
AT32WB415 Device Limitations

2023.08.03 1 Rev 2.0.2

ES0007

Errata Sheet

AT32WB415 device limitations

Device identification
This errata sheet applies to ARTERY AT32WB415 microcontrollers based on an ARM™ 32-bit
Cortex®-M4 core.

Table 1. Device summary

Device Flash memory Part number

AT32WB415 256 KB AT32WB415CCU7-7

AT32WB415 Device Limitations

2023.08.03 2 Rev 2.0.2

Contents

 AT32F435/437 device limitations .. 5

 GPIO .. 5

 FT (5V tolerant pin) maintains at intermediate level in floating input mode 5

 CAN .. 6

 Bit stuffing error causes the next data out of order during CAN communication 6

 Unable to filter RTR of standard frame in 32-bit identifier mask mode 9

 CAN sends unexpected messages in case of narrow pulse disturbance on BS2 10

 Fail to cancel mailbox transmit command when CAN bus disconnected 10

 ERTC .. 11

 How to update TIME and DATE register value .. 11

 PWC ... 12

 Enabling PVM triggers PVM event generation when VDD is above PVM threshold 12

 Unable to wakeup Deepsleep mode after AHB frequency division 12

 Systick interrupt wakes up Deepsleep mode ... 12

 Unable to select system clock source after waking up Deepsleep mode 12

 SWEF flag is set when enabling a standby-mode wakeup pin 13

 SPI ... 13

 Unable to clear data reception DMA transfer request by reading DT register 13

 CS failing edge not synchronized in slave SPI hardware CS mode 14

 USART ... 14

 USART can still receive data using DMA in silent mode ... 14

 CRM ... 14

 CLKOUT clock output exception after entering Deepsleep mode 14

 PLL 2x or 3x multiplication factor failure .. 14

 I2C .. 15

 I2C slave communication failed when APB equals or less than 4MHz 15

 BUSERR is detected by I2C before start of communication 15

 TMR ... 16

 Slave timer unable to receive reset signal from master timer 16

 Break input failed when TMREN=0 (TMR disabled) .. 16

 ADC .. 17

AT32WB415 Device Limitations

2023.08.03 3 Rev 2.0.2

 Unable to clear and set ADC preempted channel conversion end flag 17

 I2S .. 17

 The first received data error in I2S PCM standard long frame receive-only mode ... 17

 UDR flag is set mistakenly in I2S slave transmission mode and discontinuous

communication state .. 17

 Data reception error when I2S 24-bit data is packed into 32-bit format 18

 Document revision history ... 19

AT32WB415 Device Limitations

2023.08.03 4 Rev 2.0.2

List of tables

Table 1. Device summary .. 1

Table 2. Summary of device limitations ... 5

Table 3. Document revision history .. 19

AT32WB415 Device Limitations

2023.08.03 5 Rev 2.0.2

 AT32F435/437 device limitations

Table 2 gives a list of limitations that have been identified so far on the AT32WB415 devices.

