
AT32 WDT and WWDT User Guide

2022.06.06 1 Ver 2.0.1

AN0045
Application Note

AT32 WDT and WWDT User Guide

Introduction
This application note introduces how to use watchdog timer (WDT) and window watchdog timer
(WWDT) of AT32 MCUs.

Note: The corresponding code in this application note is developed on the basis of BSP_V2.x.x provided by
Artery. For other versions of BSP, please pay attention to the differences in usage.

Applicable products:

Part number All AT32 series

AT32 WDT and WWDT User Guide

2022.06.06 2 Ver 2.0.1

Contents

1 Overview ... 6

1.1 Differences ... 6

1.2 Application scenarios.. 7

1.3 Features ... 8

2 WDT introduction ... 9

2.1 Access to registers ... 9

2.2 Clock structure ... 10

2.3 Counter .. 10

2.4 Window value .. 11

2.5 WDT low power counting mode .. 12

2.6 WDT enable ... 13

2.7 Application method ... 13

3 WWDT introduction ... 15

3.1 Clock structure ... 15

3.2 Counter .. 15

3.3 Window value ... 16

3.4 WWDT enable .. 16

3.5 Application method ... 16

4 Example of WDT application .. 18

4.1 Purpose .. 18

4.2 Resources .. 18

4.3 Software design .. 18

4.4 Test result ... 19

5 Example of WWDT application ... 20

5.1 Purpose .. 20

5.2 Resources .. 20

AT32 WDT and WWDT User Guide

2022.06.06 3 Ver 2.0.1

5.3 Software design .. 20

5.4 Test result ... 21

6 Revision history ... 22

AT32 WDT and WWDT User Guide

2022.06.06 4 Ver 2.0.1

List of tables

Table 1. Differences between WDTs of each model .. 6

Table 2. WDT registers .. 10

Table 3. WDT timeout period (LICK = 40 kHz) .. 11

Table 4. WWDT timeout period (PCLK = 72 MHz) .. 15

Table 5. Document revision history .. 22

AT32 WDT and WWDT User Guide

2022.06.06 5 Ver 2.0.1

List of figures

Figure 1. Application scenarios of WDT and WWDT ... 7

Figure 2. Features of WDT and WWDT .. 8

Figure 3. WDT block diagram .. 9

Figure 4. WDT clock .. 10

Figure 5. WDT reload ... 11

Figure 6. Window value feature of WDT.. 12

Figure 7. Stop counting in low-power mode .. 12

Figure 8. WWDT clock ... 15

Figure 9. Window value of WWDT .. 16

AT32 WDT and WWDT User Guide

2022.06.06 6 Ver 2.0.1

1 Overview

A watchdog timer is mainly used to improve system stability and recover from malfunctions by

resetting the MCU when program crash occurs or if it does not receive a signal from the MCU

within the set interval due to runtime logic error. It is recommended to use a watchdog timer to

guarantee system stability.

AT32 MCUs have two watchdog timers:

― Watchdog timer (WDT): It has a 12-bit downcounter. When the counter counts down to 0, a

system reset is generated; if the counter is refreshed before it counts down to 0, a system

reset does not generate.

― Window watchdog timer (WWDT): It has a 7-bit downcounter. When the counter counts down

to 0x3F, a system reset is generated; if the counter is refreshed within the set time (window

time), a system reset does not generate.

1.1 Differences

WWDTs of each model are the same, compatible with programs.

WDTs of each model are basically the same, except that the advanced time window function or

optional function of stop counting in low-power mode may not be available for some models (other

functions are the same and compatible with programs).

Table 1. Differences between WDTs of each model

Model Time window
Stop counting in DEEPSLEEP

and STANDY mode (optional)

AT32F403xx × ×

AT32F403Axx × ×

AT32F407xx × ×

AT32F413xx × ×

AT32F415xx × ×

AT32F421xx × ×

AT32F425xx √ √

AT32F435xx √ √

AT32F437xx √ √

AT32L021xx √ √

√: This function is available and is the same for different models.

×: This function is not supported.

