

# AN0015 Application Note

AT32 Printf Debug Demo

# Introduction

It is common for the user to check the debug process information in the process of application code debug. In most cases, this action can be done through the serial port debugging assistant. However, it would be a headache for users to try to observe the testing process information when the serial port assistant is not supported by the hardware.

To address the above concerns, this application note provides a complete set of example codes describing how to output the debug process information, especially when the serial port debugging assistant is not available.

Note: The corresponding code in this application note is developed on the basis of V2.x.x BSP provided by Artery. For other versions of BSP, please pay attention to the differences in usage.

Applicable products:

Part number

All AT32F series

# Contents

| Ove | erview.  |                                                                     | 6  |
|-----|----------|---------------------------------------------------------------------|----|
| Det | ailed in | formation                                                           | 7  |
| 2.1 | Printf   | via Terminal I/O in IAR                                             | 7  |
|     | 2.1.1    | Introduction                                                        | 7  |
|     | 2.1.2    | Example code                                                        | 7  |
|     | 2.1.3    | Environment and hardware                                            | 7  |
|     | 2.1.4    | Software                                                            | 7  |
|     | 2.1.5    | Debug and download                                                  | 7  |
| 2.2 | Redire   | ect Printf as serial ports in IAR                                   | 9  |
|     | 2.2.1    | Introduction                                                        | 9  |
|     | 2.2.2    | Example code                                                        | 9  |
|     | 2.2.3    | 002_Printf_Test_IAR_USART2\project\iar_v8.2Environment and hardware | 9  |
|     | 2.2.4    | Software                                                            | 10 |
|     | 2.2.5    | Debug and download                                                  | 10 |
| 2.3 | Printf   | via Debug(printf) Viewer in Keil                                    | 11 |
|     | 2.3.1    | Introduction                                                        | 11 |
|     | 2.3.2    | Example code                                                        | 11 |
|     | 2.3.3    | 003_Printf_Test_Keil_JTDO\project\mdk_v 5Environment and hardware   | 11 |
|     | 2.3.4    | Software                                                            | 11 |
|     | 2.3.5    | Debug and download                                                  | 12 |
| 2.4 | Redire   | ect Printf as serial ports in Keil (using MicroLIB)                 | 14 |
|     | 2.4.1    | Introduction                                                        | 14 |
|     | 2.4.2    | Example code                                                        | 14 |
|     | 2.4.3    | Environment and hardware                                            | 14 |
|     | 2.4.4    | Software                                                            | 14 |
|     | 2.4.5    | Debug and download                                                  | 15 |
| 2.5 | Redire   | ect Printf as serial ports in Keil (not use MicroLIB)               | 17 |
|     | 2.5.1    | Introduction                                                        | 17 |
|     | 2.5.2    | Example code                                                        | 17 |
|     | 2.5.3    | Environment and hardware                                            | 17 |
|     | 2.5.4    | Software                                                            | 17 |
|     |          |                                                                     |    |



| 4 | Revi | sion h | istory                   | 26 |
|---|------|--------|--------------------------|----|
| 3 | Note | S      |                          | 25 |
|   |      | 2.6.5  | Debug and download       | 22 |
|   |      | 2.6.4  | Software                 | 21 |
|   |      | 2.6.3  | Environment and hardware | 21 |
|   |      | 2.6.2  | Example code             | 21 |
|   |      | 2.6.1  | Introduction             | 21 |
|   | 2.6  | Printf | via JLinkRTT             | 21 |
|   |      | 2.5.5  | Debug and download       | 19 |



# List of Tables

| Table 1. AT MCUs printf function use methods | 6  |
|----------------------------------------------|----|
| Table 2. Hardware connection (without JTDO)  | 7  |
| Table 3. Hardware connection (without JTDO)  | 9  |
| Table 4. Hardware connection (USART)         | 9  |
| Table 5. Hardware connection (with JTDO)     | 11 |
| Table 6. Hardware connection (without JTDO)  | 14 |
| Table 7. Hardware connection (USART)         | 14 |
| Table 8. Hardware connection (without JTDO)  | 17 |
| Table 9. Hardware connection (USART)         | 17 |
| Table 10. Hardware connection (without JTDO) | 21 |
| Table 11. Document revision history          | 26 |