 Table 2. Summary of device limitations

Sections Description

1.1 GPIO 1.1.1 FT (5V tolerant pin) maintains at intermediate level in floating input mode

1.2 CAN

1.2.1 Bit stuffing error causes the next data out of order during CAN communication

1.2.2 Unable to filter RTR of standard frame in 32-bit identifier mask mode

1.2.3 CAN sends unexpected messages in case of narrow pulse disturbance on BS2

1.2.4 Fail to cancel mailbox transmit command when CAN bus disconnected

1.3 ERTC 1.3.1 How to update TIME and DATE register value

1.4 PWC

1.4.1 Enabling PVM triggers PVM event generation when VDD is above PVM threshold

1.4.2 Unable to wakeup Deepsleep mode after AHB frequency division

1.4.3 DEEPSLEEPSystick interrupt wakes up Deepsleep mode

1.4.4 Unable to select system clock source after waking up Deepsleep mode

1.5 SPI
1.5.1 Unable to clear data reception DMA transfer request by reading DT register

1.5.2 CS failing edge not synchronized in slave SPI hardware CS mode

1.6 USART 1.6.1 USART can still receive data using DMA in silent mode

1.7 CRM
1.7.1 CLKOUT clock output exception after entering Deepsleep mode

1.7.2 PLL 2x or 3x multiplication factor failure

1.8 I2C
1.8.1 I2C slave communication failed when APB equals or less than 4MHz

1.8.2 BUSERR is detected by I2C before start of communication

1.9 TMR
1.9.1 Slave timer unable to receive reset signal from master timer

1.9.2 Break input failed when TMREN=0 (TMR disabled)

1.10 ADC 1.10.1 Unable to clear and set ADC preempted channel conversion end flag

1.11 I2S

1.11.1 The first received data error in I2S PCM standard long frame receive-only mode

1.11.2 UDR flag is set mistakenly in I2S slave transmission mode and discontinuous

communication state

1.11.3 Data reception error when I2S 24-bit data is packed into 32-bit format

 GPIO

 FT (5V tolerant pin) maintains at intermediate level in floating
input mode

 Description:

The 5V tolerant pin still has a pull-up capability of less than 10 μA in floating input mode,

causing it to maintain about 2.0 V.

 Workaround:

Add an external pull-down resistor (150 kΩ or below)

AT32WB415 Device Limitations

2023.08.03 6 Rev 2.0.2

 CAN

 Bit stuffing error causes the next data out of order during CAN
communication

 Description:

If a bit stuffing error occurs in the data filed during CAN communication due to external

disturbance, CAN will stop receiving the current data frame and send an error to the bus. In

such circumstance, a disorder issue will happen to the next data frame, but the subsequent

messages are able to return to normal automatically.

 Workaround:

Method 1:

Enable the error interrupt (its priority must be set very high) corresponding to the interrupt

number in the Error Type Record (ETR bit). Once a bit stuffing error is detected, reset CAN

(only reset CAN registers and relevant GPIOs, without the need of resetting NVIC), and re-

initialize CAN in the CAN error interrupt function.

This method applies to the scenario where a quick CAN initialization is required to ensure a

quick resume of CAN communication in order to avoid excess CAN data loss.

Take a CAN1 as an example, its typical code as follows:

/* Enable CAN error interrupt corresponding to the last CAN error interrupt number and give very high

priority */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE);

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

/* Interrupt service functions */

void CAN1_SE_IRQHandler(void)

{

 __IO uint32_t err_index = 0;

 if(can_flag_get(CAN1,CAN_ETR_FLAG) != RESET)

 {

 err_index = CAN1->ests & 0x70;

 can_flag_clear(CAN1, CAN_ETR_FLAG);

 if(err_index == 0x00000010)

 {

 can_reset(CAN1);

 /* Call CAN initialization function */

 }

 }

}

AT32WB415 Device Limitations

2023.08.03 7 Rev 2.0.2

Notes:

a) CAN error interrupts should be given as very high priority;

b) As it takes some time to finish CAN initialization, CAN’s inability to resume communication

immediately when an error occurs may cause loss of data.

Method 2:

Enable the error interrupt (its priority must be set as very high) corresponding to the CAN error

interrupt number in the Error Type Record (ETR bit). Once a bit stuffing error is detected, reset

CAN (only reset CAN registers and relevant GPIOs, without the need of resetting NVIC),

record the reset event, and re-initialize CAN in other low-priority interrupts or main functions.

This method applies to the scenario where the CAN communication is unable to resume in

time, but the CAN must be re-initialized in order not to affect operations of other applications.

Take a CAN1 as an example, its typical code as follows:

/*Enable CAN error interrupt corresponding to the last CAN error interrupt number and give very high

priority*/

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE);

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

/* Interrupt service functions*/

__IO uint32_t can_reset_index = 0;

void CAN1_SE_IRQHandler(void)

{

 __IO uint32_t err_index = 0;

 if(can_flag_get(CAN1,CAN_ETR_FLAG) != RESET)

 {

 err_index = CAN1->ests & 0x70;

 can_flag_clear(CAN1, CAN_ETR_FLAG);

 if(err_index == 0x00000010)

 {

 can_reset(CAN1);

 can_reset_index = 1;

 }

 }

}

Then the application polls whether “can_reset_index” is set or not at the desired place (in main

functions, say). Call the CAN initialization function, if available.

