
 Byte and half-word read/write Flash with WDT enabled

2022.3.24 1 Rev. 2.0.0

FAQ0106

Frequently Asked Questions

Byte and half-word Read and write Flash when WDT enabled

Questions:

How to read and write Flash in byte and half-word mode when watchdog is enabled?

Answer：

Add wdt_counter_reload (); before the flash_sector_erase(sector_position * SECTOR_SIZE +
FLASH_BASE); and set watchdog time to 26 seconds to avoid the occurrence of watchdog timeout-triggered
system reset during Flash erase or write operation.

Watchdog feeding time: (40 kHz HICK, 0xff represents the maximum clock frequency division, and 0xfff
represents the maximum watchdog feeding time)

𝑡𝑊𝐷𝑇 =
1

40𝑘𝐻𝑧/0𝑥𝑓𝑓
× 0𝑥𝑓𝑓𝑓

Add read/write byte function on top of the previous BSP read/write half-word function. See appendix 1 for
function source code.

void flash_read_byte(uint32_t read_addr, uint8_t *p_buffer, uint16_t num_read);

void flash_write_byte_nocheck(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write);

In flash.h, use “#define WDT_EN” to enable WDT and feed it. Feeding operation is implemented in the
“flash_write_byte” and “flash_write” functions in flash.c. Note that at the end of the two functions, users should
load the watchdog with the value programmed before Flash write operation. See appendix 1 for source code.

Read/write Flash function is made easy for users to select byte or half-word operation mode

Write Flash function: select byte or half-word mode by selecting the following parameters

/**

 * @brief Write Flash function selects write byte or half-word mode through the following parameters

 * @param read_addr: (parameter 1) Flash start address where data are to be written

 * @param _8pbuffer: (parameter 2) Array of bytes that are written to Flash (this value is 0 for half-word data)

 * @param _16pbuffer: (parameter 3) Array of half words that are written to Flash (this value is 0 for byte data)

 * @param num_read: (parameter 4) the count of data to be written

 * @param _16bit_is_1_8bit_is_0: (parameter 5) half words or byte selection (if this value is 1, it is a half-word
operation. If this value is 0, it means byte operation mode)

 */

void flash_write_halfword_or_byte(uint32_t write_addr,uint8_t* _8bitpbuffer, uint16_t*_16bitpbuffer,uint16_t
num_write,uint8_t _16bit_is_1_8bit_is_0)

{

 if(_16bit_is_1_8bit_is_0==0)

 flash_write_byte(write_addr,_8bitpbuffer,num_write);

 else

 flash_write(write_addr,_16bitpbuffer,num_write);

}

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 2 Rev. 2.0.0

Read Flash function: select byte or half-word operation mode through the following parameters:

/**

 * @brief Read Flash function selects read byte or half words through the following parameters

 * @param read_addr: (parameter 1) the address of Flash to be read

 * @param _8pbuffer: (parameter 2) Array of bytes that are read into Flash

 * @param _16pbuffer: (parameter 3) Array of half words that are read into Flash

 * @param num_read: (parameter 4) the count of data to be read

 * @param _16bit_is_1_8bit_is_0: (parameter 5) half-word or byte selection

 */

void flash_read_halfword_or_byte(uint32_t read_addr,uint8_t *_8pbuffer, uint16_t *_16pbuffer,uint16_t num_read,uint8_t
_16bit_is_1_8bit_is_0)

{

 if(_16bit_is_1_8bit_is_0 == 0)

 flash_read_byte(read_addr, _8pbuffer, num_read);

 else

 flash_read(read_addr, _16pbuffer, num_read);

}

Appendix 1: replace flash.c code located in the BSP library\examples\flash\flash_write_read\src with the
following code

#include "at32f403a_407_board.h"

#include "flash.h"

#if FLASH_SIZE<256

#define SECTOR_SIZE 1024 //byte

#else

#define SECTOR_SIZE 2048

#endif

uint16_t flash_buf[SECTOR_SIZE / 2]; //up to 2KB

uint8_t flash_byte_buf[SECTOR_SIZE]; //up to 2KB

/**

 * @brief read data using halfword mode read data at a given address

 * @param read_addr: the address of reading start address

 * @param p_buffer: the buffer of reading data data pointer

 * @param num_read: the number of reading data the number of half words (16 bits)

 * @retval none

 */

void flash_read(uint32_t read_addr, uint16_t *p_buffer, uint16_t num_read)

{

 uint16_t i;

 for(i = 0; i < num_read; i++)