# List of Figures

| Figure 1. Virtual terminal window path              | 8  |
|-----------------------------------------------------|----|
| Figure 2. Virtual terminal interaction window       | 8  |
| Figure 3. Serial port debugging assistant window    | 10 |
| Figure 4. Trace target driver setup                 | 12 |
| Figure 5. Keil virtual terminal window path         | 13 |
| Figure 6. Keil virtual terminal interaction window  | 13 |
| Figure 7. MicroLIB settings                         | 15 |
| Figure 8. Serial port interaction window            | 16 |
| Figure 9. MicroLIB settings                         | 18 |
| Figure 10. Serial port interaction window           | 20 |
| Figure 11. Code debug                               | 22 |
| Figure 12. JLinkRTTClient window output information | 23 |
| Figure 13. Open JLinkRTTViewer window               | 23 |
| Figure 14. Device selection window                  | 24 |
| Figure 15. JLinkRTTViewer window output information | 24 |



# 1 Overview

This application note describes how to use the printf function of AT chips in the environment of Keil and IAR. There are six methods to be listed in the table below, with each of them being detailed in this document.

|          | AT MCUs printf function use methods |                                                    |                |  |  |
|----------|-------------------------------------|----------------------------------------------------|----------------|--|--|
| No.      | Environment                         | Description                                        | Remark         |  |  |
| Method 1 |                                     | Printf via Terminal I/O                            | <u>See 3.1</u> |  |  |
| Method 2 |                                     | Redirect Printf as serial ports                    | <u>See 3.2</u> |  |  |
| Method 3 | ethod 3<br>ethod 4 Keil             | Printf via Debug (printf) Viewer                   | <u>See 3.3</u> |  |  |
| Method 4 |                                     | Redirect Printf as serial ports (using MicroLIB)   | <u>See 3.4</u> |  |  |
| Method 5 |                                     | Redirect Printf as serial ports (not use MicroLIB) | <u>See 3.5</u> |  |  |
| Method 6 | IAR/Keil                            | Printf via JLinkRTTClient window                   | <u>See 3.6</u> |  |  |

|--|



# 2 Detailed information

# 2.1 Printf via Terminal I/O in IAR

# 2.1.1 Introduction

The IAR driver linked to the Terminal contains standard input and output driver functions such as scanf and printf so that the information interaction of the project files can be done via the Terminal I/O.

### 2.1.2 Example code

001\_Printf\_Test\_IAR\_Terminal\project\iar\_v8.2

### 2.1.3 Environment and hardware

#### 2.1.3.1 Development environment

This method is used in the IAR environment. The compiling environment used in the example code is IAR\_V8, with the hardware board AT-START-F403A\_V1.2.

#### 2.1.3.2 Hardware connection

J-Link/AT-Link&... connection

|     | Hardware            | connection (without JTI | 00)                     |
|-----|---------------------|-------------------------|-------------------------|
| No. | AT-START-F403A_V1.2 | J-Link/AT-Link&         | Attention               |
| 1   | 3.3V                | 3.3V                    | None                    |
| 2   | PA13                | SWDIO                   | Must Pull up external   |
| 3   | PA14                | SWCLK                   | Must Pull down external |
| 4   | NRST                | RSTn                    | None                    |
| 5   | GND                 | GND                     | None                    |

#### Table 2. Hardware connection (without JTDO)

# 2.1.4 Software

#### 2.1.4.1 Header file

Add the "stdio.h" to the code project files.

### 2.1.4.2 Redirection settings

Unlock the redirection of Printf (shield the Printf from the actual serial interface).

# 2.1.5 Debug and download

Compile and download to the MCU, then enter the debug environment to call up the virtual terminal through View->Terminal I/O (Figure 1), and run the code at full speed, then the "Hello World" is



visible in the Output column (Figure 2), and the data in the Input column is also displayed in this window.



Figure 1. Virtual terminal window path

#### Figure 2. Virtual terminal interaction window





# 2.2 Redirect Printf as serial ports in IAR

# 2.2.1 Introduction

Redirect the Printf function to a set of actual serial ports in the chip, and output via TX pin and finally implement information interaction through the serial port debugging assistant.