Notes:

a) CAN error interrupts should be given as very high priority;

b) As it takes some time to finish CAN initialization, CAN’s inability to resume communication

immediately when an error occurs may cause loss of data.

AT32WB415 Device Limitations

2023.08.03 8 Rev 2.0.2

Method 3:

Enable CAN error interrupt (its priority must be set as very high) corresponding to the CAN

error interrupt number in the Error Type Record (ETR bit). Once a bit stuffing error is detected,

send an invalid message with a very-high-priority identifier.

This method applies to the scenario in which one doesn’t want to spend time on resetting

CAN , all message identifiers on CAN bus are known, and each CAN node receives messages

in accordance with the identifier filtering conditions.

Take a CAN1 as an example, its typical code as follows:

/*Forcibly send a frame of invalid message with a very-high-priority identifier*/

static void can_transmit_data(void)

{

uint8_t transmit_mailbox;

can_tx_message_type tx_message_struct;

tx_message_struct.standard_id = 0x0;

tx_message_struct.extended_id = 0x0;

tx_message_struct.id_type = CAN_ID_STANDARD;

tx_message_struct.frame_type = CAN_TFT_DATA;

tx_message_struct.dlc = 8;

tx_message_struct.data[0] = 0x00;

tx_message_struct.data[1] = 0x00;

tx_message_struct.data[2] = 0x00;

tx_message_struct.data[3] = 0x00;

tx_message_struct.data[4] = 0x00;

tx_message_struct.data[5] = 0x00;

tx_message_struct.data[6] = 0x00;

tx_message_struct.data[7] = 0x00;

can_message_transmit(CAN1, &tx_message_struct);

}

/* Enable CAN error interrupt corresponding to the last CAN error interrupt number and give very high

priority */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE);

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

/* Interrupt service functions*/

void CAN1_SE_IRQHandler(void)

{

 __IO uint32_t err_index = 0;

 if(can_flag_get(CAN1,CAN_ETR_FLAG) != RESET)

 {

AT32WB415 Device Limitations

2023.08.03 9 Rev 2.0.2

 err_index = CAN1->ests & 0x70;

 can_flag_clear(CAN1, CAN_ETR_FLAG);

 if(err_index == 0x00000010)

 {

 can_transmit_data;

 }

 }

}

Notes:

a) CAN error interrupts should be given as very high priority;

b) This method is only applicable to the scenario where the transmit FIFO priority is

determined by message identifiers;

c) The identifier of the invalid message in this method is changeable. But its priority must be

given the highest among the CAN bus, and it cannot be received as a normal message by

other nodes.

 Unable to filter RTR of standard frame in 32-bit identifier mask
mode

 Description:

When the CAN filter mode is configured in 32-bit identifier mask mode, the RTR bit (remote

frame identifier) cannot be filtered effectively during a standard frame filtering.

When the following conditions are met, follow the “Workaround” to solve this problem:

1. 32-bit wide identifier mask mode is used

2. A standard frame is being filtered but the remote frame passing through filter is unwanted

 Workaround:

Method 1: By software. When filtering a standard frame in 32-bit wide identifier mask mode,

the software is used to get the status of the RTR bit (remote frame identifier) and determine

whether this frame of message is needed or not by the application. For example:

void CAN1_RX0_IRQHandler(void)

{

 can_rx_message_type rx_message_struct;

 if(can_flag_get(CAN1,CAN_RF0MN_FLAG) != RESET)

 {

 can_message_receive(CAN1, CAN_RX_FIFO0, &rx_message_struct);

 /* only store the data frame,discard the remote frame */

 if((rx_message_struct.id_type == CAN_ID_STANDARD) && (rx_message_struct.frame_type ==

CAN_TFT_DATA))

 {

 /* user store the receive data */

 }

 }

}

Method 2: Use other filtering mode according to the needs, such as, 32-bit wide identifier list

mode, 16-bit wide identifier mask mode or 16-bit wide identifier list mode.

