32F405CCU7	256KB	QFN48
0x7004_21C7	AT32F405CBU7	128KB	QFN48
0x7005_3248	AT32F405KCU7-4	256KB	QFN32
0x7004_21C9	AT32F405KBU7-4	128KB	QFN32
0x7005_324A	AT32F402RCT7	256KB	LQFP64
0x7004_21CB	AT32F402RBT7	128KB	LQFP64
0x7005_324C	AT32F402RCT7-7	256KB	LQFP64
0x7004_21CD	AT32F402RBT7-7	128KB	LQFP64
0x7005_324E	AT32F402CCT7	256KB	LQFP48
0x7004_21CF	AT32F402CBT7	128KB	LQFP48
0x7005_3250	AT32F402CCU7	256KB	QFN48
0x7004_21D1	AT32F402CBU7	128KB	QFN48
0x7005_3252	AT32F402KCU7-4	256KB	QFN32
0x7004_21D3	AT32F402KBU7-4	128KB	QFN32

25.4.2 DEBUG control register (DEBUG_CTRL)

This register is asynchronously reset by POREST (not reset by system reset). It can be written by the debugger under reset.

Bit	Abbr.	Reset value	Туре	Description
Bit 31:3	Reserved	0x0000 0000	resd	Always 0.
Bit 2	STANDBY_DEBUG	0x0	rw	Debug Standby mode control bit 0: The whole 1.2V digital circuit is unpowered in Standby mode 1: The whole 1.2V digital circuit is not unpowered in Standby mode, and the system clock is provided by the internal RC oscillator (HICK)
Bit 1	DEEPSLEEP_DEBUG	0x0	rw	Debug Deepsleep mode control bit 0: In Deepsleep mode, all clocks in the 1.2V domain are disabled. When exiting from Deepsleep mode, the internal RC oscillator (HICK) is enabled, and HICK is used as the system clock source, and the software must reprogram the system clock according to application requirements. 1: In Deepsleep mode, system clock is provided by the internal RC oscillator (HICK). When exiting from Deepsleep mode, HICK is used as the system clock source, and the software must reprogram the system clock according to application requirements.
Bit 0	SLEEP_DEBUG	0x0	rw	Debug Sleep mode control bit 0: When entering Sleep mode, CPU HCLK clock is disabled, but other clocks remain active. When exiting from Sleep mode, it is not necessary to reprogram the clock system. 1: When entering Sleep mode, all clocks keep running.

25.4.3 DEBUG APB1 pause register (DEBUG_ APB1_PAUSE)

This register is asynchronously reset by POREST (not reset by system reset). It can be written by the debugger under reset.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 29	Reserved	0x0	resd	Kept at default value.
Bit 28	I2C3_SMBUS_TIMEC) 0x0	rw	I2C3 pause control bit 0: I2C3 SMBUS timeout control works normally 1: I2C3 SMBUS timeout control stops running
Bit 27	I2C2_SMBUS_TIMEC	0x0	rw	I2C2 pause control bit 0: I2C2 SMBUS timeout control works normally 1: I2C2 SMBUS timeout control stops running
Bit 26	Reserved	0x0	resd	Kept at default value.
Bit 25	CAN1_PAUSE	0x0	rw	CAN1 pause control bit 0: CAN1 works normally 1: CAN1 receive register pauses (does not receive data)

Bit 24	I2C1_SMBUS_TIMEC	0x0	rw	I2C1 pause control bit 0: I2C1 SMBUS timeout control works normally 1: I2C1 SMBUS timeout control stops running
Bit 23: 16	Reserved	0x00	resd	Kept at default value.
Bit 15	Reserved	0x0	rw	Kept at default value.
Bit 14: 13	Reserved	0x0	rw	Kept at default value.
Bit 12	WDT_PAUSE	0x0	rw	WDT pause control bit 0: WDT works normally 1: WDT stops running
Bit 11	WWDT_PAUSE	0x0	rw	WWDT pause control bit 0: WWDT works normally 1: WWDT stops running
Bit 10	ERTC_PAUSE	0x0	rw	ERTC pause control bit 0: ERTC works normally 1: ERTC stops running
Bit 9	Reserved	0x0	resd	Kept at default value.
Bit 8	TMR14_PAUSE	0x0	rw	TMR14 pause control bit 0: TMR14 works normally 1: TMR14 stops running
Bit 7	TMR13_PAUSE	0x0	rw	TMR13 pause control bit 0: TMR13 works normally 1: TMR13 stops running
Bit 6	Reserved	0x0	resd	Kept at default value.
Bit 5	TMR7_PAUSE	0x0	rw	TMR7 pause control bit 0: TMR7 works normally 1: TMR7 stops running
Bit 4	TMR6_PAUSE	0x0	rw	TMR6 pause control bit 0: TMR6 works normally 1: TMR6 stops running
Bit 3	Reserved	0x0	resd	Kept at default value.
Bit 2	TMR4_PAUSE	0x0	rw	TMR4 pause control bit 0: TMR4 works normally 1: TMR4 stops running
Bit 1	TMR3_PAUSE	0x0	rw	TMR3 pause control bit 0: TMR3 works normally 1: TMR3 stops running
Bit 0	TMR2_PAUSE	0x0	rw	TMR2 pause control bit 0: TMR2 works normally 1: TMR2 stops running

2023.08.31 Page 513 Rev 2.00

25.4.4 DEBUG APB2 pause register (DEBUG_ APB2_PAUSE)

This register is asynchronously reset by POREST (not reset by system reset). It can be written by the debugger under reset.

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 19	Reserved	0x0000	resd	Kept at default value.
Bit 18	TMR11_PAUSE	0x0	rw	TMR11 pause control bit 0: TMR11 works normally 1: TMR11 stops running
Bit 17	TMR10_PAUSE	0x0	rw	TMR10 pause control bit 0: TMR10 works normally 1: TMR10 stops running
Bit 16	TMR9_PAUSE	0x0	rw	TMR9 pause control bit 0: TMR9 works normally 1: TMR9 stops running
Bit 15: 1	Reserved	0x000	resd	Kept at default value.
Bit 0	TMR1_PAUSE	0x0	rw	TMR1 pause control bit 0: TMR2 works normally 1: TMR2 stops running

26 Revision history

Document Revision History

Date	Version	Revision Note
2023.08.31	2.00	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services; ARTERY assumes no liability for purchasers' selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation in any forms. If any part of this document involves third party's products or services, it does NOT imply that ARTERY authorizes the use of the third party's products or services, or permits any of the intellectual property, or guarantees any uses of the third party's products or services or intellectual property in any way.

Except as provided in ARTERY's terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the corresponding legal situation in any injudical districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY's products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function safety; (B) Aviation applications; (C) Auto-motive application or environment; (D) Aerospace applications or environment, and/or (E) weapons. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility in any form.

© 2023 ARTERY Technology - All Rights Reserved.