### 2.2.2 Example code

002\_Printf\_Test\_IAR\_USART2\project\iar\_v8.2Environment and hardware

#### 2.2.3 Development environment

#### 2.2.3.1 Hardware connection

This method is used in the IAR environment. The compiling environment used in the example code is IAR\_V8, with the hardware board AT-START-F403A\_V1.2.

#### 2.2.3.2 Hardware connection

#### 2.2.3.2.1 J-Link/AT-Link&... connection

J-Link/AT-Link& ... connection

|     |                                    |                 | (without 51DO)          |
|-----|------------------------------------|-----------------|-------------------------|
|     | Hardware connection (without JTDO) |                 |                         |
| No. | AT-START-F403A_V1.2                | J-Link/AT-Link& | Attention               |
| 1   | 3.3V                               | 3.3V            | None                    |
| 2   | PA13                               | SWDIO           | Must Pull up external   |
| 3   | PA14                               | SWCLK           | Must Pull down external |
| 4   | NRST                               | RSTn            | None                    |
| 5   | GND                                | GND             | None                    |

#### Table 3. Hardware connection (without JTDO)

#### 2.2.3.2.2 USART2 connection

#### Table 4. Hardware connection (USART)

|     | Hardware           | connection (USART) |           |
|-----|--------------------|--------------------|-----------|
| No. | AT-START-F403_V1.2 | USB_To_TTL(CH340)  | Attention |
| 1   | GND                | GMD                | None      |
| 2   | PA2                | RXD                | None      |
| 3   | PA3                | TXD                | None      |



### 2.2.4 Software

### 2.2.4.1 Header file

Add the "stdio.h" to the code project files.

### 2.2.4.2 Redirection settings

Initialize the serial ports and redirect the Printf function to the actual serial ports. The redirection function is as follows:

```
PUTCHAR_PROTOTYPE
{
    USART_SendData( USART2, ch);
    while ( USART_GetFlagStatus( USART2, USART_FLAG_TRAC) == RESET );
    return ch;
```

# }

# 2.2.5 Debug and download

Compile the code and download to the MCU, and run it at full speed, then you can see that the "Hello World" is displayed in the terminal interaction window (Figure 3).

| XCOM V2.0                                      |            |               |                |
|------------------------------------------------|------------|---------------|----------------|
| Hello World<br>The_Demo_Is_Output_By_IAR_Vsart | ^          | 串口选择          |                |
| Hello World<br>The_Demo_Is_Output_By_IAR_Vsart |            | COM28:Prol    | .ific USB-tc ▼ |
| Hello World<br>The_Demo_Is_Output_By_IAR_Vsart |            | 波特率           | 115200 ▼       |
| Hello World<br>The_Demo_Is_Output_By_IAR_Usart |            | 19年112<br>数据位 | 8 •            |
| Hello World<br>The_Demo_Is_Output_By_IAR_Usart |            | 奇偶校验          |                |
| Hello World<br>The_Demo_Is_Output_By_IAR_Usart |            | 串口操作          | ● 关闭串口         |
| 单条发送 多条发送 协议传输 帮助                              | Ŧ          | 4 4 左 密 口     | 「海栓なりか」        |
| aaad                                           |            |               | 发送             |
|                                                |            | -             | 清除发送           |
| □ 定时发送 周期: 1000 ms                             | 打开文件       | 发送文件          | 停止发送           |
| ☑ 16进制发送 🔲 发送新行                                | ]0% 开源电子 🏻 | ∛∃: www.op    | enedv.com      |
|                                                | R:288      | CTS=1 DSR=    | 1 DCD=1        |

Figure 3. Serial port debugging assistant window



# 2.3 Printf via Debug(printf) Viewer in Keil

# 2.3.1 Introduction

The Keil platform comes with a Debug(printf) Viewer that can be used for standard Printf interaction on the premise that the ARM core integrates standard input and output driver functions such as scanf and printf.

### 2.3.2 Example code location

003\_Printf\_Test\_Keil\_JTDO\project\mdk\_v 5Environment and hardware

#### 2.3.3 Development environment

#### 2.3.3.1 Environment

This method is used in the Keil environment. The compiling environment used in the example code is Keil\_V5, with the hardware board AT-START-F403A\_V1.2.