AT32WB415 Device Limitations

2023.08.03 10 Rev 2.0.2

 CAN sends unexpected messages in case of narrow pulse
disturbance on BS2

 Description:

In case of a large amount of narrow pulses (pulse width less than 1tp) on CAN bus, the CAN

nodes are likely to send unexpected messages, for instance, a data frame is sent as a remote

frame, a standard frame as an extended one, or data phase error occurs.

 Workaround:

Configure synchronization width RSAW = BTS2 segment width in order to avoid unexpected

errors.

It should be noted that after RSAW =BTS2 is asserted, the CAN bus communication speed is

reduced when there is a lot of disturbance on CAN bus.

 Fail to cancel mailbox transmit command when CAN bus
disconnected

 Description:

As a node for data transmission, if the following two conditions are both present for CAN, it is

not possible to clear or cancel a transmit command in a mailbox within CAN error passive

interrupt, causing that the to-be-sent message command has not been canceled during the

period of CAN bus disconnection, and that such message would be retransmitted after CAN

bus communication resumes.

1. CAN bus (CANH/L) is disconnected deliberately or accidentally

2. Automatic retransmission feature is enabled

 Workaround:

Enable CAN error passive interrupt and disable its automatic retransmission before re-enabling

automatic retransmission in the message transmit function, as shown below:

1) Enable error passive interrupt during CAN initialization

static void can_configuration(void)

{

…

 /* can baudrate, set baudrate = pclk/(baudrate_div *(3 + bts1_size + bts2_size)) */

 can_baudrate_struct.baudrate_div = 12;

 can_baudrate_struct.rsaw_size = CAN_RSAW_3TQ;

 can_baudrate_struct.bts1_size = CAN_BTS1_8TQ;

 can_baudrate_struct.bts2_size = CAN_BTS2_3TQ;

…

}

nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

can_interrupt_enable(CAN1, CAN_EPIEN_INT, TRUE);

can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

AT32WB415 Device Limitations

2023.08.03 11 Rev 2.0.2

2) Disable automatic transmission feature in CAN error passive interrupt function

3) Re-enable automatic transmission feature in CAN message transmit function

 ERTC

 How to update TIME and DATE register value

 Description:

If no operation is performed on the ERTC register, the ERTC_TIME and ERTC_DATE registers

will not be updated, which means that they still hold the values updated last time when they

were accessed.

 Workaround:

Read status register first before reading TIME and DATE registers.

void CAN1_SE_IRQHandler(void)

{

 if(can_flag_get(CAN1,CAN_EPF_FLAG) != RESET)

 {

 CAN1->mctrl |= (uint32_t)(1<<4);

 can_flag_clear(CAN1, CAN_EPF_FLAG);

 }

}

CAN1->mctrl &= (uint32_t)~(1<<4);

AT32WB415 Device Limitations

2023.08.03 12 Rev 2.0.2

 PWC

 Enabling PVM triggers PVM event generation when VDD is
above PVM threshold

 Description:

When the VDD is greater than PVM threshold, an unwanted PVM event is generated as soon

as PWC voltage monitoring is enabled.

 Workaround:

Clear the unwanted PVM event during PVM initialization.

 Unable to wakeup Deepsleep mode after AHB frequency division

 Description:

If AHB frequency is divided, no wakeup source can wake up Deepsleep mode.

 Workaround:

Do not divide AHB frequency in Deepsleep mode.

Remove AHB frequency division before entering Deepsleep mode. Configure then the desired

AHB frequency after Deepsleep mode wakeup.

 Systick interrupt wakes up Deepsleep mode

 Description:

If Systick or Systick interrupt is not disabled before the Deepsleep mode is entered, the Systick

then would keep running after Deepsleep mode entry, and the subsequent Systick interrupt

would wake up Deepsleep mode.

 Workaround:

Disable Systick or Systick interrupts before entering Deepsleep mode.

