

## MG0015 Migration Guide

Migrating from GX32E230 to AT32F421

## Introduction

This migration guide is written to help users with the analysis of the steps required to migrate from an existing GX32E230 series to AT32F421 series. It brings together the most important information and lists the vital aspects that need to be taken into account.

To move an application from GX32E230 series to AT32F421 series, users have to analyze the hardware and software migration.

Applicable products:

| Part numbers | AT32F421xx |
|--------------|------------|
|--------------|------------|



## Contents

| 1 | Sim | ilarities and differences between AT32F421 and GX32E230 | 4  |
|---|-----|---------------------------------------------------------|----|
|   | 1.1 | Overview of similarities                                | 4  |
|   | 1.2 | Overview of differences                                 | 4  |
| 2 | Har | dware migration                                         | 6  |
| 3 | Sof | tware migration                                         | 7  |
|   | 3.1 | Peripheral comparison                                   | 7  |
|   | 3.2 | Memory mapping                                          | 7  |
|   | 3.3 | Functional differences                                  | 7  |
|   |     | 3.3.1 CRM                                               | 7  |
|   |     | 3.3.2 DMA interface                                     | 8  |
|   |     | 3.3.3 GPIO interface                                    | 8  |
|   |     | 3.3.4 ADC interface                                     | 9  |
|   |     | 3.3.5 USART interface                                   | 9  |
|   |     | 3.3.6 CRM PLL                                           | 9  |
|   |     | 3.3.7 FLASH                                             | 9  |
|   |     | 3.3.8 SPI interface                                     | 9  |
|   |     | 3.3.9 CMP interface                                     | 10 |
|   |     | 3.3.10 RTC interface                                    | 10 |
|   |     | 3.3.11 Security library (sLib)                          | 10 |
|   |     | 3.3.12 GPIO 5V-tolerant compatibility                   | 10 |
| 4 | Rev | rision history                                          | 11 |

# <u>Y5=171;</u>

## List of tables

| Table 1. Differences between AT32F421 and GX32E230 | 4  |
|----------------------------------------------------|----|
| Table 2. Peripheral compatibility analysis         | 7  |
| Table 3. Memory map differences                    | 7  |
| Table 4. CRM differences                           | 8  |
| Table 5. DMA differences                           | 8  |
| Table 6. GPIO differences                          | 8  |
| Table 7. ADC differences                           | 9  |
| Table 8. Flash memory differences                  | 9  |
| Table 9. Document revision history                 | 11 |

3



#### Similarities and differences between AT32F421 and 1 GX32E230

AT32F421 series microcontrollers are basically compatible with the GX32E230 series, and provide many enhanced features, some of which are different from GX32E230. The differences between them are detailed in this document.

#### 1.1 **Overview of similarities**

- Pin definition: Pin definitions are identical for the same packages. For extended peripherals, define the alternate functions of the pins.
- Compiler tools: identical, for example, Keil, IAR.

#### 1.2 **Overview of differences**

| Table 1. Differences between AT32F421 and GX32E230 |                                         |                                    |  |
|----------------------------------------------------|-----------------------------------------|------------------------------------|--|
|                                                    | AT32F421                                | GX32E230                           |  |
| Core                                               | Cortex-M4 (without FPU)                 | Cortex-M23                         |  |
| Voltage range                                      | 2.4 V~3.6 V                             | 1.8 V~3.6 V                        |  |
| Sustam alaak                                       | Max frequency 120 MHz, APB1 120         | Max frequency 72 MHz, APB1 72 MHz, |  |
| System clock                                       | MHz, APB2 120 MHz                       | APB2 72 MHz                        |  |
| Poot Momory                                        | 4 KB, support Flash memory content      | 3 KB                               |  |
| Boot Memory                                        | CRC                                     | 3 KB                               |  |
| Flash memory                                       | 37 us                                   | 37 us                              |  |
| 16-bit write time                                  | S7 us                                   | 57 us                              |  |
| Flash memory                                       | 6.4 ms                                  | 1.1 ms                             |  |
| page erase time                                    | 0.4 ms                                  |                                    |  |
| Flash memory                                       | 8 ms                                    | 4 ma                               |  |
| mass erase time                                    | 0 1115                                  | 4 ms                               |  |
| SRAM size                                          | 8/16 KB by part number                  | 4/6/8 KB by part number            |  |
| SRAM parity check                                  | NA                                      | Support                            |  |
| GPIO locking                                       | All GPIOs can be locked.                | Only PA and PB can be locked.      |  |
|                                                    | Frequency multiplication factors from   |                                    |  |
| PLL                                                | 31x to 500x;                            | Integer multiplication             |  |
| FLL                                                | Frequency division factor from division |                                    |  |
|                                                    | by 1 to division by 15                  |                                    |  |
| I2S                                                | 2                                       | 1                                  |  |
| 4-wire SPI master mode                             | NA                                      | 1                                  |  |
| ADC                                                | 2 Msps (max ADCCLK = 28 MHz)            | 2 Msps (max ADCCLK = 28 MHz)       |  |
| USART wakeup                                       | Not support                             | Wake up from deep sleep            |  |
| Wake up from low-power                             |                                         |                                    |  |
| mode (Voltage regular is in                        | 450 us                                  | 17.1 us                            |  |
| low-power mode)                                    |                                         |                                    |  |
| Wake up from Standby mode                          | 1250 us                                 | 77.5 us                            |  |
| Run mode                                           | 10.5 mA@72 MHz                          | 8.5 mA@72 MHz                      |  |
| Power consumption at Sleep                         | 7.76 mA@72 MHz                          | 7.4 mA@72 MHz                      |  |