AT32 WDT and WWDT User Guide

2022.06.06 7 Ver 2.0.1

1.2 Application scenarios

Application scenarios of WDT and WWDT are different, as shown in Figure 1.

Figure 1. Application scenarios of WDT and WWDT

Application

scenarios

WDT

WWDT

1. Abnormalities: program crash occurs or program enters an infinite loop;

2. Inappropriate wakeup time for low-power mode: entering SLEEP,

DEEPSLEEP and STANDBY mode takes too long;

3. MCU operates improperly due to interference (e.g. external crystal

oscillator stops) or enters an unknown state after being interfered;

4. Reset MCU by software.

1. Abnormalities: program enters an infinite loop;

2. The software logic fails to execute in strict accordance with specified

timing sequence, such as completing an operation in advance or in

timeout;

3. Reset MCU by software.

AT32 WDT and WWDT User Guide

2022.06.06 8 Ver 2.0.1

1.3 Features

Figure 2. Features of WDT and WWDT

F
e

a
tu

re
s

S
im

ila
ritie

s

D
iffe

re
n

c
e

s

1. A system reset is generated when the timer does not receive a signal
within the set interval due to abnormalities, such as program execution
timeout or the program entering an infinite loop.

2. The timeout period is configurable.

1. Application scenario

● WDT: It is generally used when program crash occurs or MCU
operates improperly due to interference.

● WWDT: It is used to prevent program from executing
unexpectedly, such as completing an operation in advance or in
timeout.

2. Clock source

● WDT: It is clocked by LICK (typical value: 40 KHz);

● WWDT: It is clocked by APB1.

3. Counter

● WDT: 12-bit downcounter

● WWDT: 7-bit downcounter

4. Enable mode

● WDT: It can be enabled by both software and hardware.

● WWDT: It is enabled by software only.

5. Interrupt

● WDT: No interrupt feature. It performs system reset in case of
timeout.

● WWDT: It offers reload counter interrupt feature. It is possible to
reload the counter through interrupt service routine.

6. Kicking the dog

● WDT: Kicking the dog when the counter value is larger than 0.

● WWDT: Kicking the dog when 0x3F<counter value <= window
value.

AT32 WDT and WWDT User Guide

2022.06.06 9 Ver 2.0.1

2 Watchdog timer (WDT)

2.1 Access to registers

Status register

WDT registers are in the 1.2 V power domain, and the counter module is in VDD power domain.

WDT can work in SLEEP, DEEPSLEEP and STANDBY modes.

The write operation to WDT registers is in the 1.2 V power domain, and values of these registers

need to be synchronized to VDD power domain. Each register has a flag indicating whether the

synchronization operation is complete. A maximum of four LICK clock cycles (about 125 us) are

required for each synchronization. When the register is written, the corresponding synchronization

flag is automatically set to 1 and cleared after the synchronization is completed. It is not allowed to

write this register before the synchronization flag is cleared.

Figure 3. WDT block diagram

RLDF: When this bit =1, it indicates that the reload value is being synchronized; when this bit=0, it

indicates synchronization is complete.

DIVF: When this bit =1, it indicates that the divider value is being synchronized; when this bit=0, it

indicates synchronization is complete.

WINF: When this bit =1, it indicates the window value is being synchronized; when this bit=0, it

indicates synchronization is complete.

Flag fetch function:

flag_status wdt_flag_get(uint16_t wdt_flag);

Register write protection

WDT registers are write-protected, which should be unlocked by writing CMD = 0x5555 in the

command register before write operation. The read protection is enabled when another value is

written. Table 2 lists the read-protected registers:

AT32 WDT and WWDT User Guide

2022.06.06 10 Ver 2.0.1

Table 2. WDT registers

Register Abbr.
Synchronization

complete flag

Write protection Unlock

Command register WDT_CMD - No -

Divider register WDT_DIV DIVF Yes Write CMD=0x5555

Reload register WDT_RLD RLDF Yes Write CMD=0x5555

Status register WDT_STS - No -

Window register WDT_WIN WINF Yes Write CMD=0x5555

Register write enable function:

void wdt_register_write_enable(confirm_state new_state);

2.2 Clock structure

Figure 4. WDT clock

The WDT downcounter is clocked by LICK (divided by an 8-bit divider). The LICK is an internal RC

clock with a typical value of 40 kHz, with its range falling between 30 kHz and 60 kHz (refer to the

datasheet of each series for details). The timeout period is also within a certain range, so a margin

should be taken into account when configuring timeout period. The LICK can be measured and

calibrated to obtain the WDT timeout with a relatively accuracy.