 {

 p_buffer[i] = *(uint16_t*)(read_addr); //read 2KB

 read_addr += 2; //offset 2KB

 }

}

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 3 Rev. 2.0.0

/**

 * @brief read data using byte mode read data at at a given address

 * @param read_addr: the address of reading start address

 * @param p_buffer: the buffer of reading data data pointer

 * @param num_read: the number of reading data the number of half words (16 bits)

 * @retval none

 */

void flash_read_byte(uint32_t read_addr, uint8_t *p_buffer, uint16_t num_read)

{

 uint16_t i;

 for(i = 0; i < num_read; i++)

 {

 p_buffer[i] = *(uint8_t*)(read_addr); //read 1KB

 read_addr++; //offset 1KB

 }

}

/**

 * @brief Read Flash function select byte or half-word mode through the following parameters

 * @param read_addr: (parameter 1) the address of Flash to be read

 * @param _8pbuffer: (parameter 2) Array of bytes that are to be read into Flash

 * @param _16pbuffer: (parameter 3) Array of half words that are to be read into Flash

 * @param num_read: (parameter 4) the number of data to be read

 * @param _16bit_is_1_8bit_is_0: (parameter 5) select half words or byte

 */

void flash_read_halfword_or_byte(uint32_t read_addr,uint8_t *_8pbuffer, uint16_t *_16pbuffer,uint16_t num_read,uint8_t
_16bit_is_1_8bit_is_0)

{

 if(_16bit_is_1_8bit_is_0 == 0)

 flash_read_byte(read_addr, _8pbuffer, num_read);

 else

 flash_read(read_addr, _16pbuffer, num_read);

}

/**

 * @brief write data using byte mode without checking

 * @param write_addr: the address of writing start address

 * @param p_buffer: the buffer of writing data data pointer

 * @param num_write: the number of writing data the number of bytes (8 bits)

 * @retval none

 */

void flash_write_byte_nocheck(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write)

{

 uint16_t i;

 for(i = 0; i < num_write; i++)

 {

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 4 Rev. 2.0.0

 flash_byte_program(write_addr, p_buffer[i]);

 write_addr++;//address plus 1

 }

}

/**

 * @brief write data using halfword mode without checking

 * @param write_addr: the address of writing start address

 * @param p_buffer: the buffer of writing data data pointer

 * @param num_write: the number of writing data the number of half words (16 bits)

 * @retval none

 */

void flash_write_nocheck(uint32_t write_addr, uint16_t *p_buffer, uint16_t num_write)

{

 uint16_t i;

 for(i = 0; i < num_write; i++)

 {

 flash_halfword_program(write_addr, p_buffer[i]);

 write_addr += 2;//address plus 2

 }

}

/**

 * @brief write data using halfword mode with checking write data of a certain length to a given address

 * @param write_addr: the address of writing start address (it must be a multiple of 2)

 * @param p_buffer: the buffer of writing data data pointer

 * @param num_write: the number of writing data the number of half words (the number of 16-bit data to be written)

 * @retval none

 */

void flash_write(uint32_t write_addr, uint16_t *p_buffer, uint16_t num_write)

{

 uint32_t offset_addr; // this is the address after removing 0X08000000

 uint32_t sector_position; //sector address

 uint16_t sector_offset; //sector offset address (counted in 16-bit word)

 uint16_t sector_remain; // remaining address in a sector (counted in 16-bit word)

 uint16_t i;

 flash_unlock(); //unlock

 offset_addr = write_addr - FLASH_BASE; //actual offset address

 sector_position = offset_addr / SECTOR_SIZE; //sector address 0~512

 sector_offset = (offset_addr % SECTOR_SIZE) / 2; //offset within a sector (in two bytes unit)

 sector_remain = SECTOR_SIZE / 2 - sector_offset; //the remaining size in a sector

 if(num_write <= sector_remain)

 sector_remain = num_write; // no more than this sector range

 while(1)

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 5 Rev. 2.0.0

 {

#ifdef WDT_EN

 /* disable register write protection */

 wdt_register_write_enable(TRUE);

 wdt_divider_set(WDT_CLK_DIV_256); /* set the wdt divider value */

 wdt_reload_value_set(0xfff);/* set the maximum watchdog time */

 wdt_counter_reload();/* feed the watchdog */

#endif

 flash_read(sector_position * SECTOR_SIZE + FLASH_BASE, flash_buf, SECTOR_SIZE / 2); //read the entire sector

 for(i = 0; i < sector_remain; i++) //data check

 {

 if(flash_buf[sector_offset + i] != 0xffff)

 break;//erase

 }

 if(i < sector_remain)//erase

 {

#ifdef WDT_EN

 wdt_counter_reload(); /* feed the watchdog */

#endif

 flash_sector_erase(sector_position * SECTOR_SIZE + FLASH_BASE);//erase this sector

 for(i = 0; i < sector_remain; i++)

