- AT32F435/437 Security Library Application Note

ANO0081
Application Note

AT32F435/437 Security Library Application Note

Introduction

This application note introduces the security library (sLib) application principle of AT32F435/437
MCUs, operation methods and example projects

Applicable products:

AT32F435

Part number
AT32F437

2021.9.8 1 = Ver2.0.0

-7 AT32F435/437 Security Library Application Note

Contents
1 OVEIVIBW ...ttt ettt ettt sttt et et e e e e e s e e e e e e e e e s e e e s eeeeeeeee e 7
2 Application PrinCIples ... 8
2.1 Application principle Of SLIDoiiiii 8
2.2 How to enable sLib proteCtion ..o 9
2.3 How to disable sLib proteCtion..............cooiiiiiiiiiiiiici e 10
2.4 Compile and execute program in SLIDcooeuiiiiiiiii 11
2.4.1 Setting interrupt vector table as sLib instruction area not allowed 12
2.4.2 Correlation between sLib area and user code area............ccccecvvvereeinec e, 12
3 Example applications of sLibcccooooiiiiiiiii 15
3.1 Example application reqUIreMeNnts............ccooiiiiiiiiiiiiiiiiii e 15
3.1.1 Hardware reqUIrEMENTS.ooiuiiii i 15
3.1.2 Software reqQUIrEMENTScooiiiiiii e 15
3.2 OVEBIVIEW ..ttt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e et e e e e e eneneeeennes 15
3.3 SLIB protected code: FIR Iow-pass filter..............ouviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 16
3.4 Project_LO: example for solution providers................eueeeiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeee 17
3.4.1 Generate execute-ONly COUEcoouiiiiiiiiiii e 17
3.4.2 Compile security library address ..o 19
3.4.3 Enable SLib ProteCtion..........ooo i 23
3.4.4 Project_LO eXECULION PrOCESScccoiiiiiiiiiiiiiee ettt et e e e e sibee e e e e e e e e 25
3.4.5 Generate header file and symbol definition file.............c.cooiiiiii, 27
3.5 Project_L1: example fOr @Nd USEISuuuiiiiiiiiiiiiiiiiiie e 28
3.5.1 Create user application ProjeCtovvi i 29
3.5.2 Add symbol definition file to project ... 30
3.5.3 Call functions in SLIB-protected areaccocueeiiiiiiiiiii e 31
3.5.4 Project_L1 eXECULION PrOCESScceiutiiiiiiiiiie ittt 31
3.5.5 SLIB protection in debug MOde...........cooiiiiiiiiiiiiii e 32
4 Integrate codes and download ... 35
4.1 Program codes SEParately.........cccoooiiiiii 35
4.2 Integrate and program COUESuuuiiiiiiiiiiiiiiiiiie e ettt e e e e e et e e e e eeeasenes 38

2021.9.8 2 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

5 ReVISION hiStOrY ... s 41

2021.9.8 3 Ver 2.0.0

1?[? AT32F435/437 Security Library Application Note

List of tables
Table 1. Flash Size Of AT32FA35/437 ... et 9
Table 2. Document revision NiSTOIY..........ouiiii e 41

2021.9.8 4 Ver 2.0.0

<[

? AT32F435/437 Security Library Application Note

List of figures

2021.9.8

Figure 1. Mapping of main Flash memory featured with SLIibccoocoiiiiii 9
Figure 2. Literal pool €XamPle (1) .. co ettt et e e s e e ebe e e e sneeeaeean 11
Figure 3. Literal pool €XamPIE (2).....cccueiieiiiiiie e iiiiee st e st e e s e e e e e e st e e e s nnree e e e nnsaeeeeaneaeeeaan 12
Figure 4. Example of function in sLib area calling the function in user code area............ccccceveee..n. 13
Figure 5. Example of self-defined fUNCONcoooiiiiiii e 14
Figure 6. Example appliCation PrOCESS.........cccuuuiiiiiiee et e e e e e e e e snaaeneeeeeee s 16
Figure 7. Example appliCationoooiii i a e 16
Figure 8. FIR IOW-PASS fILEI ...ttt e e s e ee e 17
Figure 9. Enter Option interface in Keil............coouiiiiiiiiii e 18
Figure 10. Tick Execute-only Code in Keil..........cooiiiiiiiiiiiii e 18
Figure 11. Enter Option interface iN IAR...........ouiie e 19
Figure 12. C/C++ opltionNS iN TARuiiiiiic e e e e s e e e e e e e aeeeeeeeas 19
Figure 13. Main Flash memory mapping and RAM partition............ccccccvee e 20
Figure 14. Set Linker option iN Keil..........ooiiiiiiiiiieie e e e e e ee e e e e 20
Figure 15. Modify SCAtter iN KEilcoviiiiiiiiiieie e e e e e e e e e e eanrreeeeeeeeas 21
Figure 16. Modify SLIB RAM address in KEILcooiiiiiiiiiieiee e 21
Figure 17. Modify SLIB KEIL address in KEIL...........ccoiiiiiiiiiie e 22
Figure 18. SLIB address definition in .icf file ..., 22
Figure 19. Address assignment in dCf file ... 22
Figure 20. Modify SLIB used RAM in .icf fil€c.ooiiiiiiie e 23
Figure 21. Modify SLIB used constant address in IAR...........oovi i 23
Figure 22. Configure ICP ProgrammMer..........ccuuiiiiiiee et e e e e e e e e e e e e e e e e nnnaeaeeeaee s 24
Figure 23. Set parameters in DOWNIOad FOIMoooiiiiiiiiee e 25
Figure 24. Project_LO eXECULION PrOCESSccoiiuiiiiiiiiiiie ittt ettt e s e e 26
Figure 25. Set MisC CONtrols in Keilcooiiiiiiiiiii e 27
Figure 26. Contents of modified fir_filter_SymboltXt...........ccooiiiiiiii e, 27
Figure 27. Set Build ACtIONS iN TAR ..o e 28
Figure 28. Edit steering_file.tXt CONENTScoiiiiiiii e 28
Figure 29. Modified SCatter file.............oeiiii i 29
Figure 30. Modified ICf fl@..........eiiieee e 29
Figure 31. Add symbol definition file in Keil............oooiiiiiii e 30
Figure 32. Modify symbol definition file type to “Object” file.........cociiiiiiii e, 30
Figure 33. Add symbol definition file in TARc.ooiiii e 31
Figure 34. Project_L1 €XECULION PrOCESSc.uuviiiiiieeeiiiiiiiiiiee e e e e ettt e e e e s e e e e e e e e s nnnaaeeeeeae s 32
T 5 - T T ver200

-7 AT32F435/437 Security Library Application Note

Figure 35. Enter Show Disassembly at Addressoocuuiiiiiiiiiii e 33
Figure 36. Set Show Code at AAIrESScoouiiiiiiiiie e 33
FIQUIE 37. VIBW COUES ..ottt ettt ettt e et e e e e ettt e e e enbe e e e e anbeeeeeanneeeaeaan 33
Figure 38. VIiew COAES IN IMEMIOIYoo.uuiiiiiiiiiie ettt ettt ettt e e st e e e e sabee e e e aneeeaeaan 34
Figure 39. SLIB_READ_ONLY start SeCtor in MEMOIYccveviiiiiiie e 34
Figure 40. SLIB WIIte tEST .. .uviiii e e e e e e e e anraeeeaan 34
Figure 41. Write protection error interruptooovvi i 34
Figure 42. SAVe SLIB COUEScuiiiiiiiiiii ettt ettt e et e e s ee e e e snee e e s snee e e e annteeeeeannneeeaans 35
Figure 43. Generate .bin file Of SLIB COUEccoiuiiiiiiiiii e 36
Figure 44. Online programming to MCU iN ICP.........coiiiiiiiii e 36
Figure 45. Offline programming to MCU via AT-LiNKccooiiiiiiiii e 37
Figure 46. End users program €odes 10 MCU.........c.cooiiiiiiiiiiiiiiee e 38
Figure 47. Set offline ProjJeCt ... 39
Figure 48. Add ProjeCt fill@cuvieii i 40

2021.9.8 6 Ver 2.0.0

-7 AT32F435/437 Security Library Application Note

1 Overview

As more and more MCU applications require complex algorithms and middleware solutions, it has
become an important issue that how to protect IP-Codes (such as core algorithms) developed by
software solution providers.

The AT32F435/437 series MCUs are designed with a security library (sLib) to protect important 1P-
Codes against being changed or read by the end user’s program.

This application note details the sLib application principle and operation methods of AT32F435/437
MCUs.

2021.9.8 7 Ver 2.0.0

- AT32F435/437 Security Library Application Note

2021.9.8

Application principles

Application principle of sLib

Security library is a defined area protected by a code in the main memory, so that solution
providers can program core algorithm into this area, and the rest of the area can be used for
secondary development by end customers.

