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FAQ0106 

Frequently Asked Questions 

Byte and half-word Read and write Flash when WDT enabled 

Questions:  

How to read and write Flash in byte and half-word mode when watchdog is enabled? 

 

Answer： 

Add wdt_counter_reload (); before the flash_sector_erase(sector_position * SECTOR_SIZE + 
FLASH_BASE); and set watchdog time to 26 seconds to avoid the occurrence of watchdog timeout-triggered 
system reset during Flash erase or write operation. 

Watchdog feeding time: (40 kHz HICK, 0xff represents the maximum clock frequency division, and 0xfff 
represents the maximum watchdog feeding time) 

𝑡𝑊𝐷𝑇 =
1

40𝑘𝐻𝑧/0𝑥𝑓𝑓
× 0𝑥𝑓𝑓𝑓 

Add read/write byte function on top of the previous BSP read/write half-word function. See appendix 1 for 
function source code. 

void flash_read_byte(uint32_t read_addr, uint8_t *p_buffer, uint16_t num_read); 

void flash_write_byte_nocheck(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write); 

In flash.h, use “#define WDT_EN” to enable WDT and feed it. Feeding operation is implemented in the 
“flash_write_byte” and “flash_write” functions in flash.c. Note that at the end of the two functions, users should 
load the watchdog with the value programmed before Flash write operation. See appendix 1 for source code. 

Read/write Flash function is made easy for users to select byte or half-word operation mode 

Write Flash function: select byte or half-word mode by selecting the following parameters 

/**  

  * @brief Write Flash function selects write byte or half-word mode through the following parameters 

 * @param read_addr: (parameter 1) Flash start address where data are to be written 

 * @param _8pbuffer: (parameter 2) Array of bytes that are written to Flash (this value is 0 for half-word data) 

 * @param _16pbuffer: (parameter 3) Array of half words that are written to Flash (this value is 0 for byte data) 

 * @param num_read: (parameter 4) the count of data to be written 

 * @param _16bit_is_1_8bit_is_0: (parameter 5) half words or byte selection (if this value is 1, it is a half-word 
operation. If this value is 0, it means byte operation mode) 

  */ 

void flash_write_halfword_or_byte(uint32_t write_addr,uint8_t* _8bitpbuffer, uint16_t*_16bitpbuffer,uint16_t 
num_write,uint8_t _16bit_is_1_8bit_is_0) 

{ 

 if(_16bit_is_1_8bit_is_0==0) 

  flash_write_byte(write_addr,_8bitpbuffer,num_write); 

 else 

  flash_write(write_addr,_16bitpbuffer,num_write); 

} 
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Read Flash function: select byte or half-word operation mode through the following parameters: 

/**  

  * @brief Read Flash function selects read byte or half words through the following parameters  

 * @param read_addr: (parameter 1) the address of Flash to be read 

 * @param _8pbuffer: (parameter 2) Array of bytes that are read into Flash  

 * @param _16pbuffer: (parameter 3) Array of half words that are read into Flash  

 * @param num_read: (parameter 4) the count of data to be read 

 * @param _16bit_is_1_8bit_is_0: (parameter 5) half-word or byte selection 

  */ 

void flash_read_halfword_or_byte(uint32_t read_addr,uint8_t *_8pbuffer, uint16_t *_16pbuffer,uint16_t num_read,uint8_t 
_16bit_is_1_8bit_is_0) 

{ 

 if(_16bit_is_1_8bit_is_0 == 0) 

  flash_read_byte( read_addr, _8pbuffer, num_read); 

 else 

  flash_read( read_addr, _16pbuffer, num_read); 

} 

Appendix 1: replace flash.c code located in the BSP library\examples\flash\flash_write_read\src with the 
following code 

#include "at32f403a_407_board.h" 

#include "flash.h" 

#if FLASH_SIZE<256 

#define SECTOR_SIZE 1024 //byte 

#else 

#define SECTOR_SIZE 2048 

#endif 

uint16_t flash_buf[SECTOR_SIZE / 2]; //up to 2KB 

uint8_t flash_byte_buf[SECTOR_SIZE]; //up to 2KB 

/** 

  * @brief  read data using halfword mode  read data at a given address 

  * @param  read_addr: the address of reading  start address 

  * @param  p_buffer: the buffer of reading data  data pointer 

  * @param  num_read: the number of reading data  the number of half words (16 bits) 

  * @retval none 

  */ 

void flash_read(uint32_t read_addr, uint16_t *p_buffer, uint16_t num_read) 