#### 2.3.3.2 Hardware connection

J-Link/AT-Link&... connection

|     | Hardwar             | e connection (with JTD | 00)                     |
|-----|---------------------|------------------------|-------------------------|
| No. | AT-START-F403A_V1.2 | J-Link/AT-Link&        | Attention               |
| 1   | 3.3V                | 3.3V                   | None                    |
| 2   | PA13                | SWDIO                  | Must Pull up external   |
| 3   | PA14                | SWCLK                  | Must Pull down external |
| 4   | NRST                | RSTn                   | None                    |
| 5   | PB3                 | JTDO                   | Must Pull up external   |
| 6   | GND                 | GND                    | None                    |

#### Table 5. Hardware connection (with JTDO)

### 2.3.4 Software

#### 2.3.4.1 Header files

Add the "stdio.h" to the code project files.

### 2.3.4.2 Trace pin assignment

DEBUG->ctrl\_bit.trace\_ioen = FALSE; DEBUG->ctrl\_bit.trace\_ioen = TRUE;



### 2.3.4.3 Printf mapping

```
int fputc(int c, FILE *f)
{
  if (c == '\n')
  {
    SER_PutChar('\r');
  }
  return (SER_PutChar(c));
  }
  int SER_PutChar (int c)
  {
  ITM_SendChar(c);
  return (c);
  }
```

# 2.3.5 Debug and download

Tick the Enable box (Figure 4) and set the Core value, and the Core value must be equal to the system clock.

Configure the serial clock by checking the Autodetect max SWO C1 box (Figure 4). If garbled characters are displayed, untick the Autodetect max SWO C1 box and manually modify the Prescale Core Clk to ensure that the printed information is correct.

Compile the code and download to the MCU, and then enter debug environment to call up the virtual terminal window through View->Serial Windows->Debug (printf) Viewer (Figure 5); then run the code, and "Hello World" is visible in the terminal interaction window (Figure 6).

| Cortex JLink/JTrace Target Driver Setup                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vilege:     Discourse     Port     Port     Port       Quick Help     -     -     -     -       Prescaler between Core Clock and Timestamp generation. If bandwidth issues arise, reduce the number of generated Timestamps by increasing the Prescaler value.     -       Mac     取消     应用 (A) |

#### Figure 4. Trace target driver setup



Figure 5. Keil virtual terminal window path



| Debug (printf) Viewer           | <b>д </b> |
|---------------------------------|-----------|
|                                 | *         |
| Hello World                     |           |
| The_Demo_Is_Output_By_Keil_JTDO |           |
| Hello World                     |           |
| The_Demo_Is_Output_By_Keil_JTDO |           |
| Hello World                     |           |
| The_Demo_Is_Output_By_Keil_JTDO |           |
| Hello World                     |           |
| The_Demo_Is_Output_By_Keil_JTDO | E         |
| Hello World                     |           |
| The_Demo_Is_Output_By_Keil_JTDO |           |
|                                 |           |
|                                 | -         |
| <                               | Þ.        |



# 2.4 Redirect Printf as serial ports in Keil (using MicroLIB)

# 2.4.1 Introduction

The Keil environment comes with a MicroLIB that contains some codes supporting Printf function. Tick the MicroLIB option to implement information interaction through the serial port debugging assistant when the Printf is redirected to the serial ports.

#### 2.4.2 Example code

004\_Printf\_Test\_Keil\_USART2\_MicroLIB\project\mdk\_v5

#### 2.4.3 Environment and hardware

#### 2.4.3.1 Environment

This method is used in the Keil environment. The compiling environment used in the example code is Keil\_V5, with the hardware board AT-START-F403A\_V1.2.

#### 2.4.3.2 Hardware connection

#### 2.4.3.2.1 J-Link/AT-Link&... connection

#### Table 6. Hardware connection (without JTDO)

|     | Hardware            | connection (without JTD | C)                      |
|-----|---------------------|-------------------------|-------------------------|
| No. | AT-START-F403A_V1.2 | J-Link/AT-Link&         | Attention               |
| 1   | 3.3V                | 3.3V                    | None                    |
| 2   | PA13                | SWDIO                   | Must Pull up external   |
| 3   | PA14                | SWCLK                   | Must Pull down external |
| 4   | NRST                | RSTn                    | None                    |
| 5   | GND                 | GND                     | None                    |

#### 2.4.3.2.2 USART2 connection

#### Table 7. Hardware connection (USART)

|     | Hardware connection (USART) |                   |           |  |  |
|-----|-----------------------------|-------------------|-----------|--|--|
| No. | AT-START-F403_V1.2          | USB_To_TTL(CH340) | Attention |  |  |
| 1   | GND                         | GMD               | None      |  |  |
| 2   | PA2                         | RXD               | None      |  |  |
| 3   | PA3                         | TXD               | None      |  |  |

### 2.4.4 Software

#### 2.4.4.1 Header files

Add the "stdio.h" to the code project files.