Security library contains data security library (SLIB_READ_ONLY) and instruction security
library (SLIB_INSTRUCTION); users can set part of or the whole security library as
SLIB_READ_ONLY or SLIB_INSTRUCTION.

Data in the SLIB_READ_ONLY area can only be read through I-Code and D-Code and cannot
be programmed.

Program code in the instruction security library (SLIB_INSTRUCTION) can only be fetched
(can only be executed) by MCU through I-Code bus and cannot be read through D-Code bus
(including ISP/ICP/debug mode and programs that boot from internal RAM). When reading the
SLIB_INSTRUCTION area, values are all read OxFF.

The program code and data in security library cannot be erased unless the correct code is
keyed in. If a wrong code is keyed in, in an attempt of writing or erasing the security library, a
warning message will be issued by EPPERR=1 in the FLASH_STS register.

The program code and data in security library are not erased when the end users perform a
mass erase on the main Flash memory.

Users can write the previously programmed password to the SLIB_ PWD_CLR register to
disable security library protection. When the security library protection is disabled, the chip will
perform a mass erase on the main Flash memory (including the contents of security library).
Therefore, even if the code defined by the software solution provider is leaked, the program
code will not be leaked.

The mapping of main Flash memory featured with sLib is shown in Figure 1. The program codes in

security library can be easily called and executed by end users, but cannot be read directly.

8 Ver 2.0.0

-7 AT32F435/437 Security Library Application Note

Figure 1. Mapping of main Flash memory featured with sLib

User_Code_Start@

USER CODE

User_Code_End@

SLIB_Start@
SLIB_READ_ONLY

SLIB_INSTRUCTION
SLIB_End@

The security library is set by sectors, and the size of each sector is subject to the specific MCUs.
Table 1 lists the main Flash size, sector size and configurable range of AT32F435/437 series

MCUs.
Table 1. Flash size of AT32F435/437
Model Internal Flash size (Byte) Sector size (Byte) Configurable range
AT32F435xC Sector 0 ~ 127
256K 2K
AT32F437xC (0x08000000 ~ 0x0803FFFF)
AT32F435xG Sector 0 ~ 511
1024K 2K
AT32F437xG (0x08000000 ~ 0xO80FFFFF)
AT32F435xM Sector 0 ~ 1007
4032K 4K
AT32F437xM (0x08000000 ~ Ox083EFFFF)

2.2 How to enable sLib protection

By default, security library setting register is unreadable and write-protected. To enable write
access to this register, security library should be unlocked first by writing 0XA35F6D24 to the
SLIB_UNLOCK register. Then check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if

2021.9.8 9 Ver 2.0.0

-
X

)
X

AT32F435/437 Security Library Application Note

2.3

2021.9.8

it is unlocked successfully. If successful, write the programmed value into the security library setting
register.

The steps to enable security library are as follows:

® Check the OBF bit in the FLASH_STS and FLASH_STS2 registers to confirm that there is no
other ongoing programming operation;

® \Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock the security library;

® Check the SLIB_ULKEF bit in the SLIB_MISC_STS register to verify if it is unlocked
successfully;

® Set the sectors to be protected in the SLIB_SET_RANGEDO register, including the SLIB
start/end addresses;

® Set the sectors to be protected in the SLIB_SET RANGEL1 register, including the start address
of SLIB instruction area and SLIB configuration enable bit;

Wait until the OBF bit becomes “0”;

Set the security library password in the SLIB_SET _PWD register;
Wait until the OBF bit becomes “07;

Program the code to be saved in security library;

Perform a system reset, and then reload the security library setting words;

Read the SLIB_STSO0/STS1/STS2 registers to verify the security library settings.
Note:

® |tis allowed to set security library in the main Flash memory; refer to Table 1 for the
configuration range;

® The security library code must be programmed by sectors, with its start address aligned with
the main Flash memory address;

® The interrupt vector table is in data type and usually placed in the first sector (sectorO, which
should not be configured as security library instruction area) of the main Flash memory.

For details about security library setting register, refer to AT32F435/437 Series Reference Manual.

The security library can be enabled by the slib_enable() function in main.c of project_I0. In addition,
users Artery ICP or ISP tools for configuration.

How to disable sLib protection

The security library protection can be disabled by writing the previously programmed password to
the SLIB_PWD_CLR register. While disabling security library protection, MCU will perform mass
erase on the main Flash memory (including the contents of security library).

The steps to disable main Flash security library are as follows:

® Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;

® \Write the previously programmed password to the SLIB_PWD_CLR register;

10 Ver 2.0.0

-7 AT32F435/437 Security Library Application Note

2.4

® Perform a system reset, and then reload security library setting words;

® Read the SLIB_STSO register to verify the security library settings.

Compile and execute program in sLib

As aforementioned, program codes in the instruction security library (SLIB_INSTRUCTION) can be
fetched by MCU via I-Code bus but cannot be read via D-Code bus, which means that program
codes in SLIB_INSTRUCTION cannot read the data saved in the same SLIB_INSTRUCTION area.
For example, literal pool, branch table or constant compiled from C program code in the
SLIB_INSTRUCTION cannot be read via D-Code bus.

Only instructions rather than data can be placed in the instruction security library. Therefore, when
compiling program codes to be placed in the instruction security library, the user must configure the
compiler to generate execute-only codes to avoid generating the above mentioned data.

Figure 2 and Figure 3 shows the examples of literal pool and branch table.

The “switch()” is a jump instruction in C program, and the “sclk_source” variable is used to read the
CRM_CFG register. As shown in Figure 2, the compiled assembly code “LDR R7, [PC, #288]"
obtains the address of the CRM_CFG register in a PC (program counter) indirect addressing
manner, and the address of the CRM_CFG register is saved as a constant in the adjacent
instruction area (within the instruction security library); therefore, the data is read when the
“switch()” instruction is executed. An error will occur if there is such program code in the instruction
security library.

The example program in Section 3 introduces how to configure compiler settings to avoid error.

Figure 2. Literal pool example (1)

0x08004798 2600 MCVS r&, $0x00
79: sclk source = (crm sclk type)CEM-»cfg bit.sclksts:
80:
>0x08004794 4F39 LDR r7, [pc, #228] ; @0x08004880
0x0800479C &B8TF LDR r7, [x7, #0x04]

0x0800479E F3CT70381 UBFX r3, 7,42, %2
81: switch(sclk source)

mom
[

case CRM SCLK HICK:

_] main.c] startup_at32f403a_407.s | at32f403a 407_clock.c || system_at32f403a 407.c | at32f403a 407_am.c]| at32f403a_407_gpio.c

17
78 % get sclk source */
> 79 || sclk source = (crm _sclk type)CRM->cfg bit. sclksts:
80
81 switch(sclk_source)
820 {
83 case CRM_SCLE_HICK:
84 if (((CRM—>misc3_bit. hick to_sclk) != RESET) && ((CRM->miscl_bit. hickdix
85 svstem core_clock = HICK VALUE * 6;
86 else
87 svstem core_clock = HICK VALUE;
88 break;
2021.9.8 1 Ver 2.0.0

<[

2.4.1

2.4.2

2021.9.8

B AT32F435/437 Security Library Application Note
Figure 3. Literal pool example (2)

137: system core_ clock = system core clock »»> div_walue;
Ox0800486E 4F06 LDR 7, [pc,¥24] : B0x0B8004888
Ox08004870 &83F LDR r7, [T, #0x00]
0x08004872 40F7 LSES r7,r7,r6
Ox08004874 FEDFCO10 LDR.W rl2, [pc,#16] ; B0x0B004888
Ox08004878 FECCT000 STR r7, [rl2, #0=00]

138: }

:0x0800487C BDFO BOPE {r4-z7,pc}
0x0800487E 0000 DCW 0x0000
0x08004880 1000 DCH 0x1000
Ox08004882 4002 DCH 0x4002

Setting interrupt vector table as sLib instruction area not
allowed

The interrupt vector table contains entry point address of each interrupt handler, which is read by
MCU via D-Code bus. Generally, the interrupt vector table is located in the first sector (sector0,
starting address: 0x08000000). Therefore, the following rules must be followed when setting the
instruction security library.

® Do not configure the first sector of the main Flash memory as sLib instruction area.

Correlation between sLib area and user code area

Program code (IP-code) protected by sLib area can call functions from the function library located
in user code area (outside the sLib area). In this case, these function addresses are contained in
the IP-Code, allowing PC (program counter) to jump to these functions when IP-Code is executed.
Once the sLib area is enabled, function address cannot be changed. At this point, addresses of
functions in the user code area must be fixed; otherwise, PC will jump to a wrong address and
cannot work properly. Therefore, when configuring the sLib area, all functions related to IP-Code
should be compiled into the sLib area. Figure 4 gives an example of the protected Function_A()
being called to Function_B() in the user code area.

