

Clock enable process in the at32f403_clock.c

2022.9.20 1 Rev 2.0.0

www.arterytek.com

FAQ0059

Frequently Asked Questions

Clock enable process in the at32f403_clock.c

Questions:

Clock enable process in the at32f403_clock.c

Answer：

In the at32f403_clock.c, the system_clock_config() function is used to configure system clock. When the HEXT
is directly used as the main system clock, or when HEXT is indirectly used as the clock source of PLL and then
the PLL is used as the main system clock, the following code will be executed:

#define HEXT_STABLE_DELAY (5000u)

#define PLL_STABLE_DELAY (500u)

/* reset crm */

crm_reset();

crm_clock_source_enable(CRM_CLOCK_SOURCE_HEXT, TRUE);

/* wait for hext stable ,specially for AT32F403*/

wait_stbl(HEXT_STABLE_DELAY);

/* wait till hext is ready */

while(crm_hext_stable_wait() == ERROR)

{

}

/* config pll clock resource */

crm_pll_config(CRM_PLL_SOURCE_HEXT_DIV, CRM_PLL_MULT_48, CRM_PLL_OUTPUT_RANGE_GT72MHZ);

/* enable pll */

crm_clock_source_enable(CRM_CLOCK_SOURCE_PLL, TRUE);

/* wait till pll is ready */

while(crm_flag_get(CRM_PLL_STABLE_FLAG) != SET)

{

}

/* config apb2clk */

crm_apb2_div_set(CRM_APB2_DIV_2);

/* config apb1clk */

crm_apb1_div_set(CRM_APB1_DIV_2);

/* 1step: config ahbclk div8 */

crm_ahb_div_set(CRM_AHB_DIV_8);

/* select pll as system clock source */

crm_sysclk_switch(CRM_SCLK_PLL);

/* wait till pll is used as system clock source */

while(crm_sysclk_switch_status_get() != CRM_SCLK_PLL)

{

}

/* delay */

http://www.arterytek.com/

Clock enable process in the at32f403_clock.c

2022.9.20 2 Rev 2.0.0

www.arterytek.com

wait_stbl(PLL_STABLE_DELAY);

/* 3step: config ahbclk to target div */

crm_ahb_div_set(CRM_AHB_DIV_1);

/* update system_core_clock global variable */
system_core_clock_update();

In this code there are two parts marked in red font. Their definitions are as follows:

Red segment 1:
“wait_stbl(HEXT_STABLE_DELAY);” is a delay command. The reason for this delay command is that the flag
ready flag is set too early, meaning that the crystal is not yet stabilized, and thus setting PLL or switching
system clock during this period may cause system failure. HEXT_STABLE_DELAY is set as 5000, and delay
time is around 2 ms. Based on actual measurements, if the HEXT is given with proper configuration, it is
possible to start further operations 2ms after the ready flag bit is set, without causing system error.

Note: It is important to prevent this delay code from being removed by compiler when in use.

Red segment 2:

This section demonstrates step-by-step code procedure to set AHB bus clock frequency division. It is operated
as follows: configure the AHB with a larger divider value before switching system clock to PLL (PLLCLK > 168
MHz), and then adjust the divider value step by step to the desired targeter value after the completion of system
clock switching. The reason for this is that setting too large AHB bus frequency at the moment when the system
clock is switched to high-frequency clock may trigger system failure.

crm_hext_stable_wait() is very relevant to HEXT vibration timing, as shown below:

#define HEXT_STARTUP_TIMEOUT ((uint16_t)0x3000) /*!< time out for hext start up */

error_status crm_hext_stable_wait(void)

{

 uint32_t stable_cnt = 0;

 error_status status = ERROR;

 while((crm_flag_get(CRM_HEXT_STABLE_FLAG) != SET) && (stable_cnt < HEXT_STARTUP_TIMEOUT))

 {

 stable_cnt ++;

 }

 if(crm_flag_get(CRM_HEXT_STABLE_FLAG) != SET)

 {

 status = ERROR;

 }

 else

 {

 status = SUCCESS;

 }

 return status;
}

After HEXT is enabled, code enters loop wait until the HEXT ready flag is set before moving to the next. But
time counter remains counting during loop wait period, so that if HEXT ready flag bit is not set and the timeout
defined in the HEXT_STARTUP_TIMEOUT is reached, HEXT start error occurs, forcing code to return to
ERROR, which has to handled by users in the system_clock_config().

Based on actual measurements, a high-quality HEXT, along with proper hardware configuration, can be
stabilized within around 800 μs, even a less-than-best HEXT with not-so-good hardware configuration can get
stable within 10 ms. The HEXT_STARTUP_TIMEOUT is set to 0x3000, meaning that the HEXT takes around
20 ms to be stable under best compiling configuration. If the HEXT is enabled and its ready flag bit is not set in

http://www.arterytek.com/

Clock enable process in the at32f403_clock.c

2022.9.20 3 Rev 2.0.0

www.arterytek.com

20ms, pointing to the potential issues such as matching, solder void or damage on the HEXT. This is why the
HEXT_STARTUP_TIMEOUT is provided with a reasonable timeout detect value, which can not only meet the
duration required for HEXT stabilization but also help detect possible hardware problems.

Additionally, it is necessary to ensure that hardware circuit design conforms with related specifications. For
passive crystal, there is a need to check if it is with spec. if not, it is up to the users to adjust the capacitance to
meet the specifications. Further information, refer to AN0078_AT32_MCU_HW_EMC_EFT and appropriate
datasheet through the official website of ARTERY TECH.

Type: MCU applications

Applicable products: ATF32F403

Main function: HEXT

Minor function: None

http://www.arterytek.com/

Clock enable process in the at32f403_clock.c

2022.9.20 4 Rev 2.0.0

www.arterytek.com

Document revision history

Date Revision Changes

2022.3.10 2.0.0 Initial release

2022.9.20 2.0.1 Added Red segment 2

http://www.arterytek.com/

Clock enable process in the at32f403_clock.c

2022.9.20 5 Rev 2.0.0

www.arterytek.com

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any

third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any

intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products

or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the

use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose

(and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements

of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C)

any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers’

unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers’ risk, and is solely

responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall

immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any

manner whatsoever, any liability of ARTERY.

© 2022 Artery Technology -All rights reserved

http://www.arterytek.com/