#### 2.4.4.2 Redirect Printf

PUTCHAR\_PROTOTYPE
{
 USART\_SendData( USART2, ch);
 while ( USART\_GetFlagStatus( USART2, USART\_FLAG\_TRAC) == RESET );
 return ch;
}

# 2.4.4.3 MicroLIB settings

| Detter.   | Target       | Output   List | ing   User    | C/C++ 4 | Asm 1   | Linker   I              | Debug   Vtil   | lities            |         |
|-----------|--------------|---------------|---------------|---------|---------|-------------------------|----------------|-------------------|---------|
| ArteryTel | c -AT32F40   | 3AVGT7        | Xtal (MHz): 1 | 2.0     | ARM     | Generation<br>Compiler: | Use defa       | ult compiler vers | ion 5 💌 |
| Operatin  | g system:    | None          |               | Ŧ       | L n     | e Cross-M               | odule Optimiza | ation             |         |
| System \  | /iewer File: |               |               |         | V Us    | e MicroLI               | вГ             | Big Endian        |         |
| AT32F4    | 103Axx_v2    | svd           |               |         | Floatin | o Point Ha              | ardware: Sin   | gle Precision     | •       |
| Use       | Custom Fil   | e             |               |         |         |                         | 1              | -                 | _       |
| Read/     | Only Memo    | ory Areas     |               |         | -Read/  | Write Mem               | ory Areas      |                   |         |
| default   | off-chip     | Start         | Size          | Startup | default | off-chip                | Start          | Size              | NoInit  |
| Г         | ROM1:        |               |               | C       |         | RAM1:                   |                |                   |         |
| Г         | ROM2:        |               |               | c       |         | RAM2:                   |                |                   | Г       |
| Г         | ROM3:        |               | 1             | c       | Г       | RAM3:                   |                |                   |         |
|           | on-chip      |               |               |         |         | on-chip                 | ,              |                   |         |
| ~         | IROM1:       | 0x8000000     | 0x100000      | œ       | ~       | IRAM1:                  | 0x20000000     | 0x38000           |         |
| E         | IROM2        |               |               | - C     | F       | IRAM2                   |                |                   |         |

#### Figure 7. MicroLIB settings

# 2.4.5 Debug and download

Compile the code and download to the MCU; then run the code at full speed, and you can see that "Hello World" is displayed in the terminal interaction window (Figure 8).

| # XCOM V2.0                                               |                      |
|-----------------------------------------------------------|----------------------|
| Hello World<br>The_Demo_Is_Output_By_Keil_USART2_MicroLIB | 选择                   |
| Hello World<br>The_Demo_Is_Output_By_Keil_USART2_MicroLIB | 28:Prolific VSB-tc 🔻 |
| Hello World<br>The Demo In Output By Keil NSART? MicroLIE | 率 115200 -           |
| 作上<br>Kello World                                         |                      |
| The_Demo_Is_Uutput_By_Keil_USAKI2_MicroLLB 数据             | 位 8 •                |
| 奇偶,                                                       | 校验 无                 |
| 串口                                                        | 操作 😥 关闭串口            |
| ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                     | を密ロートを除たし            |
| asad                                                      | 发送                   |
|                                                           | - 清除发送               |
|                                                           |                      |
| □ 16进制友医□ 友法新行 0% 开源电子内: W                                | ww.openeav.com       |
| · www.openedv.com S:0 R:236 CTS=1                         | DSR=1 DCD=1          |

Figure 8. Serial port interaction window

# 2.5 Redirect Printf as serial ports in Keil (not use MicroLIB)

# 2.5.1 Introduction

The Keil environment comes with a MicroLIB that contains some codes supporting Printf function. When the Printf is redirected to the serial ports and the MicroLIB option box is not ticked, the information interaction can be done through the serial port debugging assistant after adding the codes that supports Printf to the project files.