12 Ver 2.0.0

<[

? AT32F435/437 Security Library Application Note

Figure 4. Example of function in sLib area calling the function in user code area

User_Code_Start@

Function B fixed@ Function_B()

{
{
User_Code_End@

SLIB_Start@
Function_A()
{
Function _B();
}

SLIB_End@

2021.9.8

User code area

SLIB area

In addition, the standard function library of C programming language is commonly used, such as
memset() and memcpy() functions. If both IP-Code and user area code call such functions, the

above mentioned error may occur.

1) Compile into the sLib area (refer to Keil or IAR documents for details).

2) Do not use the standard function library of C programming language in IP-Code. If it is
necessary to use in IP-Code, functions to be used must be renamed. Figure 5 shows an
example of writing the my_memset() function to replace the original memset() in IP-Code

13

Ver2.0.0

SRR AT32F435/437 Security Library Application Note

Figure 5. Example of self-defined function

voidk my_memset (void *s, int ¢, size t n):

void arm_fir_ init f£32(
arm_fir_ instance f32 * 5,
uintl6é_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
uint32 t blockSize)

/% Assign filter taps */
S—>numTaps = numTaps;

/% Assign coefficient pointer */
S->pCoeffs = ploeffs;

7Y Clear State DUTTer and INhe SizZe Of STate buifer 15 (blocksize T mumlaps — 17] %/
my_memset (pState, 0, (numTaps + (blockSize — 1u)) * sizeof(float32_t)) |

/* Assign state polinter */
S->pState = pState;

void¥ mv_memset (void *s, int ¢, size t n)
=X
while (n>0)
%((char¥)s + n— —1) = (char)e:

return (s);

2021.9.8 14 Ver 2.0.0

- AT32F435/437 Security Library Application Note

3 Example applications of sLib
This section introduces example applications of sLib and how to complete these applications step
by step.

The SLIB feature of AT32F435 series is the same as that of AT32F437 series. In this section, the
AT32F437 series is used for demonstration.

3.1 Example application requirements

3.1.1 Hardware requirements

® AT-START-F437 demo board with AT32F437ZMT7 chip
® AT-Link emulator for debugging

3.1.2 Software requirements
® Keil® pvision IDE (pvision V5.18.0.0 is used in this example) or IAR Embedded workbench
IDE (IAR V8.22.2 is used in this example)
® Artery ICP or ISP programming tools for enabling and disabling sLib

3.2 Overview

This application note provides two sample projects to demonstrate that software developers
develop IP-Code for end-user applications.

® Project_LO: Solution provider develops algorithm and compiles to sLib
® Project_L1: Apply algorithm by end users

The algorithm completed in Project_LO will be pre-downloaded and pre-burned to AT32F437 chip
and configured as sLib protected. In addition, the following settings are available for the end-user
applications.

® Main Flash memory mapping, showing the area occupied by sLib and the area where users
can develop programs;

® Header file that contains algorithm function definitions, and end users can call relevant
functions;

® Symbol definition file, which contains the actual address of each IP-Code function, so that
functions can be called properly by the end-user application.

2021.9.8 15 Ver 2.0.0

’I?f ? AT32F435/437 Security Library Application Note

Figure 6. Example application process

Project_LO
Programs SLIB protected code

}

Project_L1
Programs End User Code
Using SLIB protected functions

}

End user application

Software solution providers can refer to the Project_LO to develop algorithm code and refer to
Project_L1 for end-user application.

Figure 7. Example application

Provide AT32F437 Provide pre burned

chip . . IP-CODE AT32F437 chip
:) 0P — 5 S
S Project_IO Project_I1

3.3 SLIB protected code: FIR low-pass filter

This example uses FIR low-pass filter algorithm provided by CMSIS-DSP library as the sLib
protected IP-Code. For details about FIR low-pass filter algorithm, refer to CMSIS-DSP relevant
documents. This application note mainly introduces how to configure sLib to protect this algorithm
and how it is called by the end-user program code.

The low-pass filter input signal in this example is a combination of two sine waves at frequencies of
1 KHz and 15 KHz, while the low-pass filter cut-off frequency is about 6 KHz. A 15 KHz signal is
filtered through the low-pass filter and outputs 1 KHz sine wave. Figure 8 shows the FIR low-pass
filter functions.

2021.9.8 16 Ver 2.0.0

<[

_\) AT32F435/437 Security Library Application Note

3.4

3.4.1

2021.9.8

Figure 8. FIR low-pass filter

Input signal Output signal

q 1

e 1 0 -t

| ‘ FIR Low Pass Filter ‘ 04

03 f
ol i | i i

] 15 i 05 1 15 = 25

<10 <1

L]

I¥if)|

CMSIS DSP library functions and files to be used are:

® arm_fir_init_f32()

It is used for initialization of filter, which is included in “arm_fir_init_f32.c” file.
® arm_fir_f32()

It is the main part of filter algorithm, which is included in “arm_fir_f32.c” file.
® FIR_lowpass_filter()

It is a FIR low-pass filter global function written by using the above two functions. It is called by the
end user and is included in “fir_filter.c” file.

® fir_coefficient.c

This C file contains coefficients (read-only constants) used by FIR filter functions, and these
coefficients are placed in read-only area in the example.

In this example, the embedded FPU and DSP instructions are used for signal processing and
floating point operation to realize accurate results and correct output signals.

Project_L0O: example for solution providers

The following projects are completed in this level:
® Compile the algorithm-related functions to execute-only code;

Place the algorithm program code to the main Flash memory sector 2;

® Place the filter function coefficients to the main Flash memory sector 1;
® Execute the FIR_lowpass_filter() in the main program to verify its correctness;
® If correct, configure sector2 as the instruction security library and sectorl as read-only area,

which can be completed by calling the slib_enable() function in the main program or using
Artery ICP Programmer (recommended);

® Generate the header file and symbol definition files that are used by end-user program to call
low-pass filter functions

Generate execute-only code

Each toolchain has specific setting options to prevent the compiler generating literal pools and
branch table that can read data while executing instructions, such as “LDR Rn, [PC, #offset]".
Section 2.4 lists examples of literal pool and branch table.

For example, Keil® pvision has Execute-only Code option, which can be set as follows:

17 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Keil® pvision: Set Execute-only Code option
Operate as follows:

® Select C file group or individual C file (in this example, the C files to be protected are placed in
“fir_filter”);

® Right click and select the corresponding files (for example, the Option for File ‘arm_fir_f32.c’),
as shown in Figure 9;

Figure 9. Enter Option interface in Keil

=L fir_filter
@_)l arm_fir_f32.c -
$_‘| arm_fir_init_f32.c aﬁ\ Options for File ‘arm_fir_f32.c'... Alt+F7
_’| fir_coefficient.c Remave File ‘arm_fir_f32.¢
) $J flr_fllter.c ﬁ Manage Project Items...

® Tick “Execute-only Code” in the C/C++, and the “--execute_only” instruction is added to the
compiler control string, as shown in Figure 10;

Figure 10. Tick Execute-only Code in Keil

Froperties C/CH l

Preprocessor Symbols
Define: |
Undefine: |
Language / Code Generation
¥ Execute-only Code [¥ Strict ANSI C Wamings:
Optimization: |:de{au|t> j [+ Enum Cortainer always int All Wamings hd
[Optimize for Time [¥ Plain Charis Signed [+ Thumb Mode
[Split Load and Store Muttiple [+ Read-Only Position Independent [+ No Auto Includes
[¥ One ELF Section per Function [¥ Bead-Write Position Independent [C99 Mode
= d
Misc |
Controls
CDI'I'ID“BI’L—execute onh.' -c:t:pu Cortex-M4 fp -D__MICROLIE g 00 —apcs=interwork —split_sections -l .M.
C;trg% = Nnc -1 L Mibraresemsishcm4hcore_support - N Nibraries emsis il

)4 | Cancel Defaults Help

® The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c files are in the SLIB_INSTRUCTION area,
and these files need to be set as generating execute-only code.

IAR: Set No data read in code memory option
Operate as follows:

® Select the corresponding file in the fir_filter group; right click and select Option;

2021.9.8 18 Ver 2.0.0

SRR AT32F435/437 Security Library Application Note

Figure 11. Enter Option interface in IAR

—=1 Wl fir_filter
arm_fir_faZ2.c —
arm_fir_init_{32.c Options...
[l fir_coefficient.c

LT Mak
[c] fir_filter.c i e

a4

hhme

® Enter "C/C++" interface and tick “Override inherited settings” and “No data read in code
memory”, as shown in Figure 12;

Figure 12. C/C++ options in IAR

[Exciude from build

Categary: | Override inherited settings | Factory Settings

Static Analysis

Runtime Checking
C/C++ Compiler
Custom Build Freprocessor | Diagnostics | MISEA-C: 2004

WISEA-C: 1995 | Encodines | Extra Options

Language 1 | Langnage 2 | Code |Dptimizations | Output IList

Processor mode

frm
(@ Thumb

Fozition-independence

[[IReadfwrite data (rwpi)
Ho dynamic readfwrite initializatis

Ho data reads in code memory

n]S] [Cancel

® The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c files are in the SLIB_INSTRUCTION area,
and these files need to be configured as generating execute-only code.