{ 

  uint16_t i; 

  for(i = 0; i < num_read; i++) 

  { 

    p_buffer[i] = *(uint16_t*)(read_addr); //read 2KB 

    read_addr += 2; //offset 2KB 

  } 

} 
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/** 

  * @brief  read data using byte mode  read data at at a given address 

  * @param  read_addr: the address of reading  start address 

  * @param  p_buffer: the buffer of reading data  data pointer 

  * @param  num_read: the number of reading data  the number of half words (16 bits) 

  * @retval none 

  */ 

void flash_read_byte(uint32_t read_addr, uint8_t *p_buffer, uint16_t num_read) 

{ 

  uint16_t i; 

  for(i = 0; i < num_read; i++) 

  { 

    p_buffer[i] = *(uint8_t*)(read_addr); //read 1KB 

    read_addr++; //offset 1KB 

  } 

} 

/**  

  * @brief Read Flash function select byte or half-word mode through the following parameters 

 * @param read_addr: (parameter 1) the address of Flash to be read 

 * @param _8pbuffer: (parameter 2) Array of bytes that are to be read into Flash 

 * @param _16pbuffer: (parameter 3) Array of half words that are to be read into Flash 

 * @param num_read: (parameter 4) the number of data to be read 

 * @param _16bit_is_1_8bit_is_0: (parameter 5) select half words or byte 

  */ 

void flash_read_halfword_or_byte(uint32_t read_addr,uint8_t *_8pbuffer, uint16_t *_16pbuffer,uint16_t num_read,uint8_t 
_16bit_is_1_8bit_is_0) 

{ 

 if(_16bit_is_1_8bit_is_0 == 0) 

  flash_read_byte( read_addr, _8pbuffer, num_read); 

 else 

  flash_read( read_addr, _16pbuffer, num_read); 

} 

/** 

  * @brief  write data using byte mode without checking 

  * @param  write_addr: the address of writing start address 

  * @param  p_buffer: the buffer of writing data data pointer 

  * @param  num_write: the number of writing data  the number of bytes (8 bits) 

  * @retval none 

  */ 

void flash_write_byte_nocheck(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write) 

{              

  uint16_t i; 

  for(i = 0; i < num_write; i++) 

  { 
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    flash_byte_program(write_addr, p_buffer[i]); 

    write_addr++;//address plus 1 

  }   

}  

/** 

  * @brief  write data using halfword mode without checking  

  * @param  write_addr: the address of writing start address 

  * @param  p_buffer: the buffer of writing data data pointer 

  * @param  num_write: the number of writing data the number of half words (16 bits) 

  * @retval none 

  */ 

void flash_write_nocheck(uint32_t write_addr, uint16_t *p_buffer, uint16_t num_write) 

{              

  uint16_t i; 

  for(i = 0; i < num_write; i++) 

  { 

    flash_halfword_program(write_addr, p_buffer[i]); 

    write_addr += 2;//address plus 2 

  }   

}  

/** 

  * @brief  write data using halfword mode with checking   write data of a certain length to a given address 

  * @param  write_addr: the address of writing start address (it must be a multiple of 2) 

  * @param  p_buffer: the buffer of writing data data pointer 

  * @param  num_write: the number of writing data the number of half words (the number of 16-bit data to be written) 

  * @retval none 

  */ 

void flash_write(uint32_t write_addr, uint16_t *p_buffer, uint16_t num_write)   

{ 

  uint32_t offset_addr;   // this is the address after removing 0X08000000 

  uint32_t sector_position; //sector address 

  uint16_t sector_offset;    //sector offset address (counted in 16-bit word) 

  uint16_t sector_remain;    // remaining address in a sector (counted in 16-bit word)    

  uint16_t i;     

 

  flash_unlock();  //unlock 

  offset_addr = write_addr - FLASH_BASE; //actual offset address 

  sector_position = offset_addr / SECTOR_SIZE; //sector address  0~512 

  sector_offset = (offset_addr % SECTOR_SIZE) / 2; //offset within a sector (in two bytes unit) 

  sector_remain = SECTOR_SIZE / 2 - sector_offset; //the remaining size in a sector   

  if(num_write <= sector_remain) 

    sector_remain = num_write; // no more than this sector range 

  while(1)  
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  { 

#ifdef WDT_EN 

 /* disable register write protection */ 

 wdt_register_write_enable(TRUE); 