 {

 flash_buf[i + sector_offset] = p_buffer[i]; //copy

 }

#ifdef WDT_EN

 wdt_counter_reload(); /* feed the watchdog */

#endif

 flash_write_nocheck(sector_position * SECTOR_SIZE + FLASH_BASE, flash_buf, SECTOR_SIZE / 2);//write the
entire sector

 }

 else

 {

#ifdef WDT_EN

 wdt_counter_reload(); /* feed watchdog */

#endif

 flash_write_nocheck(write_addr, p_buffer, sector_remain);// write the remaining sector address

 }

 if(num_write == sector_remain)

 break;//end of write

 else//end of write

 {

 sector_position++; //sector address plus 1

 sector_offset = 0; //offset 0

 p_buffer += sector_remain; //pointer offset

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 6 Rev. 2.0.0

 write_addr += (sector_remain * 2); //write address offset

 num_write -= sector_remain; // the number of byte ((16 bits)) is decremental

 if(num_write > (SECTOR_SIZE / 2))

 sector_remain = SECTOR_SIZE / 2; // the next sector is still not finished

 else

 sector_remain = num_write; //the next sector is finished

 }

 }

 flash_lock(); //lock

#ifdef WDT_EN

 /* user watchdog value reset */

 /*

 wdt_register_write_enable(TRUE);

 wdt_divider_set(WDT_CLK_DIV_4);

 wdt_reload_value_set(1000-1);

 wdt_counter_reload();

 */

#endif

}

/**

 * @brief write data using byte mode with checking write data of a certain length at a given address

 * @param write_addr: the address of writing start address

 * @param p_buffer: the buffer of writing data data pointer

 * @param num_write: the number of writing data the number of bytes (means the number of 8-bit data to be written)

 * @retval none

 */

void flash_write_byte(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write)

{

 uint32_t offset_addr; //the address after removing0X08000000

 uint32_t sector_position; //sector address

 uint16_t sector_offset; //sector offset address (counted in 16-bit words)

 uint16_t sector_remain; // remaining address in a sector (counted in 16-bit words)

 uint16_t i;

 flash_unlock(); //unlock

 offset_addr = write_addr - FLASH_BASE; //actual offset address

 sector_position = offset_addr / SECTOR_SIZE; //sector address 0~512

 sector_offset = (offset_addr % SECTOR_SIZE); // offset within a sector (in 2KB terms), means the space occupied
by less than a sector

 sector_remain = SECTOR_SIZE - sector_offset; // remaining sector size

 if(num_write <= sector_remain)

 sector_remain = num_write; //no more than this sector size

 while(1)

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 7 Rev. 2.0.0

 {

#ifdef WDT_EN

 /* disable register write protection */

 wdt_register_write_enable(TRUE);

 wdt_divider_set(WDT_CLK_DIV_256);

 wdt_reload_value_set(0xfff);/* set the maximum watchdog time */

 wdt_counter_reload();/* feed the watchdog */

#endif

 flash_read_byte(sector_position * SECTOR_SIZE + FLASH_BASE, flash_byte_buf, SECTOR_SIZE); //read the
entire sector

 for(i = 0; i < sector_remain; i++) //data check

 {

 if(flash_byte_buf[sector_offset + i] != 0xff)

 break;//need erase operation

 }

 if(i < sector_remain)// need erase operation

 {

#ifdef WDT_EN

 wdt_counter_reload(); /* feed the watchdog */

#endif

 flash_sector_erase(sector_position * SECTOR_SIZE + FLASH_BASE);// erase the entire sector

 for(i = 0; i < sector_remain; i++)

 {

 flash_byte_buf[i + sector_offset] = p_buffer[i]; //copy

 }

#ifdef WDT_EN

 wdt_counter_reload(); /* feed the watchdog */

#endif

 flash_write_byte_nocheck(sector_position * SECTOR_SIZE + FLASH_BASE, flash_byte_buf,
SECTOR_SIZE);//write the entire sector

 }

 else

 {

#ifdef WDT_EN

 wdt_counter_reload(); /* feed watchdog */

#endif

 flash_write_byte_nocheck(write_addr, p_buffer, sector_remain);//write the remaining sector range