3.4.2 Compile security library address

As aforementioned, the first sector (sector0) of the main Flash memory is used to store interrupt
vector table. Therefore, the security library is set from sector 1 in this example, with sector 2 being
set as instruction security library and sector 1 being set as read-only area. Figure 13 shows the
main Flash memory mapping and RAM partition. The main purpose of RAM patrtitioning is to avoid
the same RAM being used by sLib-protected code and end user code.

2021.9.8 19 Ver 2.0.0

-7 AT32F435/437 Security Library Application Note

Figure 13. Main Flash memory mapping and RAM partition

0x20000000 0x08000000
Vector table

User RAM User code
0x08000FFF
0x2005EFFF 0x08001000

0x2005F000 SLIB_READ_ONLY
SLIB used RAM - -
0x08001FFF
0x08002000
SLIB_INSTRUCTION

0x08002FFF
0x08003000

User code
OXO83EFFFF

Keil® pvision: scatter file

Operate as follows:

® Click Project = Options for Target->Linker, untick “Use memory layout from Target Dialog”
and click “Edit” to open and modify slib-w-xo.sct file, as shown below.

Figure 14. Set Linker option in Keil

K Options for Target 'at_start_f403a' thr
Device] Target] Dutput] Listing} T=zer] C/CH] A=m Linker]Debug I Ttilities]
| ™ Use Memory Layout from Target Dialog ¥/0 Base: ’7
™ Make RW Sections Position Independent R/O Base: ’W
™ Make RO Sections Position Independent RV Base ’W

I™ Dont Search Standard Libraries
I¥ Report might fail' Conditions as Emors

disable Wamings: |

1
Scafter [\slibwwxo sct i
3& \slib-w 0 s J Edit...

Misc —symdefs=fir_filtter_symbol b

controls

Linker |—cpu Cortex-M4fp *o -
control |ibrary_type=microlib —strict —scatter " \slib-wxo sct"
sting N

14 Cancel Tefanlts Help

® Open scatter file, load the object file of the code to be placed in SLIB_INSTRUCTION area to
“‘LR_SLIB_INSTRUCTION” (a dedicated loading area that starts from sector2 and occupies
one sector) and modify the label to “execute-only (+X0O)”. Place the area occupied by
SLIB_READ_ONLY to a dedicated loading area named “LR_SLIB_READ_ONLY” to avoid the
compiler compiling other non-IP-Code functions to the SLIB area. The RW_IRAM2 assigns the

2021.9.8 20 Ver 2.0.0

1?[? AT32F435/437 Security Library Application Note

region from 0x2005F000 to 0x2005FFFF to the sLib algorithm functions to avoid the same
RAM region being used by end-user project, causing fault or error in program execution

process.
Figure 15. Modify scatter in Keil
LR_IROM1 0x08000000 0x001000 { ; load region size_region
ER_IROM1 0x08000000 0x001000 { : load address = execution address
#. 0 (RESET, +First)
#(InRoot$$Sections)
.ANY (+RO)
}
RW_IRAM1 0x20000000 0x0005F000 { : user RW data
CANY (+RW +ZI)
RW_IRAMZ2 0x2005F000 0x00001000 { : RAM used for =lib code
fir filter.o (+RW +ZI)
}
'
LR_SLIB_READ ONLY 0x08001000 0x00001000 { . sLib read-onlv area

ER_SLIB_READ ONLY 0x08001000 0=z00001000
fir_coefficient.o (+RO)

}

LR_SLIB_INSTRUCTION 0x08002000 0x00001000 { : slib instruction area
ER_SLIB_INSTRUCTION 0x08002000 0x00001000 { : load address = execution address
arm_fir_init f32.0 (+X0)
arm_fir f32.o (+X0)
| fir filter.o (+X0)
'

LR_IROMZ2 0x08003000 0x003ED0O00 { : user code area
ER_IROM2 0x08003000 0xQ03ED000 { : load address = execution address
JANY (+RO)

® |n addition to modifying the scatter file, for the RAM used by IP-Code, users can also use the
Keil “__attribute__ ((at(address)))” descriptor to load variables to 0x2005F000, as shown in
Figure 16.

Figure 16. Modify SLIB RAM address in KEIL

#if defined (_ ICCARM__
static float32_t firStateF32[BLOCK SIZE + NUM_TAPS - 1] @ 0x2005F000 ;
felif defined (__CC_ARM)
static float32_t firStateF32[BLOCK SIZE + NUM_TAPS - 1] _ attribute_ |({at(0x2005F000))) :
#Hendif

static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1]

® The start address of read-only area is sector 1 (0x08001000). To compile the constants used
by FIR low-pass filter to this address, users can modify the scatter file as aforementioned, or
use Keil “__attribute__ ((at(address)))” descriptor to load the constants to a fixed address, as
shown in Figure 17.

2021.9.8 21 Ver 2.0.0

’I?f ? AT32F435/437 Security Library Application Note

Figure 17. Modify SLIB KEIL address in KEIL

#if defined (__ICCARM__)

const float32_t firCoeffs32[NUM_TAPS] @ 0x08001000 ={

ftelif defined (__CC_ARM)

const float32_t firCoeffs32[NUM_TAPS] _ attribute_ {(at(0x08001000)))|= {

fendif
-0. 0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.00(
—-0. 0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.25(
+0. 1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, —0.0341458607f, -0.0173976984f, -0.00(
+0. 0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f

IAR: ICF file
Operate as follows:

® Open the .icf file in “\project_IONIAR_V8.2\", and add three new loading areas as shown in
Figure 18. The SLIB_RAM region reserves the corresponding RAM (0x2005F000 to
0x2005FFFF) for the algorithm functions.

Figure 18. SLIB address definition in .icf file

/% SLIB read-onlv area */
define svmbol _ ICFEDIT region SLIB READ ONLY start
define svmbol _ ICFEDIT region SLIB READ ONLY end

0x08001000;
0x08001FFF;

/# SLIB instruction area */

define svmbol _ ICFEDIT region SLIB INST start = 0x08002000;

define symbol _ ICFEDIT region SLIB INST end = 0x08002FFF;
define svmbol _ ICFEDIT region RAM start = 0x20000000;
define svmbol _ ICFEDIT region RAM end = 0xZ005EFFF;

/% SLIB RAM region */
define svmbol _ ICFEDIT region SLIB RAM start = 0xZ005F000;
define svmbol _ ICFEDIT region SLIB RAM end 0x2005FFFF;

® In the .icf file, the area occupied by SLIB is reserved to avoid the compiler compiling other non-
IP-Code functions to the SLIB area, and the RAM region used by IP-Code is reserved.

Figure 19. Address assignment in .icf file

/% Reserved 0x08001000 ~ 0x08002FFF as SLIB area */

define region ROM_region = mem:[from _ ICFEDIT region ROM start__ to _ ICFEDIT region ROM_end]
-mem: [from __ ICFEDIT region_ SLIB_READ _ONLY start _ to __ ICFEDIT region_SLIB_READ ONLY end_]
-mem: [from __ICFEDIT region_ SLIB_INST start__ to _ ICFEDIT region_ SLIB_INST end_] :

define region SLIB_READ ONLY region = mem:[frem _ ICFEDIT region SLIB_READ ONLY start to _ ICFEDIT region SLIB READ ONLY end 1:
define region SLIB_INST region = mem:[from _ ICFEDIT region SLIB_INST start__ to _ ICFEDIT region SLIB_INST end_]:
/% Reserved 0x2005F000 ~ 0x2005FFFF as RAM used for SLIB code */
define region RAM_region = mem:[from __ TICFEDIT region RAM start__ to _ ICFEDIT_region RAM end]
- mem: [from _ TCFEDIT region SLIB_RAM start__ to _ ICFEDIT region SLIB_RAM end_]:

define region SLIB_RAM region = mem:[from __ TICFEDIT region SLIB_RAM start_ to __TICFEDIT region_ SLIB_RAM end_]:

® Forthe RAM used by IP-Code, users can use the IAR @ descriptor to load variables to a fixed
address (0x2005F000) or modify the .icf file, as shown in Figure 20.

2021.9.8 22 Ver 2.0.0

1[-3 AT32F435/437 Security Library Application Note

Figure 20. Modify SLIB used RAM in .icf file

/% Place
place in

IP Code 1in 1nstruct10n area which will be SLIB protected */
SLIBE_INST region { ro object arm fir f32.o,
ro object arm_f1r_1n1t_f32.o,

place in RAM region { readwrite,

/% Place =lib used sram %/

ro object fir filter.ol};

/% Place SLIB DATA(or CODE) in read only area %/
place in SLIB_READ ONLY region { ro object fir coefficient.o };

block CSTACK, block HEAP };

place in SLIB RAM region { readwrite object fir filter.o };

® The start address of read-only area is sector 1 (0x08001000). To compile the constants used
by FIR low-pass filter functions to this address, users can modify the .icf file as aforementioned
or use IAR @ descriptor to a fixed address, as shown in Figure 21.