Configure the prescaler divider (4, 8, 16, 32, 64, 128 or 256) by setting the DIV[2:0] bit.

𝑓𝑐𝑘_𝑐𝑛𝑡 =
𝑓𝐿𝐼𝐶𝐾

Prescaler divider

Prescaler divider set function:

void wdt_divider_set(wdt_division_type division);

2.3 Counter

The WDT is featured with a 12-bit downcounter (maximum value: 0xFFF). Once the WDT is

enabled, it starts counting down from the set value, and a system reset is generated when the

counter reaches 0.

AT32 WDT and WWDT User Guide

2022.06.06 11 Ver 2.0.1

Figure 5. WDT reload

The counter value is set through the RLD bit in the reload register. When the prescaler divider is

set, the RLD bit value determines WDT reset time. Whenever 0xAAAA is written to the WDT_CMD

register, the value of this register is updated to the downcounter. This operation is commonly

referred to as kicking the dog, which should be performed before the downcounter reaches 0;

otherwise, a reset is generated.

The WDT reset time is calculated as below:

Timeout period = (RLD + 1) x
Prescaler divider

𝑓𝐿𝐼𝐶𝐾

Table 3. WDT timeout period (LICK = 40 kHz)

Prescaler divider
Minimum timeout (ms)

RLD[11:0] = 0x000

Maximum timeout (ms)

RLD[11:0] = 0xFFF

4 0.1 409.6

8 0.2 819.2

16 0.4 1638.4

32 0.8 3276.8

64 1.6 6553.6

128 3.2 13107.2

256 6.4 26214.4

Reload value set function:

void wdt_reload_value_set(uint16_t reload_value);

Reload WDT counter (kicking the dog) function:

void wdt_counter_reload(void);

2.4 Window value

The window value feature is enabled by setting the WIN[11:0] to 0xFF. When the counter value is

greater than the window value, the reload counter will perform a system reset. For example, when

WIN=800, the time window for reload is shown as below:

AT32 WDT and WWDT User Guide

2022.06.06 12 Ver 2.0.1

Figure 6. Window value feature of WDT

Window value set function:

void wdt_window_counter_set(uint16_t window_cnt);

2.5 WDT low power counting mode

WDT can work in Sleep, Deepsleep and Standby modes. It is possible to stop counting in

Deepsleep and Standby modes by setting the nWDT_DEPSLP and nWDT_STDBY bits in the User

System Data area.

If the counter is disabled, it will stop decrementing as soon as the Deepsleep and Standby modes

are entered. This means that the WDT would not perform a system reset in both low power modes.

After waking up from these two modes, it continues downcounting from the value at the time of the

entry of these modes.

Figure 7. Stop counting in low-power mode

User system data erase function:

flash_status_type flash_user_system_data_erase(void);

User system data set function:

flash_status_type flash_ssb_set(uint8_t usd_ssb);

Example of stop counting in low-power mode:

/* User system data erase */

flash_user_system_data_erase();

/* Stop counting in DEEPSLEEP and STANDBY modes */

flash_ssb_set(USD_WDT_ATO_DISABLE | USD_DEPSLP_NO_RST | USD_STDBY_NO_RST |

AT32 WDT and WWDT User Guide

2022.06.06 13 Ver 2.0.1

FLASH_BOOT_FROM_BANK1 | USD_WDT_DEPSLP_STOP | USD_WDT_STDBY_STOP);

2.6 WDT enable
WDT can be enabled by both hardware and software operations. Once enabled, WDT cannot be

disabled unless a reset occurs.

