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FAQ0138 

Frequently Asked Questions 

AT32F407/437 Ethernet data packet lost  

 

Questions:  

If data packets are lost when AT32F407/437 is using EMAC port to transceive Ethernet data, how to fix this 
problem? 

 

Answer： 

1. Check the clock source of Ethernet PHY 

Never use PLL-divided 25MHz/50MHz to clock Ethernet PHY, as PLL-based clock may not be able to 
meet Ethernet PHY’s clock requirements and cause possible loss of data packets. 

Here we will show how to provide a clock source to Ethernet PHY. 

In order to use EMAC on AT32F407/437, it is necessary to provide 25MHz/50MHz clock to Ethernet 
PHY. 

 To provide 25MHz clock to Ethernet PHY, follow Figure 1 and Figure 2 below for more information. 

 To provide 50MHz clock to Ethernet PHY, follow Figure 3 below for details. It is recommended to 
directly connect a 50 crystal oscillator to Ethernet PHY 

Note: Never use PLL-divided 25MHzz/50MHz as a clock source of Ethernet PHY. 

Use a 25MHz crystal oscillator as HEXT of AT32F407, select HEXT as CLKOUT(PA8) clock source, 
and CLKOUT outputs a 25MHz to Ethernet PHY, as shown in Figure 1. 

Figure 1 CLKOUT outputs HEXT 
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In Figure 2, directly select a 25MHz crystal oscillator as a clock source of Ethernet PHY. 

Figure 2 25MHz as PHY clock 
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In Figure 3, use a 50MHz crystal oscillator as Ethernet PHY clock. 

Figure 3 50MHz as PHY clock 
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2. Check if there is overflow and error occurring during EMA receive and transmit 

A. For EMA receiver, confirm if there is receive overflow by checking the OVF bit of the 
EMAC_DMASTS register 

 

If the OVF bit is set, it indicates a lower software processing speed so that it cannot read all data from 
buffer area in time and thus cause overflow.  

In this case, proceed as follows: 

 Add the number of receive buffers (this will add the use of internal memory) 

#define EMAC_RXBUFNB        10  //the number of receive buffer 

#define EMAC_TXBUFNB        10  //the number of transmit buffer 

 Increase software processing speed 

This can be achieved by using a maximum frequency (must be within spec) 

B．For EMAC transmitter, check if there is a transmit error. For example, check if there is an ERROR 

reported as shown below. 

 

If there is an ERROR reported, it means that the software writes the transmit buffer so fast that EMAC 
is not able to send all data in the transmit buffer in time 

In this case, proceed as follows: 

 Add the number of transmit buffers (this will increase the use of internal memory) 

#define EMAC_RXBUFNB        10  //the number of receive buffer 

#define EMAC_TXBUFNB        10  //the number of transmit buffer 

 Reduce the speed of software writing the transmit buffer area 

If EMAC speed is 100Mbps, the theoretical bus speed can get to 12.5MB/s. However it is not 
recommend to exceed such speed when writing the transmit buffer. The reason is that there may 
be other protocol overheads running on the bus, which means that the actual bus speed will be 
lower than 12.5MB/s. 

 Add a “transfer complete” judgement to guarantee enough buffer for data storage 
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In the following example, it will check if the next buffer area has been fully transmitted after each 
transmit complete, in which, “timeout” value can be modified according to actual data size. 

error_status emac_txpkt_chainmode(u16 FrameLength) 

{ 

  uint32_t timeout = 0xFFFF; 

  /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */ 

  if((dma_tx_desc_to_set->status & EMAC_DMATXDESC_OWN) != (u32)RESET) 

  { 

    /* Return ERROR: OWN bit set */ 

    return ERROR; 

  } 

 

  /* Setting the Frame Length: bits[12:0] */ 

  dma_tx_desc_to_set->controlsize = (FrameLength & EMAC_DMATXDESC_TBS1); 

 

  /* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */ 

  dma_tx_desc_to_set->status |= EMAC_DMATXDESC_LS | EMAC_DMATXDESC_FS; 

 

  /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ 

  dma_tx_desc_to_set->status |= EMAC_DMATXDESC_OWN; 

  /* When Tx Buffer unavailable flag is set: clear it and resume transmission */ 

  if(emac_dma_flag_get(EMAC_DMA_TBU_FLAG)) 

  { 

    /* Clear TBUS ETHERNET DMA flag */ 

    emac_dma_flag_clear(EMAC_DMA_TBU_FLAG); 

    /* Resume DMA transmission*/ 

    EMAC_DMA->tpd_bit.tpd = 0; 

  } 

 

  /* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */ 

  /* Chained Mode */ 

  /* Selects the next DMA Tx descriptor list for next buffer to send */ 

  dma_tx_desc_to_set=(emac_dma_desc_type*) (dma_tx_desc_to_set->buf2nextdescaddr); 

 

  while((dma_tx_desc_to_set->status & EMAC_DMATXDESC_OWN) != (u32)RESET) 

  { 

    if((timeout --) == 0) 

    { 

      break; 

    } 

  } 

  /* Return SUCCESS */ 

  return SUCCESS; 

} 
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Type: MCU application 

Applicable products: AT32F407/437 

Main function: EMAC 

Other function: None 
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