Figure 21. Modify SLIB used constant address in IAR

Zif defined (__ ICCARM__)

static float32 t firStateF32[BLOCK_SIZE + NUM_TAPS - 1]
Zelif defined (CC_ARM)

statlc float32 t firStateF32[BLOCK_SIZE + NUM_TAPS - 1]

Hendif

@ 0x2005F000 ;

static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] ;

__attribute

((at (0x2005F000))) :

3.4.3 Enable sLib protection

There are two methods to enable sLib protection:

(1) Artery ICP Programmer (recommended)

It is recommended to use Artery ICP Programmer as follows:

® Connect AT-Link to AT-START-F437 board and power on;

® Open ICP Programmer, select AT-Link for connection, and add the HEX or BIN file generated

by Project_LO, as shown in Figure 22.

2021.9.8 23

Ver2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 22. Configure ICP Programmer

File | J-Link settings | AT-Link settings Target Language Help

Part Number: AT32F437ZMT7 FlashSize: 4032KB ’] ?l_ ?
AT-Link-E2 FW: V15.10

i - c=
AT-Link | AT-LinkSN: 8D9D19510040A44401178502 2&' 4 =

Memory read settings

Address Ox 08000000 Read size Ox 000003BC Data bits [S bits v] l Read]
File info
Mo. File name File size Address range(0x) Add
1 at32f437_project_|0.hex 8936 08000000-08000453,08001000-08001073,08
] 1 | 3
l Flash CRC l l File CRC verify l [DownlLoad
Flash info | File:at32f437_project_|0.hex |
Address range:[0x08000000 0x08000453] Address range:[0x08001000 0x08001073] Address range:[0x08002000
0x080021171 _Address ranoe:[0x08003000 0x080040071 _checksum: 0x000CABIE
Address | (1] 1 2 5 4 5] & 7 8 9 A B C [0} E F AL~
40 |23 |00 |20 (01 |30 |00 (0B |1B |36 (00 |08 (13 (36 |00 (0B @4'—‘
(8000010 17 |3 |00 |08 |(F3 |35 (00 (0B |BS (36 |00 (0B (0O |00 (00 |00 |o6
One(8000020 o0 |00 |00 |00 (OO (OO0 (OO (OO |00 (OO (OO0 (OO0 |1F |36 (00 (0B ...
One(8000030 F?7 |35 |00 |08 (00 |00 (OO (OO0 (1D (36 (00 (0B |21 |36 (00 |0B |%
(08000040 18 |30 |00 |08 (1B |30 (OO (0B (1B (30 |00 (0B (1B |30 (00 |0B |cO
4 | = - - = I'I'[- - = - - = - | o - o o - _P
11:28:42 : AT-Link connection is successful. -
11:28:42 : Part Number: AT32F437ZMT7 FlashSize: 4032KB
11:28:42 : Target device connection successfully!
| g
Current Time : 2021/9/10 11:45:01 All Rights reserved by Artery Technology Co.Ltd

® Click “Download” and the “Download Form” pops up, which shows SLIB status and relevant
parameters. Set sector 1 as the start sector and sector 2 as the INSTR start sector and end
sector; set the enable password as “0x55665566” (user-defined) and tick “Enable sLib”; then
click “Start Download” to complete programming and enable sLib successfully, as shown in

Figure 23.

2021.9.8

24

Ver2.0.0

ART

? AT32F435/437 Security Library Application Note

344

2021.9.8

Figure 23. Set parameters in Download Form
[[DownlLoad Form - lil'_léy

— Y e

sLib status
sLib status: Disab

Enable password (x 53665366 Main Flash
Disable password Ox Start sector [Sedor 1--0x08001000 "]
INSTR start sectof| Sector 2--0x08002000 |
End sector [Sedor 2--0x08002000 v]

Extra options

Erase the sectors of file size vl [7] Disable sLib before download
I
Verify | Enable sLib |

[7] Disable FAP before download

[] Jump to the user program [7] Enable FAP after download
] Write software serial number(SN) i
N 08010000 [7] Button free mode
N 00000001
00000001 |

[7] Write user system data

Start Download

For details about ICP Programmer, refer to ICP Programmer User Manual.
(2) Use slib_enable() in main.c

After the slib_enable() function is verified correct by low-pass filter function and then executed, the
sLib protection can be enabled. To execute this function, enable the “#define
USE_SLIB_FUNCTION” in main.c.

Project_L0 execution process

In this example, FIR low-pass filter calculates the input signal (testinput_f32_1kHz_15kHz) mixed
with 1 KHz and 15 KHz sine waves, and the output 1 KHz sine wave is saved in testOutput, which
will be compared with the data calculated by MATLAB and saved in refOutput. If the error value is
smaller than expected (SNR larger than the preset threshold), the green LED on the board blinks;
otherwise, the red LED blinks. Figure 24 shows the Project_LO execution process.

25 VMT

SRR AT32F435/437 Security Library Application Note

2021.9.8

Figure 24. Project_L0 execution process

‘=
i

LED3 toggle
continuously

E
e i User button
system rest to activate o
SLIB ?
T yes
\ 4
Green LED4 on Execute
FIR filter
3 seconds
test

Yes

Check
FIR test
result

SLIB
Operate
uccessfully?

Success

SLIB
already
enabled?

No Enable SLIB

Yes

Green LED4 toggle
in infinite loop

Go through the following steps to execute this example program:

1)

(2)

(3)

(4)
(5)

Use Keil® pvision to open the Project_LO under
\utilities\AT32F435_437_slib_demo\project_I0\mdk_v5\, and then compile;

Before downloading the code, check whether the chip on AT-START-F437 board is sLib-
protected or write/read-protected (FAP/EPP). If it is protected, use ICP Programmer to disable
protection and then download the code;

After successful download, start to execute the code, and the on-board LED3 keeps blinking
rapidly;
Press the on-board USER button to perform operation of low-pass filter;

Compare the computation result. If it is correct, the green LED4 keeps blinking; otherwise, the

26 VerZT

-7 AT32F435/437 Security Library Application Note

red LED2 keeps blinking;

(6) After obtaining the correct result, if the USE_SLIB_FUNCTION in main.c is defined and the
sLib is not enabled, the slib_enable() function will be executed to set SLIB. If SLIB setting fails,
the red LED2 will be always ON; if SLIB setting succeeds, the green LED4 will be ON for about
three seconds and then perform system reset to enable SLIB; then, go to step (3).

3.4.5 Generate header file and symbol definition file
The header file and symbol definition file are used when the Project_L1 calls FIR low-pass filter
functions, which is the fir_filter.h in main.c in this example.

The generation of symbol definition file is related to the specific toolchain being used.

Use Keil® pvision to generate symbol definition file
Operate as follows:
® Enter Options for Target - Linker interface;

® Add “--symdefs=fir_filter_symbol.txt” command in the “Misc controls”, as shown in Figure 25;

Figure 25. Set Misc controls in Keil

kJ Options for Target "at_start_f437" @
Device] Target] Output] Listing] Uzer] C/CH] Azm Linker lDebug] Ttilities]
I~ Use Memory Layout from Target Dialog */0 Base:
™ Make RW Sections Position Independert R/0 Base: |(<08000000
™ Make RO Sections Position Independent R/W Base 220000000
I” Dont Search Standard Libraries
. 1 i .
I¥ Report ‘might fail' Conditions as Emors disable Wamings: |
Scatter | \glib-w-xo sct Edit...
File |:|

Misc —symdefs=fir_fitter_symbal b

controls

Linker |-cpu Corex-M4fp o -
control |library_type=microlib —strict —scatter " \slib-wxo sct"
string -

0K || Bomal || Defaults Help

® After compiling the project, a symbol definition file named “fir_filter_symbol.ixt” is generated
under “project_I0\mdk_v5\Objects”;

® This symbol definition file contains all symbol definitions of the project, and it needs to be
modified to only remain the definitions of low-pass filter functions to be called by end users.
The modified fir_filter_symbol.txt is shown in Figure 26;

Figure 26. Contents of modified fir_filter_symbol.txt

0x08002001 T FIR lowpass filter

2021.9.8 27 Ver 2.0.0

ART

? AT32F435/437 Security Library Application Note

3.5

2021.9.8

Use IAR to generate symbol definition file
Operate as follows:
® Select Project->Option—>Build Actions

Figure 27. Set Build Actions in IAR

Categony:

General Options

Static Analysis

Funtime Checking
CfC++ Compiler
Agzembler

Euild Actions Configuration

Qutput Converter Fre-build command line:

Custom Build
Linker $TOOLKEIT_DIE$hbin'isymexport. exe ——edit “$PROT_DIR$'=st. [1:]
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I4et/ITAGIet
IinkyJ-Trace
TI Stellaris
Mu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

QK.] [Cancel

® Input the following commands to the Post-build command line:

$TOOLKIT_DIR$\bin\isymexport.exe --edit "$PROJ_DIRS$\steering_file.txt"
"$TARGET_PATHS$" "$PROJ_DIRS$\fir_filter_symbol.0"

® The fir_filter_symbol.o is the symbol definition file to be generated, and the steering_file.txt is
saved under “project_IO\iar_v8.2”, which is used to select function symbols to be generated.
Users can manually edit the contents called by sLib. As shown in Figure 28, the "show" is the
command used to select functions.