#### 2.5.2 Example code

005\_Printf\_Test\_Keil\_USART2\_Without\_MicroLIB\project\mdk\_v5

#### 2.5.3 Environment and hardware

#### 2.5.3.1 Environment

This method is used in the Keil environment. The compiling environment used in the example code is Keil\_V5, with the hardware board AT-START-F403A\_V1.2.

#### 2.5.3.2 Hardware connection

| 2.5.3.2.1 | J-Link/AT-Link& | connection |
|-----------|-----------------|------------|
|-----------|-----------------|------------|

|     | Hardware connection (without JTDO) |                 |                         |  |  |
|-----|------------------------------------|-----------------|-------------------------|--|--|
| No. | AT-START-F403A_V1.2                | J-Link/AT-Link& | Attention               |  |  |
| 1   | 3.3V                               | 3.3V            | None                    |  |  |
| 2   | PA13                               | SWDIO           | Must Pull up external   |  |  |
| 3   | PA14                               | SWCLK           | Must Pull down external |  |  |
| 4   | NRST                               | RSTn            | None                    |  |  |
| 5   | GND                                | GND             | None                    |  |  |

#### Table 8. Hardware connection (without JTDO)

#### 2.5.3.2.2 USART2 connection

#### Table 9. Hardware connection (USART)

|     | Hardware connection (USART) |                   |           |  |  |  |
|-----|-----------------------------|-------------------|-----------|--|--|--|
| No. | AT-START-F403A_V1.2         | USB_To_TTL(CH340) | Attention |  |  |  |
| 1   | GND                         | GMD               | None      |  |  |  |
| 2   | PA2                         | RXD               | None      |  |  |  |
| 3   | PA3                         | TXD               | None      |  |  |  |

### 2.5.4 Software

#### 2.5.4.1 Header files

Add the "stdio.h" to the code project files.



{

#### 2.5.4.2 Redirect Printf

PUTCHAR\_PROTOTYPE

```
USART_SendData( USART2, ch);
while ( USART_GetFlagStatus( USART2, USART_FLAG_TRAC) == RESET );
return ch;
```

### 2.5.4.3 MicroLIB settings

| Device     | Target      | Output   List | ing   User    | C/C++ ] . | Asm  1  | Linker   D                | ebug   Util    | ities            |         |
|------------|-------------|---------------|---------------|-----------|---------|---------------------------|----------------|------------------|---------|
| Artery Tel | c -AT32F4   | 03AVGT7       | Xtal (MHz): 1 | 2.0       | Code (  | Generation -<br>Compiler: | Use defau      | It compiler vers | ion 5 💌 |
| Operatin   | g system:   | None          |               | Ψ         | L n     | e Cross-Mo                | dule Optimizat | ion              |         |
| System \   | /iewer File | 1             |               |           | T Us    | e MicroLIB                | E 6            | lig Endian       |         |
| AT32F4     | 103Avor_v2  | .svd          |               |           | Floatin | g Point Har               | rdware: Sing   | le Precision     | •       |
| ∏ Use      | Custom Fi   | le            |               |           |         |                           |                |                  |         |
| _ Read/    | Only Mem    | ory Areas     |               |           | Read/   | Write Memo                | ory Areas      |                  |         |
| default    | off-chip    | Start         | Size          | Startup   | default | off-chip                  | Start          | Size             | NoInit  |
| Г          | ROM1:       |               |               | 0         | Г       | RAM1:                     |                |                  | Г       |
| Γ          | ROM2:       |               |               | C         | Г       | RAM2:                     | 6              |                  |         |
| Г          | ROM3:       |               |               | - C       | Г       | RAM3:                     |                |                  |         |
|            | on-chip     | é.            |               |           |         | on-chip                   |                | ,                |         |
| •          | IROM1:      | 0x8000000     | 0x100000      | æ         | ~       | IRAM1:                    | 0x20000000     | 0x38000          |         |
|            |             | -             |               |           | -       |                           | -              |                  |         |