 }

 if(num_write == sector_remain)

 break;//end of write

 else//end of write

 {

 sector_position++; //sector address plus 1

 sector_offset = 0; //offset address 0

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 8 Rev. 2.0.0

 p_buffer += sector_remain; //pointer offset

 write_addr += (sector_remain); //write address offset

 num_write -= sector_remain; //the number of byte (16 bits) is decremental

 if(num_write > (SECTOR_SIZE))

 sector_remain = SECTOR_SIZE; //the next sector is still finished

 else

 sector_remain = num_write; //the next sector is finished

 }

 }

 flash_lock(); //lock

#ifdef WDT_EN

 /* ser watchdog feed value reset */

 /*

 wdt_register_write_enable(TRUE);

 wdt_divider_set(WDT_CLK_DIV_4);

 wdt_reload_value_set(1000-1);

 wdt_counter_reload();

 */

#endif

}

/**

 * @brief write Flash function selects byte or half-word mode through the following parameters

 * @param read_addr: (parameter 1) Flash start address to be written

 * @param _8pbuffer: (parameter 2) Array of bytes that are to be written into Flash (this value is 0 if it is a half-word
mode)

 * @param _16pbuffer: (parameter 3) Array of half words that are to be written into Flash (this value is 0 if it is a byte
operation mode)

 * @param num_read: (parameter 4) the number of data to be written

 * @param _16bit_is_1_8bit_is_0: (parameter 5) select byte or half-word mode (if this value is 1, it means a half-
word operation; if this value is 0, it is a byte operation)

 */

void flash_write_halfword_or_byte(uint32_t write_addr,uint8_t* _8bitpbuffer, uint16_t*_16bitpbuffer,uint16_t
num_write,uint8_t _16bit_is_1_8bit_is_0)

{

 if(_16bit_is_1_8bit_is_0==0)

 flash_write_byte(write_addr,_8bitpbuffer,num_write);

 else

 flash_write(write_addr,_16bitpbuffer,num_write);

}

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 9 Rev. 2.0.0

Appendix 2: replace flash.h code located in the BSP library\examples\flash\flash_write_read\inc with the
following code

#include "at32f403a_407_board.h"

#define FLASH_SIZE 1024 //AT32F4xx FLASH size (unit: K)

#define WDT_EN //enable WDT and feed it (if this macro definition is commented, you can see that program
is reset by WDT even if it has not yet finished)

/** @defgroup FLASH_write_read_functions */

void flash_read(uint32_t read_addr, uint16_t *p_buffer, uint16_t num_read);

void flash_read_byte(uint32_t read_addr, uint8_t *p_buffer, uint16_t num_read);

void flash_read_halfword_or_byte(uint32_t read_addr,uint8_t *_8pbuffer, uint16_t *_16pbuffer,uint16_t num_read,uint8_t
_16bit_is_1_8bit_is_0);

void flash_write_byte_nocheck(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write);

void flash_write_nocheck(uint32_t write_addr, uint16_t *p_buffer, uint16_t num_write);

void flash_write(uint32_t write_addr,uint16_t *p_Buffer, uint16_t num_write);

void flash_write_byte(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write);

void flash_write_halfword_or_byte(uint32_t write_addr,uint8_t* _8bitpbuffer, uint16_t*_16bitpbuffer,uint16_t
num_write,uint8_t _16bit_is_1_8bit_is_0);

Type: MCU application

Applicable products: AT32F4xx series

Main function: Flash, WDT

Other function: None

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 10 Rev. 2.0.0

Document revision history

Date Revision Changes

2022.3.24 2.0.0 Initial release

 Byte and half-word read/write Flash with WDT enabled

2022.3.24 11 Rev. 2.0.0

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any

third party products or services, it shall not be deemed a license granted by ARTERY for the use of such third party products or services, or

any intellectual property contained therein, or considered as a warranty regarding the use in any manner of such third party products or

services or any intellectual property contained therein.

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the

use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose

(and their equivalents under the laws of any jurisdiction), or infringement on any patent, copyright or other intellectual property right.

Purchasers hereby agree that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements

of safety such as life support and active implantable device, or system with functional safety requirements; (B) any aircraft application; (C)

any aerospace application or environment; (D) any weapon application, and/or (E) or other uses where the failure of the device or product

could result in personal injury, death, property damage. Purchasers’ unauthorized use of them in the aforementioned applications, even if

with a written notice, is solely at purchasers’ risk, and Purchasers are solely responsible for meeting all legal and regulatory requirements in

such use.

Resale of ARTERY products with provisions different from the statements and/or technical characteristics stated in this document shall

immediately void any warranty grant by ARTERY for ARTERY’s products or services described herein and shall not create or expand any

liability of ARTERY in any manner whatsoever.

© 2022 Artery Technology -All rights reserved