Figure 28. Edit steering_file.txt contents

show FIR lowpass filter

Project_L1: example for end users

Project_L1 uses the FIR low-pass filter function that is debugged in Project_LO, programmed to
AT32F437 MCU main Flash memory and SLIB-protected. According to the header file, symbol
definition file and the main Flash memory mapping of Project_LO, end users can complete the
followings for Project_L1:

® Create an application project;

® Add the header file and symbol definition file provided by Project LO to the project;

28 VerZT

1=l

? AT32F435/437 Security Library Application Note

3.5.1

2021.9.8

® Call FIR low-pass filter function;
® Develop and debug user’s program.
Note:

Project_L1 must use the same toolchain and the same version of the compiler as those of
Project_LO; otherwise, incompatibility problem may occur and the code provided by Project LO
cannot be used properly. For example, Project_LO uses Keil® pvision V5.18.0.0; therefore,
Project L1 need to use the same version.

Create user application project

The security library enabled in Project_LO occupies some specific main Flash memory sectors;
therefore, the address for Project_L1 code storage should be compiled according to the main Flash
memory mapping of Project_LO. As shown in Figure 13, sector 1 to sector 2 are occupied by
security library, which should be isolated by using the linker control file to avoid code being
compiled to this region.

Keil® pvision: scatter file

Refer to the end_user_code.sct under “project_I1\mdk_v5\’, and divide the main Flash memory into
two regions, and the middle part is the sLib-protected area. In addition, the region behind
0x2005F000 in the RAM should be reserved, as shown in Figure 29.

Figure 29. Modified scatter file

LR_IROM1 0x08000000 0x00001000 { : load region siz
ER_IROM1 0x08000000 0x00001000 { : load address =
%. o0 (RESET, +First)
#(InRoot$$Sections)
ANY (+RO)

_region
zecution address

M @

}
RW_IRAM1 0x20000000 0x0005F000 { : RW data
JANY (+RW +ZD)

- 0x2005F000 ~ 0x2005FFFF RAM reserved for SLIB code

: 0x08001000 ~ 0x08002FFF is SLIB area

LR_IROM2 0x08003000 0x0Q03ED0O0O { : load region size regicn
ER_IROMZ2 0x08003000 0x003ED000 { : load address = execution address
(ANY (+R0)
}
IAR: ICF file

Refer to the enduser.icf under “project_|1\iar_V8.2\", as shown in Figure 30.

Figure 30. Modified icf file

define region ROM_region = mem: [from __ ICFEDIT region ROM start__ to _ ICFEDIT_region_ROM_end_]
—mem: [from __ICFEDIT region_SLIB_start__ to _ ICFEDIT region_SLIB_end_]:

define region RAM_region = mem: [from __ ICFEDIT region RAM start_ to _ ICFEDIT_region_RAM end_]
- mem: [from __ICFEDIT region_SLIB_RAM_start__ to __ICFEDIT_region_SLIB_RAM_end_]:
D . S - L] I - S
29 Ver 2.0.0

A R[- R AT32F435/437 Security Library Application Note

3.5.2 Add symbol definition file to project

The symbol definition file fir_filter_symbol.txt generated in Project_LO must be added to Project_L1,
so that it can be correctly compiled and licked to the sLib-protected area code.
Add symbol definition file in Keil® pvision

Add fir_filter_symbol.txt to the project, as shown in Figure 31.

Figure 31. Add symbol definition file in Keil

L1 user

td bsp

[firmware
{1 crsis
~ =t filter
J fir_filter_symbol. bt
[J readme

Add this file to fir_filter, and then modify its file type from “text” to “Object”, as shown in Figure 32.

Figure 32. Modify symbol definition file type to “Object” file

kA Options for File 'fir_filter_symbol.txt" @
Froperties }
Path- .\fr filter »1:: o:n -
File Type |Objec1 file j ¥ Include in Target Build
SizeHet7 ByteS F
last change: |Fn May 21 11:14:16 2021 l—
=
Stop on Exit Code: |[-lot specified J I~
Custom Arguments: |
Memaory Assignment:
Code / Const: |<defaut> =
Zero Initialized Data: |:default> j
Other Data: |“:|Eff"-'|t> j
0K | Cancel Defaults Help

Add symbol definition file in IAR
Add the fir_filter_symbol.o (Object) to fir_filter, as shown in Figure 33.

2021.9.8 30 Ver 2.0.0

-7 AT32F435/437 Security Library Application Note

Figure 33. Add symbol definition file in IAR

= @ project_I1 - at_start_f._. +
M bsp .
B cmisis ™
2 W fhfiltar

\i [fir_filter_symbaol.o
fiFFrerare L
M readme
M user ™
B Output

3.5.3 Call functions in SLIB-protected area
After the filter.h file is referred in main.c and the symbol definition file is added to the project, the
low-pass filter function in the sLib-protected area can be called, as shown below:
FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);
Where,
® inputF32: pointer containing input signal data table;
® outputF32: pointer storing input signal data table;
® TEST LENGTH_SAMPLES: the number of signal samples to be processed.

3.5.4 Project_L1 execution process

Figure 34 shows the execution process of Project L1:
® Start execution and LED3 will keep blinking;
® Press the USER button on AT-START board, and the FIR_lowpass_filter() starts operation;

® If the result is correct, the green LED4 will keep blinking; otherwise, the red LED2 will keep
blinking.

2021.9.8 31 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Figure 34. Project_L1 execution process

)
i

LED3 toggle
continuously

User button
Pressed ?

yes

Execute
FIR filter
test

Check
FIR test
result

Green LED4 toggle

L “@—Success
in infinite loop

3.5.5 SLIB protection in debug mode

Development tools are used by end users to debug codes when developing applications. This
section takes Keil® pvision as an example to introduce how to protect codes in the SLIB-protected
area from being read as data in debug mode.

® Open Project_L1 and compile;
® Click “Start/Stop Debug Session” to enter debug mode;

® Right click in the “Disassembly” interface and select “Show Disassembly at Address”, as
shown in Figure 35.

2021.9.8 32 Ver 2.0.0

AR

AT32F435/437 Security Library Application

Note

2021.9.8

Figure 35. Enter Show Disassembly at Address

|+ | =

| = == | L=y mirstaterse

v ok FT| ML W VLY R [T N

Des=as-0-3- 8- 3-8 2-

@ Disassembly LN -]
- Ox0B003ESZ 4770 BX 1r ~
b 94: AT32_Foard Init():
as:
96: /% Configure Flash to generate ||V | Mixed Mode error occur *
E0x08003E54 2504 cHp r0, #0 Assembly Mad
0x08003ES6 D106 BIE 0x080 BELEJORE
37: Inshle_Flash_INTi): Address Range »
96:
5g: Show Disassembly at Address..
100: /% Wait for KEY Button to be p ST G
0x08003ES8 4904 LDR ri, [p unto G) .
0x0B003ESA 6809 LDE I 1) oo e =
12; ?hllE (AT3Z_BUTTON_State (BUTTCN, Insert/Remove Breakpoint
0Ox08003ESC FOS10104 ORRS ri,r1 O Enable/Disable Breakpoint Ctrl+F9
0x08003E6D 4408 LDR rz, [p
Al oxosoosesz eo11 SR e Insert Tracepoint at ‘0x08003E54'... 3
104: Delay ws (300} Enable/Disable Tracepoint
108: 3
106 Inline Assembly...
107: /% Turn Off LED3 */ Load Hex or Object file...
0x08003E64 EOOS 0x080
0x0B00IE66 4907 LOR £1, 00 instruction Trace v o
7l Execution Profiling » >
] main.c T® Insert/Remove Bookmark Ctrl=F2 Z =
8 B callStack 3y copy CtilsC LN -]

L Lib V1.x.x\\Ucilities\\AT32F403k S

Name

Tocation/V... Type

Figure 36. Set Show Code at Address

® Enter the address “0x08002000” of SLIB_INSTRUCTION start sector (sector 2);

Show Code at Address

2]

Address:

|m|:-s[:-[:-2[:-[:-|:1

Go To | ‘

® As shown in Figure 37, codes from 0x08002000 are all OxFFFFFFFF;

Figure 37. View codes

2:0x08002000
0x08002004
0x08002008
0x0800200C
0x08002010
0x08002014
0x02002018
0x0800201C
0x08002020
0x08002024
0x08002028

FFFFFFFF DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD
FFFFFFEFE DCD

O0xFFFFFFFF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF

in Figure 38.