 Unable to select system clock source after waking up Deepsleep
mode

 Description:

When a wakeup source arrives at the moment while the Deepsleep mode is being entered,

either HEXT or PLL could no longer be selected as the clock source of system clock.

 Workaround:

After waking up Deepsleep mode, wait around 3 LICK clock cycles before configuration system

clock.

AT32WB415 Device Limitations

2023.08.03 13 Rev 2.0.2

 SWEF flag is set when enabling a standby-mode wakeup pin

 Description:

If a wakeup pin (waking up Standby mode) were used as a GPIO push-pull output (high) or pull-

up input before being enabled, a SWEF flag would be set immediately once the pin is enabled.

 Workaround:

If the wakeup pin (waking up Standby mode) was used as a GPIO before, then the IO has to

be re-initialized to pull-down input or analog input mode before enabling the pin. For example:

gpio_init_type gpio_init_struct;

 /* enable the button clock */

 crm_periph_clock_enable(CRM_GPIOA_PERIPH_CLOCK, TRUE);

 /* set default parameter */

 gpio_default_para_init(&gpio_init_struct);

 /* configure wakeup pin as input with pull-down */

 gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;

 gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;

 gpio_init_struct.gpio_mode = GPIO_MODE_INPUT;

 gpio_init_struct.gpio_pins = USER_BUTTON_PIN;

 gpio_init_struct.gpio_pull = GPIO_PULL_DOWN;

 gpio_init(GPIOA, &gpio_init_struct);

 /* enable wakeup pin - pa0 */

 pwc_wakeup_pin_enable(PWC_WAKEUP_PIN_1, TRUE);

 SPI

 Unable to clear data reception DMA transfer request by reading
DT register

 Description:

For example, for those applications which use SPI full-duplex function for time-sharing receive

and transmit, the invalid data reception DMA transfer request, which is set during SPI

transmission, cannot be cleared by reading DT register.

 Workaround:

When SPI reception DMA channel is turned off, you can clear DMA request by disabling SPI

(instead of reading DT register), and then enabling SPI at a place where you want to start

communication.

AT32WB415 Device Limitations

2023.08.03 14 Rev 2.0.2

 CS failing edge not synchronized in slave SPI hardware CS
mode

 Description:

In SPI slave hardware CS mode, the initial CLK synchronization for data transfer is not

performed at each CS falling edge.

 Workaround:

Solution 1: Strictly control the slave CS line, pull high the CS line as soon as the

communication is complete.

Solution 2: Enable CRC check. Once a CRC error is detected, reset SPI and restart

handshake communication.

 USART

 USART can still receive data using DMA in silent mode

 Description:

When the USART sends data to RX in silent mode (address matching wakeup mode), it still

can generate a DMA reception request and the data can also be received by DT data register

even though the RDBF is not set. In this case, silent mode does not work.

 Workaround:

None.

 CRM

 CLKOUT clock output exception after entering Deepsleep mode

 Description:

In case of DEEPSLEEP_DEBUG=0 and CLKOUT being used as system clock output, there

would still have clock output (with LICK clock frequency) on the CLKOUT pin after entering

Deepsleep mode.

 Workaround:

Set CLKOUT as NOCLK before entering Deepsleep mode, and then configure it as system

clock output after leaving Deepsleep mode.

 PLL 2x or 3x multiplication factor failure

 Description:

PLL output clock should be greater than or equal to 16 MHz due to PLL output range

limitations. The 2x or 3x multiplication factor may cause error when a lower PLL input clock

frequency is used.

 Workaround:

Try not to use 2x or 3x multiplication factor of the PLL.

AT32WB415 Device Limitations

2023.08.03 15 Rev 2.0.2

 I2C

 I2C slave communication failed when APB equals or less than
4MHz

 Description:

I2C is unable to communicate at 400kHz in slave mode when the APB clock is equal to or less

than 4MHz.

 Workaround:

Increase the APB clock to 8 MHz, or reduce the I2C speed to 100kHz.

 BUSERR is detected by I2C before start of communication

 Description:

When all the following conditions are present, BUSERR conditions would be detected by I2C,

causing communication error.