Enable by software operation

Write 0xCCCC to the command register to enable WDT.

WDT enable function:

void wdt_enable(void);

Enable by hardware operation

Set the nWDT_ATO_EN bit in the User System Data area to enable WDT. Once enabled, the WDT

will run automatically after power-on reset.

Example of enabling WDT by hardware operation:

/* User system data erase */

flash_user_system_data_erase();

/* Enable WDT by hardware operation */

flash_ssb_set(USD_WDT_ATO_ENABLE | USD_DEPSLP_NO_RST | USD_STDBY_NO_RST |

FLASH_BOOT_FROM_BANK1 | USD_WDT_DEPSLP_CONTINUE |

USD_WDT_STDBY_CONTINUE);

2.7 Application method

The WDT is mainly used to check whether program crash occurs or program enters an infinite loop.

For example, if the program takes 10ms to complete operation, set the WDT timeout period as

20ms. A reset is not generated in case of kicking the dog immediately after the program operation

is complete. If kicking the dog is not performed after 20ms, it indicates that an error occurs, and

MCU reset is generated at this time.

For example:

To set WDT timeout period = 20ms, set the prescaler divider = 4, and counter value = 200, as

shown below:

Timeout period = RLD ×
Prescaler divider

𝑓𝐿𝐼𝐶𝐾
= 200 ×

4

40000
= 20𝑚𝑠

Configuration steps:

1. Disable register write protection

wdt_register_write_enable(TRUE);

2. Set prescaler divider = 4

wdt_divider_set(WDT_CLK_DIV_4);

AT32 WDT and WWDT User Guide

2022.06.06 14 Ver 2.0.1

3. Set reload value = 200

wdt_reload_value_set(200 - 1);

4. Enable WDT

wdt_enable();

5. Reload counter in program

wdt_counter_reload();

AT32 WDT and WWDT User Guide

2022.06.06 15 Ver 2.0.1

3 Window watchdog timer (WWDT)

A WWDT is mainly used to check detect whether software logic is executed as expected. Set the

related registers to set the upper and lower time limits of kicking the dog (a reset is generated when

the downcounter value is smaller than 0x40 or the downcounter is refreshed outside the time

window).

3.1 Clock structure

Figure 8. WWDT clock

The window watchdog timer is clocked by a divided APB1_CLK. The precision of the APB1_CLK

enables the window watchdog to take accurate control of the limited window.

The APB1_CLK is divided by 4096, and is sent to the prescaler and finally to a 7-bit downcounter

CNT[6:0]. The prescaler divider can be defined (1, 2, 4, or 8) by the DIV[1:0] bit.

𝑓𝑐𝑘_𝑐𝑛𝑡 =
𝑓𝑃𝐶𝐿𝐾

4096×2𝐷𝐼𝑉[1:0]

Divider set function:

void wwdt_divider_set(wwdt_division_type division);

3.2 Counter

The WWDT is featured with a 7-bit downcounter (maximum value: 0x7F). Once the WWDT is

enabled, the counter starts counting down, and a system reset is generated when the counter

reaches 0x3F.

Timeout period = (CNT[5:0] + 1) ×
4096×2𝐷𝐼𝑉[1:0]

𝑓𝑃𝐶𝐿𝐾

Table 4. WWDT timeout period (PCLK = 72 MHz)

Division value
Minimum timeout (ms)

CNT [6:0] = 0x40

Maximum timeout (ms)

CNT [6:0] = 0x7F

1 56.5μs 3.64ms

2 113.5μs 7.28ms

4 227.5μs 14.56ms

8 455μs 29.12ms

Counter value set function:

void wwdt_counter_set(uint8_t wwdt_cnt);

AT32 WDT and WWDT User Guide

2022.06.06 16 Ver 2.0.1

3.3 Window value

The window value (WIN[6:0]) is configurable, with the maximum value of 0x7F and the minimum

value being larger than 0x40 (overall range: 64~127, i.e., 0x40~0x7F). When the downcounter

value is smaller than the window value, the downcounter is refreshed; otherwise, a reset is

generated.