 wdt_divider_set(WDT_CLK_DIV_256);    /* set the wdt divider value */ 

 wdt_reload_value_set(0xfff);/* set the maximum watchdog time */ 

 wdt_counter_reload();/* feed the watchdog */ 

#endif  

    flash_read(sector_position * SECTOR_SIZE + FLASH_BASE, flash_buf, SECTOR_SIZE / 2); //read the entire sector 

    for(i = 0; i < sector_remain; i++) //data check 

    { 

      if(flash_buf[sector_offset + i] != 0xffff) 

        break;//erase 

    } 

    if(i < sector_remain)//erase 

    { 

#ifdef WDT_EN 

 wdt_counter_reload(); /* feed the watchdog */ 

#endif 

      flash_sector_erase(sector_position * SECTOR_SIZE + FLASH_BASE);//erase this sector 

      for(i = 0; i < sector_remain; i++) 

      { 

        flash_buf[i + sector_offset] = p_buffer[i];    //copy 

      } 

#ifdef WDT_EN 

 wdt_counter_reload(); /* feed the watchdog */ 

#endif 

      flash_write_nocheck(sector_position * SECTOR_SIZE + FLASH_BASE, flash_buf, SECTOR_SIZE / 2);//write the 
entire sector   

    } 

    else 

    { 

#ifdef WDT_EN 

 wdt_counter_reload(); /* feed watchdog */ 

#endif 

      flash_write_nocheck(write_addr, p_buffer, sector_remain);// write the remaining sector address 

    } 

    if(num_write == sector_remain) 

      break;//end of write 

    else//end of write 

    { 

      sector_position++;           //sector address plus 1 

      sector_offset = 0;           //offset 0    

      p_buffer += sector_remain;      //pointer offset 
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      write_addr += (sector_remain * 2);  //write address offset 

      num_write -= sector_remain;      // the number of byte ((16 bits)) is decremental 

      if(num_write > (SECTOR_SIZE / 2)) 

        sector_remain = SECTOR_SIZE / 2; // the next sector is still not finished 

      else  

        sector_remain = num_write;   //the next sector is finished 

    } 

  } 

  flash_lock();  //lock 

#ifdef WDT_EN 

 /* user watchdog value reset */ 

 /* 

 wdt_register_write_enable(TRUE); 

   wdt_divider_set(WDT_CLK_DIV_4); 

 wdt_reload_value_set(1000-1); 

 wdt_counter_reload(); 

 */ 

#endif  

} 

 

/** 

  * @brief  write data using byte mode with checking  write data of a certain length at a given address 

  * @param  write_addr: the address of writing start address 

  * @param  p_buffer: the buffer of writing data data pointer 

  * @param  num_write: the number of writing data the number of bytes (means the number of 8-bit data to be written) 

  * @retval none 

  */ 

void flash_write_byte(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write)   

{ 

  uint32_t offset_addr;  //the address after removing0X08000000 

  uint32_t sector_position; //sector address 

  uint16_t sector_offset;    //sector offset address (counted in 16-bit words)  

  uint16_t sector_remain;    // remaining address in a sector (counted in 16-bit words)     

  uint16_t i;     

 

  flash_unlock();  //unlock 

  offset_addr = write_addr - FLASH_BASE; //actual offset address 

  sector_position = offset_addr / SECTOR_SIZE; //sector address  0~512 

  sector_offset = (offset_addr % SECTOR_SIZE); // offset within a sector (in 2KB terms), means the space occupied 
by less than a sector  

  sector_remain = SECTOR_SIZE - sector_offset; // remaining sector size   

  if(num_write <= sector_remain) 

    sector_remain = num_write; //no more than this sector size 

  while(1)  
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  { 

#ifdef WDT_EN 

 /* disable register write protection */ 

 wdt_register_write_enable(TRUE); 

 wdt_divider_set(WDT_CLK_DIV_256); 

 wdt_reload_value_set(0xfff);/* set the maximum watchdog time */ 

 wdt_counter_reload();/* feed the watchdog */ 

#endif  

    flash_read_byte(sector_position * SECTOR_SIZE + FLASH_BASE, flash_byte_buf, SECTOR_SIZE); //read the 
entire sector 

    for(i = 0; i < sector_remain; i++) //data check 

    { 

      if(flash_byte_buf[sector_offset + i] != 0xff) 

        break;//need erase operation 

    } 

    if(i < sector_remain)// need erase operation 

    { 

#ifdef WDT_EN 

 wdt_counter_reload(); /* feed the watchdog */ 

#endif 

      flash_sector_erase(sector_position * SECTOR_SIZE + FLASH_BASE);// erase the entire sector 

      for(i = 0; i < sector_remain; i++) 