The three conditions are as follows:

Condition 1: I2C is enabled

Condition 2: Before the start of communication

Condition 3: BUSERR timing takes place on the bus

 Workaround:

Check if the BUSERR flag is set or not before the start of communication. If it is set, just need

clear this flag to enable communication. Optionally, enable error interrupt, and clear it in the

interrupt after the BUSERR flag is set.

AT32WB415 Device Limitations

2023.08.03 16 Rev 2.0.2

 TMR

 Slave timer unable to receive reset signal from master timer

 Description:

When the two following conditions are both present, the slave TMR is unable to receive a reset

signal from master timer, causing it unable to be triggered for reset.

The two conditions are as follows:

1. The slave mode of master TMR is configured in reset mode, and the trigger source of

slave mode is from an external signal input

2. The reset signal from master TMR is being sent to slave TMR while the slave mode of

slave TMR is also configured in reset mode

 Workaround:

Change the output signal of master TMR from reset signal to overflow signal. In this way, when

the master TMR is reset, so is the slave timer.

 Revision plan:

Revision B has fixed this issue.

 Break input failed when TMREN=0 (TMR disabled)

 Description:

When TMREN=0 (Timer is not enabled), break input failed to work, causing it unable to trigger

break event or interrupt.

Example: in single-pulse mode, TMREN is cleared (0) automatically at the end of one-cycle

counting. But due to above-mentioned reason relating to break input, output enable bit (OEN)

cannot be cleared, nor can a break flag be set.

 Workaround:

None.

 Revision plan:

None.

AT32WB415 Device Limitations

2023.08.03 17 Rev 2.0.2

 ADC

 Unable to clear and set ADC preempted channel conversion end
flag

 Description:

When “PCCE” (preempted channel conversion end) and “CCE” (ordinary channel conversion

end) events occur simultaneously, it is likely that PCCE flag cannot be cleared immediately,

causing the next PCCE flag unable to be set.

 Workaround:

Add another clear command under the original PCCE flag clear command to clear this flag.

See below:

 Revision plan:

None.

 I2S

 The first received data error in I2S PCM standard long frame
receive-only mode

 Description:

When PCLK frequency division factor is greater than 1, and I2S PCM standard long frame

receive-only mode is enabled, if I2SCPOL = 0 is set and the SCK line remains high before

enabling I2S, the first received data disorder would occur.

 Workaround:

Pull up or pull down the SCK pin externally or internally, depending on the I2SCLKPOL

configuration.

 Revision plan:

None.

 UDR flag is set mistakenly in I2S slave transmission mode and
discontinuous communication state

 Description:

The UDR flag is set incorrectly in I2S slave transmission mode in discontinuous

communication state, even if data have been written before communication.

 Workaround:

For continuous communication, it is recommended to use DMA or interrupts for data transfer in

I2S slave transmission mode according to the protocols.

 Revision plan:

None.

/* Before change */

adc_flag_clear(ADC1, ADC_PCCE_FLAG);

/* After change */

adc_flag_clear(ADC1, ADC_PCCE_FLAG);

adc_flag_clear(ADC1, ADC_PCCE_FLAG);

AT32WB415 Device Limitations

2023.08.03 18 Rev 2.0.2

 Data reception error when I2S 24-bit data is packed into 32-bit
format

 Description:

When I2S 24-bit data is packed into 32-bit frame format, the remaining 8 invalid CLK data

would be received by the receiver as normal data.

 Workaround:

Method 1: Both the receiver and transmitter use the same way of packing 24-bit data into 32-

bit format.

Method 2: Discard these 8 invalid CLK data in this frame format using software.

 Revision plan:

None.