33

® Similarly, enter address “0x08002000” in “Memory” window, and codes are all OXFF, as shown

Ver2.0.0

’I?F ? AT32F435/437 Security Library Application Note

2021.9.8

Figure 38. View codes in Memory

Memory 1

Address: |E08002000

0=x08002000: FF F
O=x08002022: FF F
0=x08002044: FF F
O=x08002066: FF F
O0=x08002088: FF F
Ox0800208R: FF F
0=x080020CC: FF F
Ox080020EE: FF F.
0=x08002110: FF F

® In the “Memory”, enter the address “0x08001000” of SLIB_ READ_ONLY start sector (sector
1); this region is allowed to be read through D-Code bus, so that the original values can be
found, as shown in Figure 39.

Figure 39. SLIB_READ_ONLY start sector in Memory

Address: |(x08001000

Ox08001000: EBES E1 EE BA 12 22 DO BA 00 00 00 00 F7 55 72 3B CF 4E 04 3C 58 C2 OB
Ox08001022: 0B BD 9C A3 08 BD 00 00 00 00 DA 82 8A 3D FO DBE 1B 3E S5F 46 &4 3E 0@
0=x08001044: OA 82 8A 3D 00 00 0O 00 SC A3 08 BD &8 DC OB BD SE 85 BE BC 00 00 00
Ox080010€6: 72 3B 00 00 00 00 12 22 DD BA ES E1 EE BA FF FF FF FF FF FF FF FF FF

0x08001088: FF
Ox080010RA%: FF
0x080010CC: FF

® Double click the value of 0x08002000 in the “Memory” window, and a warning message will be
issued by setting EPPERR=1 in the FLASH_STS register, indicating the protection is enabled.

Figure 40. SLIB write test

=-5TS 000000010
ODF r
EPPERR
PRGMERR |I~
OBF r

® |n case of enable write protection error interrupt, continuing execution will enter the interrupt

program.
Figure 41. Write protection error interrupt
115 void FLASH IRQHandler (void)
116 & {
> 117 | if (flash_flag get (FLASH_EPPERR_FLAG))
1185 {
119 flash flag clear (FLASH EPPERR_FLAG)
120 delav_ms (500) :
121 }
122 | }

34 Ver 2.0.0

1?[? AT32F435/437 Security Library Application Note

4

4.1

Integrate codes and download

After codes of the solution provider and end user are configured, download to the same MCU on
the premise of guaranteeing code security. Project_LO and Project L1 are used to introduce two
downloading methods for reference.

This operation involves offline downloading mode of AT-Link. For details, refer to operation
manuals of ICP and AT-Link.

Program codes separately

Firstly, the solution provider programs SLIB codes to MCU; then, the end user programs application

codes to MCU. The process is as follows

(1) Method A: The solution provider uses ICP tool to save the SLIB code in the compiled project
as BIN or HEX file: download the complete project to MCU (do not configure SLIB and FA),
read the corresponding SLIB codes (0x08001000~0x08002FFF) by using the memory access
function, and then click “File-Save Flash data as” to save codes as BIN or HEX file. In this
example, it is named “slib.bin”, as shown in Figure 42.

Figure 42. Save SLIB codes

[Artery ICP Programmer_V2.4.24 —— o

File | J-Link settings ~ AT-Link settings Target Language Help

2t fle 45 . |i132m37zm17 FlashSize: 4032KB ’I ?r ?

| Save flash data as...

= WL1.5.10 +
Make encryption file D19510040A44401178502 ﬁ ’}lt?_f 77
Exit 0
Memory read settings
Addiess Ox 08001000 Read size 0Ox 2000 Data bits lB bits VI [Read l
File info
Mo, File name File size Address range(Dx) Add
1 at32f437_project_0.hex 2936 08000000-08000453,08001000-08001073,08
4 | il 3
l Flash CRC l l File CRC verify l l DownlLoad
Flash info | File:at32f437_project_|0.hex |
Address range:[0x08001000 0x08002FFF] checksum: 0x001EFI5E
Address 0 1 2 3 4 5 & 7 8 9 A B C o] E F e -
BS |E1 |EE |BA |12 |22 DO |BA (00 |00 |00 |00 |F7 55 72 |38 |ES —l
008001010 CF |4E |04 |3C |58 |C2 (0B |3C |00 |00 |00 |B0 |9E |85 |BE |BC |
0x08001020 88 |DC |0B |BD |9C |A3 |08 |BD (00 |00 |00 |00 |(0A |82 [8A |3D |[#:
0x08001030 F0 |DB |1B |3E |5F |46 |64 |3E (06 |41 |80 |3E |[5F |46 |84 |3E |fTC
Ox03001040 F0O |DBE |1B [3E |0A |82 |[8A (3D |00 |00 (0O |00 |9C |A3 |08 |BD |fT:
ar o T) i
13:07:01 : Verification successfully ! ! »
13:07:10 : Memory reading......
7 | 5 7 1 | 1 | I | S
2021.9.8 35 Ver 2.0.0

1?[? AT32F435/437 Security Library Application Note

Method B: The solution provider uses the compiled project to generate a .bin file directly, and
take the corresponding section in the SLIB area. For example, in the KEIL project, add “fromelf.exe
--bin --output .\Listings\@L.bin !L” in the “user” option to generate a .bin file of the corresponding
firmware, and add a suffix “.bin” to the SLIB area file. In this example, they are
“ER_SLIB_INSTRUCTION.bin” and “ER_SLIB_READ_ONLY.bin”, corresponding to the SLIB-
INSTRUCTION file (0x08002000) and SLIB-READ-ONLY file (0x08001000), as shown in Figure
43.

Figure 43. Generate .bin file of SLIB code

Wil = peries o e gt s oo

Devics | Target | Output | Listing User |c/t+ | Asm | Limker | Debug | Utilities |
Command Items User Command w Stopon Bd.. 5.
(=) Before Compile C/C++ File
I~ Run=l 25| Mot Specified ™
I~ Run£2 3 Not Specified T
& Before Build/Rebuild EE IRCOM1
I~ Run#l 5] Not Specified - -
[~ Run#2 5] Mot Specified | I~ | ERIROM2
= After Build/Rebuild
¥ Run#l fromelf.exe --bin --output \Listings\@L.bin IL | -5 Not Specified T | ER_SUE_INSTRUCTION
I~ Run 22 5] Mot Specified ™
|_||[ER_SLIE_READ_OMLY

(2) Use ICP Programmer to program the .bin file to MCU, as shown in Figure 44.

Figure 44. Online programming to MCU in ICP

[Artery ICP Programmer V2.4.24 = = | DownLoad Form ESREEE™ >
File J-Link settings ~ AT-Link settings Target Language Help sLib status

ik . izakl
Part Number: AT32F437ZMT7 FlashSize: 4032KB ’I el ? SE——
i Z | Enable password Ox 55665566 l Main Flash
AT-Link-EZ FW:V15.10

AT-Link | AT-Link SN: 8D9D18510040A44401178502 ﬁ' 4% jj Disable password Ox tart sector Sector 1-0x08001000 ~
Disable skib NSTR start sector| Sector 2-0x08002000
0

nd sector Sector 2--0x08002000 ~
Memory read settings Extra options
Address 0x 02000000 Read size Ox 00000454 | Data bits [Bbits_=| [Read | [Erase the sectors of file size | [Disable sLib before download
— Verify Enable sLib
lle info
[C] Disable FAP before download
: . Add
1 ER_SLIB_READ_ONLY.bin 116 08001000-08001073 [C] Jump to the user program [C] Enable FAP after download
2 ER_SLIB_INSTRUCTION.bin 280 08002000-08002117 I 7] Write software serial number(SN)
08010000 [7] Button free mode
00000001
[Flash CRC] [Fi\e CRCverify] I Download l
| 00000001
Flash info. FiIe:ER_SuB_INSTRUCTION‘bin| i
r
Address range:[0x08002000 0x08002117] checksum: 0x000077A% [l Write user system data
il
Address o 1 2 |3 a4 5 6 7 (8 |9 A B c |D|E F A~
zn E9 (FF (47 (06 |46 |OF |46 (90 (46 |20 |25 |4F |EA (58 |19 |-%(E
0x0B002010 4F |F2 |00 (03 |€2 |F2 |05 |03 (41 [F2 |00 |02 |CO |F6 (00 |02 |O7
0x0B002020 1D |21 |01 |AB (00 |95 (00 |FO (5B |F8 |00 |24 |OC |EO |04 |FB Iz}
0X0B002030 05 FO |07 [EB (80 |02 |04 |FB (05 |FO |06 |EB |80 |01 |28 |46 |oF | J
0x08002040 01 |A8 |00 |FO |05 F8 |64 |1C [4C |45 FO D3 |BD |EB |FF &7 o7 Start Download
< I v

(3) End users also can use ICP Programmer to set an offline project and save it to AT-Link, and
then complete offline programming to MCU through AT-Link, as shown in Figure 45.