#### 

mode



## Migrating from GX32E230 to AT32F421

|                      | AT32F421          | GX32E230      |
|----------------------|-------------------|---------------|
| Power consumption at | 210 uA            | 25.5 uA       |
| Deepsleep mode       | 210 UA            | 25.5 UA       |
| Power consumption at | 3.6 uA            | 3.8 uA        |
| Standby mode         | 3.0 uA            | 5.0 uA        |
| Temperature range    | -40 to +105 °C    | -40 to +85 °C |
| Packages             | Not support LGA20 | Support LGA20 |



## 2 Hardware migration

The migration from AT32F421 to GX32E230 series is simple as they are pin-to-pin compatible for the same packages.

## 3 Software migration

## 3.1 Peripheral comparison

There are some differences between AT32F421 and GX32E230 in terms of peripherals, some of which are new designs for AT32F421 series. Therefore, it is necessary to modify these peripherals or use a new peripheral driver for brand-new design during the application-level program development.

| Devinhenel | AT225424 | Compatibility |                |                       |
|------------|----------|---------------|----------------|-----------------------|
| Peripheral | AT32F421 | GX32E230      | Pinout         | Firmware driver       |
| SPI        | Y        | Y             | Partially same | Partial compatibility |
| WWDT       | Y        | Y             | NA             | Full compatibility    |
| WDT        | Y        | Y             | NA             | Partial compatibility |
| DEBUG      | Y        | Y             | NA             | Partial compatibility |
| CRC        | Y        | Y             | NA             | Partial compatibility |
| EXINT      | Y        | Y             | Identical      | Partial compatibility |
| DMA        | Y        | Y             | NA             | Partial compatibility |
| TMR        | Y        | Y             | Identical      | Partial compatibility |
| PWC        | Y        | Y             | NA             | Partial compatibility |
| USART      | Y        | Y             | Identical      | Incompatible          |
| I2C        | Y        | Y             | Identical      | Partial compatibility |
| ADC        | Y        | Y             | Identical      | Partial compatibility |
| RTC        | Y        | Y             | Identical      | Partial compatibility |
| FLASH      | Y        | Y             | NA             | Partial compatibility |
| GPIO       | Y        | Y             | Identical      | Partial compatibility |
| CMP        | Y        | Y             | Partially same | Incompatible          |
| SCFG       | Y        | Y             | Identical      | Partial compatibility |

Table 2. Peripheral compatibility analysis

## 3.2 Memory mapping

AT32F421 architecture is highly compatible with GX32E230, except the distribution of peripheral addresses and buses as shown in *Table 3*.

| Parinharal | GX32E230 |              | AT32F421 |              |
|------------|----------|--------------|----------|--------------|
| Peripheral | Bus      | Base address | Bus      | Base address |
| DEBUG      | APB2     | 0x40015800   | CPU core | 0xE0042000   |

## 3.3 Functional differences

This section describes the peripheral differences between AT32F421 and GX32E230.

## 3.3.1 CRM interface

• The differences related to CRM (Clock and reset management) in the AT32F421 series versus GX32E230 are presented in *Table 4*.



| CRM    | GX32E230                            | AT32F421                          |  |
|--------|-------------------------------------|-----------------------------------|--|
| HICK   | 8 MHz RC                            | 48 MHz RC divided by 6            |  |
| HEXT   | 4-32 MHz                            | 4-25 MHz                          |  |
| HICK14 | 28 MHz RC for ADC                   | NA                                |  |
| HICK48 | NA                                  | 48 MHz RC                         |  |
| CLKOUT | HICK28, LICK, LEXT, HICK, HEXT, PLL | ADCCLK, SYSCLK, LICK, LEXT, HICK, |  |
|        | and PLL/2                           | HEXT, PLL/2 and PLL/4             |  |

#### Table 4. CRM differences

## 3.3.2 DMA interface

• The differences related to DMA in AT32F421 series versus GX32E230 are presented in *Table 5*.

| Peripheral | DMA request | GX32E230 | AT32F421      |
|------------|-------------|----------|---------------|
| 12S2       | I2S2_Rx     | NA       | DMA1_Channel2 |
| 1232       | I2S2_Tx     | NA       | DMA1_Channel3 |
| 12S2       | I2S2_Rx     | NA       | DMA1_Channel2 |
| 1232       | I2S2_Tx     | NA       | DMA1_Channel3 |

#### Table 5. DMA differences

## 3.3.3 GPIO interface

• The main difference related to GPIO between AT32F421 and GX32E230 is that the AT32F421 output mode does not support internal pull-up and pull-down.