AT32WB415 Device Limitations

2023.08.03 19 Rev 2.0.2

 Document revision history

Table 3. Document revision history

Date Revision Changes

2022.4.15 2.0.0 Initial release

2022.09.06 2.0.1 Added 1.8.2 BUSERR is detected by I2C before start of communication

2323.07.31 2.0.2

Added 1.9.1 Slave timer unable to receive reset signal from master timer

Added 1.9.2 Break input failed when TMREN=0 (TMR disabled)

Added 1.10.1 Unable to clear and set ADC preempted channel conversion end

flag

Added 1.11.1 The first received data error in I2S PCM standard long frame

receive-only mode

Added 1.11.2 UDR flag is set mistakenly in I2S slave transmission mode and

discontinuous communication state

Added 1.11.3 Data reception error when I2S 24-bit data is packed into 32-bit

format

Updated the descriptions in the section 1.2.1 Bit stuffing error causes the next

data out of order during CAN communication

Added 1.2.4 Fail to cancel mailbox transmit command when CAN bus

disconnected

AT32WB415 Device Limitations

2023.08.03 20 Rev 2.0.2

MPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any

third party products or services, it shall not be deemed a license granted by ARTERY for the use of such third party products or services, or

any intellectual property contained therein, or considered as a warranty regarding the use in any manner of such third party products or

services or any intellectual property contained therein.

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the

use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose

(and their equivalents under the laws of any jurisdiction), or infringement on any patent, copyright or other intellectual property right.

Purchasers hereby agree that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements

of safety such as life support and active implantable device, or system with functional safety requirements; (B) any aircraft application; (C)

any aerospace application or environment; (D) any weapon application, and/or (E) or other uses where the failure of the device or product

could result in personal injury, death, property damage. Purchasers’ unauthorized use of them in the aforementioned applications, even if

with a written notice, is solely at purchasers’ risk, and Purchasers are solely responsible for meeting all legal and regulatory requirements in

such use.

Resale of ARTERY products with provisions different from the statements and/or technical characteristics stated in this document shall

immediately void any warranty grant by ARTERY for ARTERY’s products or services described herein and shall not create or expand any

liability of ARTERY in any manner whatsoever.

© 2023 Artery Technology -All rights reserved

	1 AT32F435/437 device limitations
	1.1 GPIO
	1.1.1 FT (5V tolerant pin) maintains at intermediate level in floating input mode

	1.2 CAN
	1.2.1 Bit stuffing error causes the next data out of order during CAN communication
	1.2.2 Unable to filter RTR of standard frame in 32-bit identifier mask mode
	1.2.3 CAN sends unexpected messages in case of narrow pulse disturbance on BS2
	1.2.4 Fail to cancel mailbox transmit command when CAN bus disconnected

	1.3 ERTC
	1.3.1 How to update TIME and DATE register value

	1.4 PWC
	1.4.1 Enabling PVM triggers PVM event generation when VDD is above PVM threshold
	1.4.2 Unable to wakeup Deepsleep mode after AHB frequency division
	1.4.3 Systick interrupt wakes up Deepsleep mode
	1.4.4 Unable to select system clock source after waking up Deepsleep mode
	1.4.5 SWEF flag is set when enabling a standby-mode wakeup pin

	1.5 SPI
	1.5.1 Unable to clear data reception DMA transfer request by reading DT register
	1.5.2 CS failing edge not synchronized in slave SPI hardware CS mode

	1.6 USART
	1.6.1 USART can still receive data using DMA in silent mode

	1.7 CRM
	1.7.1 CLKOUT clock output exception after entering Deepsleep mode
	1.7.2 PLL 2x or 3x multiplication factor failure

	1.8 I2C
	1.8.1 I2C slave communication failed when APB equals or less than 4MHz
	1.8.2 BUSERR is detected by I2C before start of communication

	1.9 TMR
	1.9.1 Slave timer unable to receive reset signal from master timer
	1.9.2 Break input failed when TMREN=0 (TMR disabled)

	1.10 ADC
	1.10.1 Unable to clear and set ADC preempted channel conversion end flag

	1.11 I2S
	1.11.1 The first received data error in I2S PCM standard long frame receive-only mode
	1.11.2 UDR flag is set mistakenly in I2S slave transmission mode and discontinuous communication state
	1.11.3 Data reception error when I2S 24-bit data is packed into 32-bit format

	2 Document revision history