2021.9.8 36 Ver 2.0.0

:'=/| ? I_

? AT32F435/437 Security Library Application Note

2021.9.8

Figure 45. Offline programming to MCU via AT-Link

r |
{7 AT-Link Setting R a— _E__Iilg

AT-Link settings | AT-Link offline config settings |AT-Lir1k offline download status|

Offline project l

Project name slib_project

Device

v] Delete

AT32F437 ~|[AT32FA37ZMTT

7

Bl Elle name

Eleciza

A Fangel0) St loca...

1 ER_SLIB_READ_ONLY.bin
2 ER_SLIB_INSTRUCTIOM.bin

116
280

=)

Add

08001000-08001073

082002000-08002117

4|

LU

| r

Erase option |Erase the sectors of file size

2

[Download times

[] Write user system data

[T] Enable FAP after download

[T] Encryption transmit Verify

| Software serial number(SN) | SPIM settings | sLib settings |

Enable sLib

sLib enable password Ox 55665566

[7] Disable sLib before download

Download interface

[7] Reset and run

Wiall Flaslil

Start sector ISechr 1--0x08001000

INSTR start sector [59510! 2--0x08002000

End sector ISector 2--(eDB002000

l Load parameters l l Save parameters l

Open project l ’ Save project file

l Save project to AT-Link l l

Clase l

(4) After completing step2/3, end users can get the MCU with programmed SLIB area (SLIB

status: enabled), and program the application code to MCU through online or offline

programming, as shown in Figure 46.

37

Ver2.0.0

1?[? AT32F435/437 Security Library Application Note

Figure 46. End users program codes to MCU
[Download Form [E=SEERT—)

{7 Artery ICP Programmer_V2.4.24 = =

File J-Link settings ~ AT-Link settings Target Language Help sLib status

Part Number: AT32F437ZMT7 FlashSize: 4032KB. ’l?r ? slib
AT-Link-EZ FW:VL5.10 - Enable password Ox 55665566 Main Flash

AT-Link _-| AT-LinkSN: 2D9D19510040A44401178502 ﬁ 4% jj Disable password Ox Start sector Sector 1--0x08001000 ~
5 | INSTR start sector | Sector 2--0x08002000 =

End sector Sector 2--0x08002000 ~

Memory read settings Extra options

Address 0x 08001000 Read size Ox 00000074 Databits [8bits v| | Read | [Erase the sectors o file size ~| [Disable stib before download
¥ i .
File info Verify [] Enable sLib
Neor—sil o . Add [Disable FAP before download
1 [at32f437 _project_|1hex 7364 Dsononon-nsnoms,Dsonsnon-nsnmsﬁ' [[] Jump to the user program [C] Enable FAP after download

[C] Write software serial number(SN)

[] Butten free mode

08010000

. m G

i 00000001

l Flash CRC] ane CRCverifyl [Download

00000001
Flash info | File:at32f437_project [1hex |

Address range:[0x08000000 0x08000443] Address range:[0x08003000 0x0800487F] checksum: 0x000A5392

[] Write user system data

Address o 1 2 3 4 5 & 7 8 9 A B c D E F Al ~
38 |13 (00 |20 01 |30 00 |08 |F7 |35 |00 |08 |EF |35 |00 |08 |80
0x08000010 F3 |35 (00O |08 CF |35 |00 (08 (91 |36 (00 08 (00 (00O |00 (0O |2.%
0x08000020 00 |00 (00 |00 00 0O OO0 OO (OO0 0O (OO0 0O |(FB |35 |00 (08 I‘
0x08000030 D3 |35 (00O (08 (00O (OO (OO (OO |F9 |35 |00 |08 |FD |35 |00 |08 |7..

0x08000040 18 |30 (00 |08 (1B |30 |00 |08 (1B |30 |00 |08 |1B (30 |00 |08 |oO
- Start Download Close
.

m r

4.2 Integrate and program codes

Integrate the SLIB code of solution provider and the end user application code to an offline project,
and then download the integrated code to MCU through AT-Link offline programming. The process
is as follows:

(1) The solution provider handles the compiled project as aforementioned to get a slib.bin file;

(2) The solution provider uses ICP Programmer to generate an offline project and save it to PC.
Parameters (such as downloads, project file binding to AT-Link and enable FAP after
download) can be configured as needed. Save the offline project as follows.

Note: The offline project is encrypted. To enhance security, the solution provider also can set the slib.bin file
as an encrypted slib.benc file and then add it to the offline project. In this case, the offline project can only be
used on the AT-Link with the corresponding encryption key.

2021.9.8 38 Ver 2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 47. Set offline project

I AT-Link Setting

(=] S

AT-Link settings | AT-Link offline config settings

‘AT—Unk offline download slalu5|

Offline project l

vl Delete

Project name slib_project

Device [AT32F437 ~|[AT32F4372ZMT7

x|

Storage loca...

No. pFite-rrarm it TETOEtOR)
1 ER_SLIB_READ_ONLY.bin 116 08001000-08001073
2 ER_SLIB_INSTRUCTION.bin 280 08002000-08002117

<

I] »

Erase option |Erase the sectors of file size

2]

7] Download times

Download interface

Add

] Encryption transmit Verify [Reset and run
[] Write user system data
[”] Enable FAP after download
‘ iy serial SN) | SPIM gs | sLib ‘
Enable sLib Main Flash
i 53665566
[T Disable sLib before download INSTH start sector -
- ATl . . = =3
Gl 4 b m 77 AT-Link project file settings
| e] T e T s ey et e e
AT-Link SN : CFD275220040B56D0117C502
| s e anfly sl e
o] ject Ji 1 -Li -
pen proje Save project file l Save project to AT-Link l [Close] AT-Link AIN : FOOFA432D013A913
L - = p—

(3) After obtaining the offline project, the end user should use ICP Programmer to open the project
file and add the application codes to the offline project; then save to PC or AT-Link, and
perform offline download. Figure 48 shows how to add the project file.

Note: To protect codes from being leaked or decoded, do not change other settings when adding code file to
the offline project, which requires the solution provider to configure the final settings in advance.

2021.9.8

39

Ver2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 48. Add project file

-
{7 AT-Link Setting

s — e,

AT-Link settings | AT-Link offline config settings |AT-Lir1k offline download 5tatus|

Offline project [

) oo]

Project name slib_project

Device |AT32F437

AT32FA3TIMTT

Storageloc;:[Add]

m

(L1

No. File name File size Address range(0x)
1 ER_SLIB_READ_ONLY.bin 116 08001000-08001073
2 ER_SLIE INSTRUCTION.bin 280 08002000-08002117
2 AIMAIT mvmtart 11 s 1n07 NOoNNNNNN_ NONNNAAD
]

d times (0

transmit

Write user system data

Enable FAP after download

rase option |Erase the sectors of file size

haniE sm sLlib paosition Main Flash
<Lib enable password Ox e
: : S Start secto Sector 1--0x08001000
0y L b hafo e
Disable sLib before downloa Sector 2--0x08002000
SHb cisable password B End sector Sector 2--0x08002000
pad paramete Save parameters

2021.9.8

40

Open project l [Save project file Save project to AT-Link l Close l
This project is only used once.
This project is only used at the specified AT-Link.
—_— — —— ———— ——
e

Ver2.0.0

1[-3 AT32F435/437 Security Library Application Note

5 Revision history
Table 2. Document revision history
Date Version Revision note
2021.9.8 2.0.0 Initial release.

2021.9.8 41 Ver 2.0.0

? AT32F435/437 Security Library Application Note

2021.9.8

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for purchasers’ selection or

use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation
in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY authorizes the use of the third
party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third party’s products or services or intellectual

property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or
sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the

corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific
requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function
safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other applications that may cause injuries, deaths
or property damages. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these
purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in

addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately
cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility

in any form.

© 2021 Artery Technology -All rights reserved

42 Ver 2.0.0

	1 Overview
	2 Application principles
	2.1 Application principle of sLib
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Compile and execute program in sLib
	2.4.1 Setting interrupt vector table as sLib instruction area not allowed
	2.4.2 Correlation between sLib area and user code area

	3 Example applications of sLib
	3.1 Example application requirements
	3.1.1 Hardware requirements
	3.1.2 Software requirements

	3.2 Overview
	3.3 SLIB protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Compile security library address
	3.4.3 Enable sLib protection
	3.4.4 Project_L0 execution process
	3.4.5 Generate header file and symbol definition file

	3.5 Project_L1: example for end users
	3.5.1 Create user application project
	3.5.2 Add symbol definition file to project
	3.5.3 Call functions in SLIB-protected area
	3.5.4 Project_L1 execution process
	3.5.5 SLIB protection in debug mode

	4 Integrate codes and download
	4.1 Program codes separately
	4.2 Integrate and program codes

	5 Revision history