      { 

        flash_byte_buf[i + sector_offset] = p_buffer[i];    //copy 

      } 

#ifdef WDT_EN 

 wdt_counter_reload(); /* feed the watchdog */ 

#endif 

      flash_write_byte_nocheck(sector_position * SECTOR_SIZE + FLASH_BASE, flash_byte_buf, 
SECTOR_SIZE);//write the entire sector 

    } 

    else 

    { 

#ifdef WDT_EN 

 wdt_counter_reload(); /* feed watchdog */ 

#endif 

      flash_write_byte_nocheck(write_addr, p_buffer, sector_remain);//write the remaining sector range 

    } 

    if(num_write == sector_remain) 

      break;//end of write 

    else//end of write 

    { 

      sector_position++;           //sector address plus 1 

      sector_offset = 0;           //offset address 0    
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      p_buffer += sector_remain;      //pointer offset 

      write_addr += (sector_remain);  //write address offset 

      num_write -= sector_remain;      //the number of byte (16 bits) is decremental 

      if(num_write > (SECTOR_SIZE)) 

        sector_remain = SECTOR_SIZE; //the next sector is still finished 

      else  

        sector_remain = num_write;   //the next sector is finished 

    } 

  } 

  flash_lock();  //lock 

#ifdef WDT_EN 

 /* ser watchdog feed value reset */ 

 /* 

 wdt_register_write_enable(TRUE); 

  wdt_divider_set(WDT_CLK_DIV_4); 

 wdt_reload_value_set(1000-1); 

 wdt_counter_reload(); 

 */ 

#endif  

} 

/**  

  * @brief write Flash function selects byte or half-word mode through the following parameters 

 * @param read_addr: (parameter 1) Flash start address to be written 

 * @param _8pbuffer: (parameter 2) Array of bytes that are to be written into Flash (this value is 0 if it is a half-word 
mode)  

 * @param _16pbuffer: (parameter 3) Array of half words that are to be written into Flash (this value is 0 if it is a byte 
operation mode)  

 * @param num_read: (parameter 4) the number of data to be written 

 * @param _16bit_is_1_8bit_is_0: (parameter 5) select byte or half-word mode (if this value is 1, it means a half-
word operation; if this value is 0, it is a byte operation)  

  */ 

void flash_write_halfword_or_byte(uint32_t write_addr,uint8_t* _8bitpbuffer, uint16_t*_16bitpbuffer,uint16_t 
num_write,uint8_t _16bit_is_1_8bit_is_0) 

{ 

 if(_16bit_is_1_8bit_is_0==0) 

  flash_write_byte(write_addr,_8bitpbuffer,num_write); 

 else 

  flash_write(write_addr,_16bitpbuffer,num_write); 

} 
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Appendix 2: replace flash.h code located in the BSP library\examples\flash\flash_write_read\inc with the 
following code 

#include "at32f403a_407_board.h" 

#define FLASH_SIZE 1024   //AT32F4xx FLASH size (unit: K) 

#define WDT_EN   //enable WDT and feed it (if this macro definition is commented, you can see that program 
is reset by WDT even if it has not yet finished)  

/** @defgroup FLASH_write_read_functions  */ 

void flash_read(uint32_t read_addr, uint16_t *p_buffer, uint16_t num_read); 

void flash_read_byte(uint32_t read_addr, uint8_t *p_buffer, uint16_t num_read); 

void flash_read_halfword_or_byte(uint32_t read_addr,uint8_t *_8pbuffer, uint16_t *_16pbuffer,uint16_t num_read,uint8_t 
_16bit_is_1_8bit_is_0); 

void flash_write_byte_nocheck(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write); 

void flash_write_nocheck(uint32_t write_addr, uint16_t *p_buffer, uint16_t num_write); 

void flash_write(uint32_t write_addr,uint16_t *p_Buffer, uint16_t num_write);           

void flash_write_byte(uint32_t write_addr, uint8_t *p_buffer, uint16_t num_write); 

void flash_write_halfword_or_byte(uint32_t write_addr,uint8_t* _8bitpbuffer, uint16_t*_16bitpbuffer,uint16_t 
num_write,uint8_t _16bit_is_1_8bit_is_0); 

 

Type: MCU application 

Applicable products: AT32F4xx series 

Main function: Flash, WDT 

Other function: None 
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