#### Table 6. GPIO differences

| GPIO               | GX32E230 | AT32F421 |
|--------------------|----------|----------|
| Output mode        | PP       | PP       |
|                    | PP+PU    |          |
|                    | PP+PD    |          |
|                    | OD       | OD       |
|                    | OD+PU    |          |
|                    | OD+PD    |          |
| Alternate function | PP       | PP       |
|                    | PP+PU    |          |
|                    | PP+PD    |          |
|                    | OD       | OD       |
|                    | OD+PU    |          |
|                    | OD+PD    |          |



## 3.3.4 ADC interface

• *Table 7* presents the differences related to ADC between AT32F421 series and GX32E230 series:

| ADC                | GX32E230                          | AT32F421                          |  |
|--------------------|-----------------------------------|-----------------------------------|--|
| Number of channels | 10 channels + 2 internal channels | 15 channels + 3 internal channels |  |
| Resolution         | 6/8/10/12-bit                     | Fixed 12-bit                      |  |
| Olask              | Dual clock domain                 | APB clock                         |  |
| Clock              | (APB clock and HSI28 clock)       |                                   |  |
| Oversampling       | Hardware oversampling             | Software oversampling             |  |

#### Table 7. ADC differences

## 3.3.5 USART interface

• The USART peripheral in the AT32F421 is different from that of GX32E230 as they have different programming procedures, features and structure. Thus the code written for the GX32E230 series using the USART needs to be rewritten to run on AT32F421 series.

## 3.3.6 CRM PLL

• For AT32F421, it is necessary to configure the PLL\_FREF parameters (CRM\_PLL [26:24] bit) in the reference configuration table according to the PLL clock source used before programming and enabling CRM PLL.

### 3.3.7 FLASH interface

• The Flash memory differences between AT32F421 and GX32E230 are shown in Table 8.

| SYSCLK Range | GX32E230                  | AT32F421                   |
|--------------|---------------------------|----------------------------|
| Zero wait    | 0 MHz < SYSCLK <= 24 MHz  | 0 MHz < SYSCLK <= 32 MHz   |
| One wait     | 24 MHz < SYSCLK <= 48 MHz | 32 MHz < SYSCLK <= 64 MHz  |
| Two waits    | 48 MHz < SYSCLK <= 72 MHz | 64 MHz < SYSCLK <= 96 MHz  |
| Three waits  | NA                        | 96 MHz < SYSCLK <= 120 MHz |

#### Table 8. Flash memory differences

### 3.3.8 SPI interface

- AT32F421 removes the following SPI features versus GX32E230:
- 1. TI mode configuration
- 2. NSSP mode configuration
- 3. TxRx buffers
- 4. SPI1 master mode extended QSPI
- 5. Configurable Frame Size

AT32F421 has additional features as follows:

- 1. SPI can be used as I2S feature
- 2. Support real-time synchronization between I2S WS and Data
- 3. SPI speed up to 50 MHz



### 3.3.9 CMP interface

• AT32F421 is not compatible with GX32E230 with respect to CMP control register. AT32F421 supports blanking output feature.

### 3.3.10 RTC interface

 AT32F421 only supports tamper detection 0 (tamper0), not tamper 1, compared to GX32E230.

## 3.3.11 Security library (sLib)

 Security library (sLib) feature is provided to prevent important IP-code from being modified or read by end applications so as to enhance security level.

## 3.3.12 GPIO 5V-tolerant compatibility

- AT32F421 provides more 5V-tolerant input pins compared to GX32E230, except PC14, PC15, PF0 and PF1 (the input level of these pins should not exceed VDD + 0.3V).
- All other pins are 5V-tolerant.



## 4 Revision history

Table 9. Document revision history

| Date       | Revision | Changes         |
|------------|----------|-----------------|
| 2022.02.25 | 2.0.0    | Initial release |

#### **IMPORTANT NOTICE – PLEASE READ CAREFULLY**

Purchasers are solely responsible for the selection and use of ARTERY's products and services, and ARTERY assumes no liability whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY's terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY's products are not designed or authorized for use in: (A) any application with special requirements of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C) any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers' unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers' risk, and is solely responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any manner whatsoever, any liability of ARTERY.

© 2022 Artery Technology -All rights reserved