For the sake of kicking the dog, the reload counter interrupt (RLDIEN bit) can be used. When the

downcounter reaches 0x40, an interrupt is generated, and the counter is reloaded in the interrupt

service routine.

Figure 9. Window value of WWDT

As shown in Figure 9, when the window value is set to 0x4F, it is not allowed to refresh 0x7F~0x50,

and 0x4F~0x40 can be refreshed.

Reload flag clear function:

void wwdt_flag_clear(void);

Get reload flag function:

flag_status wwdt_flag_get(void);

Reload interrupt enable function:

void wwdt_interrupt_enable(void);

Window value set function:

void wwdt_window_counter_set(uint8_t window_cnt);

3.4 WWDT enable

Set WWDTEN=1 to enable WWDT. Once enabled, the WWDT cannot be disabled until a reset is

generated. Set WWDT counter value when enabling the WWDT to avoid resetting immediately

after the watchdog is enabled.

WWDT enable function:

void wwdt_enable(uint8_t wwdt_cnt);

3.5 Application method

A WWDT is mainly used to check whether the logic runs properly. For example, a program takes

AT32 WDT and WWDT User Guide

2022.06.06 17 Ver 2.0.1

10ms to complete operation, and a logic error occurs if the program takes less than 10ms. In this

case, set the window value to be 9ms. Kicking the dog before this window value (9ms) indicates

that the program is faulty, and a reset is generated at this time.

For example:

When PCLK1=36 MHz, set the WWDT timeout=9ms, the prescaler divider=4 and therefore the total

division value is 4x4096=16384. The counter value is 127 and window value is 108, and the time

for decrementing from the counter value to window value is about 9.1ms.

Window value= (CNT − WIN ×
4096×2

𝐷𝐼𝑉[1:0]

𝑓𝑃𝐶𝐿𝐾1
=((127 − 108) + 1) ×

4096×2
2

36𝑀𝐻𝑧
= 9.1𝑚𝑠

Reset time= (CNT − 0x3F) ×
4096×2

𝐷𝐼𝑉[1:0]

𝑓𝑃𝐶𝐿𝐾1
=(127 − 63) ×

4096×2
2

36𝑀𝐻𝑧
= 29.1𝑚𝑠

Therefore, kicking the dog is allowed within 9.1~29.1ms and not allowed within 0~9.1ms.

Configuration steps:

1. Enable WWDT APB1_CLK

crm_periph_clock_enable(CRM_WWDT_PERIPH_CLOCK, TRUE);

2. Set prescaler divider=4, and total division value is 4096x4=16384

wwdt_divider_set(WWDT_PCLK1_DIV_16384);

3. Set window value=108

wwdt_window_counter_set(108);

4. Enable WWDT

wwdt_enable(127);

5. Reload counter in program

wwdt_counter_set(127);

Note: It is executed with 0x3F<downcounter value<=window value.

AT32 WDT and WWDT User Guide

2022.06.06 18 Ver 2.0.1

4 Example of WDT application

4.1 Purpose

It is used to demonstrate the function and application of WDT.

4.2 Resources

1) Hardware:

AT-START BOARD of the corresponding model

2) Software:

project\at_start_f4xx\examples\wdt\wdt_reset

Note: All projects are built around Keil 5. If users want to use them in other compiling environments, please refer to

AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil 4/5) for a simple change.

4.3 Software design

1) Configuration

 Initialize WDT

 Kicking the dog in the main program

2) Codes

 Main function code

int main(void)

{

 /* Initialize system clock */

 system_clock_config();

 /* Initialize AT-START board */

 at32_board_init();

 /* Get WDT reset flag */

 if(crm_flag_get(CRM_WDT_RESET_FLAG) != RESET)

 {

 /* WDT reset */

 crm_flag_clear(CRM_WDT_RESET_FLAG);

 at32_led_on(LED4);

 }

 else

 {

 /* Reset from other modes */

 at32_led_off(LED4);

 }

 /* Unlock write protection */

 wdt_register_write_enable(TRUE);