#### Figure 9. MicroLIB settings

# 2.5.4.4 Add codes supporting Printf function

```
#if ( ARMCC VERSION > 6000000)
  __asm (".global __use_no_semihosting\n\t");
  void _sys_exit(int x)
  {
    x = x;
  }
  /* __use_no_semihosting was requested, but _ttywrch was */
  void _ttywrch(int ch)
  {
    ch = ch;
  }
  FILE __stdout;
#else
#ifdef CC ARM
 #pragma import(__use_no_semihosting)
  struct FILE
```

47L=31

```
{
    int handle;
  };
  FILE __stdout;
  void _sys_exit(int x)
  {
    x = x;
  }
 #endif
#endif#if (__ARMCC_VERSION > 6000000)
  __asm (".global __use_no_semihosting\n\t");
  void _sys_exit(int x)
  {
    x = x;
  }
  /* __use_no_semihosting was requested, but _ttywrch was */
  void ttywrch(int ch)
  {
    ch = ch;
  }
  FILE __stdout;
#else
 #ifdef CC ARM
  #pragma import( use no semihosting)
  struct ____FILE
  {
    int handle;
  };
  FILE __stdout;
  void _sys_exit(int x)
  {
    x = x;
  }
 #endif
#endif
```

# 2.5.5 Debug and download

Compile the code and download to the MCU; then run the code at full speed, you can find that the "Hello World" is displayed in the terminal interaction window (Figure 10).

| AT XCOM V2.0                                                      |    | [         | - • ×           |
|-------------------------------------------------------------------|----|-----------|-----------------|
| Hello World<br>The_Demo_Is_Output_By_Keil_USART2_Without_MicroLIB | ~  | 串口选择      |                 |
| Hello World<br>The_Demo_Is_Output_By_Keil_USART2_Without_MicroLIB |    | COM28:Pro | olific VSB-to 🔻 |
| Hello World<br>The Demo Is Outsut By Keil MCART2 Without MissalTR |    | 波特率       | 115200 ▼        |
| He_Demo_IS_Odtput_by_kell_ookhiz_withodt_mitrollb<br>Hello World  |    | 停止位       | 1 -             |
| The_Demo_Is_Output_By_Keil_USART2_Without_MicroLIB                |    | 数据位       | 8 🔻             |
|                                                                   |    | 奇偶校验      | 无 •             |
|                                                                   | -  | 串口操作      | 💓 关闭串口          |
| 单条发送 多条发送 协议传输 帮助                                                 |    |           |                 |
| aaad                                                              |    |           | 发送              |
|                                                                   |    |           | - 清除发送          |
| □ 定时发送 周期: 1000 ms 打开文件                                           |    | 发送文件      | 停止发送            |
| ☑ 16进制发送 □ 发送新行 0% 开源电·                                           | 子网 | 3: www.o  | penedv.com      |
|                                                                   |    |           |                 |

Figure 10. Serial port interaction window



# 2.6 **Printf via JLinkRTT**

### 2.6.1 Introduction

JLink has its own debug output function that can debug the code and output to the corresponding window according to the specified instructions after the JLink RTT library code is added.

### 2.6.2 Example code

006\_Printf\_Test\_Jlink\_RTT\project\mdk\_v5

#### 2.6.3 Environment and hardware

#### 2.6.3.1 Environment

This method is used in both IAR and Keil environment. The compiling environment used in the example code is IAR\_V8 or Keil\_V5, with the hardware board AT-START-F403A\_V1.2.

#### 2.6.3.2 Hardware connection

J-Link connection

| Hardware connection (without JTDO) |                     |        |                         |  |  |
|------------------------------------|---------------------|--------|-------------------------|--|--|
| No.                                | AT-START-F403A_V1.2 | J-Link | Attention               |  |  |
| 1                                  | 3.3V                | 3.3V   | None                    |  |  |
| 2                                  | PA13                | SWDIO  | Must Pull up external   |  |  |
| 3                                  | PA14                | SWCLK  | Must Pull down external |  |  |
| 4                                  | NRST                | RSTn   | None                    |  |  |
| 5                                  | GND                 | GND    | None                    |  |  |

#### Table 10. Hardware connection (without JTDO)

### 2.6.4 Software

#### 2.6.4.1 Header file

Add the "stdio.h" to the code project files.