AT32 WDT and WWDT User Guide

2022.06.06 19 Ver 2.0.1

 /* Set WDT divider */

 wdt_divider_set(WDT_CLK_DIV_4);

 /* Set WDT reload value */

 wdt_reload_value_set(3000 - 1);

 /* Enable WDT */

 wdt_enable();

 while(1)

 {

 /* Reload WDT counter */

 wdt_counter_reload();

 at32_led_toggle(LED3);

 delay_ms(200);

 if(at32_button_press() == USER_BUTTON)

 {

 while(1);

 }

 }

}

4.4 Test result

 WDT does not reset during normal operation. Press the USER button and stop kicking the dog,

MCU reset will occur.

 After reset, if WDT reset is detected, LED4 will be ON; otherwise, LED4 is OFF.

AT32 WDT and WWDT User Guide

2022.06.06 20 Ver 2.0.1

5 Example of WWDT application

5.1 Purpose

It is used to demonstrate the function and application of WWDT.

5.2 Resources

1) Hardware

AT-START BOARD of the corresponding model

2) Software

project\at_start_f4xx\examples\wwdt\wwdt_reset

Note: All projects are built around Keil 5. If users want to use them in other compiling environments, please refer to

AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil 4/5) for a simple change.

5.3 Software design

1) Configuration

 Initialize WWDT

 Kicking the dog in the main program

2) Codes

 Main function code

int main(void)

{

 /* Initialize system clock */

 system_clock_config();

 /* Initialize AT-START board */

 at32_board_init();

 /* Get WWDT reset flag */

 if(crm_flag_get(CRM_WWDT_RESET_FLAG) != RESET)

 {

 /* WWDT reset */

 crm_flag_clear(CRM_WWDT_RESET_FLAG);

 at32_led_on(LED4);

 }

 else

 {

 /* Reset from other modes */

 at32_led_off(LED4);

 }

 /* Enable WWDT */

 crm_periph_clock_enable(CRM_WWDT_PERIPH_CLOCK, TRUE);

AT32 WDT and WWDT User Guide

2022.06.06 21 Ver 2.0.1

 /* Set WWDT divider */

 wwdt_divider_set(WWDT_PCLK1_DIV_16384);

 /* Set window value */

 wwdt_window_counter_set(0x6F);

 /* Enable WWDT */

 wwdt_enable(0x7F);

 while(1)

 {

 at32_led_toggle(LED3);

 delay_ms(6);

 /* Reload WWDT */

 wwdt_counter_set(0x7F);

 if(at32_button_press() == USER_BUTTON)

 {

 while(1);

 }

 }

}

5.4 Test result

 WWDT does not reset during normal operation. Press the USER button and stop kicking the

dog, MCU reset will occur.

 After reset, if WWDT reset is detected, LED4 will be ON; otherwise, LED4 is OFF.

AT32 WDT and WWDT User Guide

2022.06.06 22 Ver 2.0.1

6 Revision history

Table 5. Document revision history

Date Version Revision note

2021.12.15 2.0.0 Initial release.

2022.06.06 2.0.1 Modified the flash_ssb_set function.

AT32 WDT and WWDT User Guide

2022.06.06 23 Ver 2.0.1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and

ARTERY disclaims any responsibility in any form.

© 2022 ARTERY Technology - All Rights Reserved

	1 Overview
	1.1 Differences
	1.2 Application scenarios
	1.3 Features

	2 Watchdog timer (WDT)
	2.1 Access to registers
	2.2 Clock structure
	2.3 Counter
	2.4 Window value
	2.5 WDT low power counting mode
	2.6 WDT enable
	2.7 Application method

	3 Window watchdog timer (WWDT)
	3.1 Clock structure
	3.2 Counter
	3.3 Window value
	3.4 WWDT enable
	3.5 Application method

	4 Example of WDT application
	4.1 Purpose
	4.2 Resources
	4.3 Software design
	4.4 Test result

	5 Example of WWDT application
	5.1 Purpose
	5.2 Resources
	5.3 Software design
	5.4 Test result

	6 Revision history