### 2.6.4.2 Add JLink RTT library code

- Add the SEGGER\_RTT.c and SEGGER\_RTT\_printf.c in the JLink RTT library code to the project files;
- Add SEGGER\_RTT\_Syscalls\_IAR.c or SEGGER\_RTT\_Syscalls\_KEIL.c to the project files according to the compiling environment.



### 2.6.4.3 Output to PC

Call the SEGGER\_RTT\_WriteString or SEGGER\_RTT\_printf command from the code and output to PC.

SEGGER\_RTT\_WriteString(0, "SEGGER Real-Time-Terminal Sample\r\n\r\n"); SEGGER\_RTT\_printf(0, "printf Test: %%c, 'S' : %c.\r\n", 'S');

### 2.6.5 Debug and download

#### 2.6.5.1 Printf via JLinkRTTClient window

Compile the code and download to the MCU, and enter the debug environment, open the JLinkRTTClient application in the JLink installation path. Run the code step by step, and you can find the print information is output to the JLinkRTTClient window, as shown in Figure 11 and Figure 12.





Figure 12. JLinkRTTClient window output information

| ###RTT Client:                               | *************                                         |
|----------------------------------------------|-------------------------------------------------------|
| ###RTT Client: * SEGGER                      | Microcontroller GmbH *                                |
| ###RTT Client: * Solutions for real          | time microcontroller applications 🛛 *                 |
| ###RTT Client: <del>******************</del> | *********************************                     |
| ###RTT Client: *                             | * =                                                   |
| ###RTT Client: * (c) 2012 - 2016             | SEGGER Microcontroller GmbH *                         |
| ###RTT Client: *                             | *                                                     |
| ###RTT Client: * www.segger.com              | Support: support@segger.com *                         |
| ###RTT Client: *                             | *                                                     |
| ###RTT Client: ********************          | ***********************************                   |
| ###RTT Client: *                             | *                                                     |
| ###RTT Client: * SEGGER J-Link RTT Cli       | ent Compiled Aug 23 2018 11:00:14 *                   |
| ###RTT Client: *                             | *                                                     |
| <pre>###RTT Client:</pre>                    | T Server via localhost:19021 Connected.<br>nal output |
| inti lest: X.3c, 'E' : E.                    |                                                       |
| printf Test: %c, 'R' : R.                    |                                                       |
|                                              |                                                       |

#### 2.6.5.2 Printf via JLinkRTTViewer window

1. Compile the code and download to the MCU, and then open the JLinkRTTViewer window, as shown in Figure 13.



Figure 13. Open JLinkRTTViewer window

2. Click on "OK" and then click on "OK" again in the pop-up window; then, input and select the flowing information (taking ZE series as an example) and click on "OK", as shown in Figure 14.

Figure 14. Device selection window

| Manufacturer         Device         Core         NumCores         Flash size         RAM           ST         STM32F1032E (allow opt. bytes)         Cortex-M3         1         524304 Bytes         6           ST         STM32F1032E         Cortex-M3         1         512 KB         6           ST         STM32F1032E         Cortex-M3         1         512 KB         6 | vi size |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ST         STM32F1032E (allow opt. bytes)         Contex-M3         1         524304 Bytes         6           ST         STM32F1032E         Contex-M3         1         512 KB         6                                                                                                                                                                                          | 64 KB   |
|                                                                                                                                                                                                                                                                                                                                                                                     | 64 KB   |
|                                                                                                                                                                                                                                                                                                                                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                     |         |

 Use the aforementioned code to enter the debug environment, and run the code step by step, and then the print information will be displayed in the JLinkRTTViewer window, as shown in Figure 15.



Figure 15. JLinkRTTViewer window output information



# 3 Notes

- Only J-Link can be used for the testing in sections 2.3 and 2.6; AT-Link is not supported.
- For the testing in section 2.1 and 2.2, if AT-Link is used, in the Options→CMSIS DAP→Reset, either Hardware or System must be selected; otherwise, it will not be able to connect and download the code.
- For the testing in section 2.2, in the Options→General Options→Library Configuration→Library, Full must be selected; otherwise, it cannot be output. Only when the Full is selected, can the codes that support Printf be available.
- For the testing in section 2.6.5.1, the program in the output window cannot designate the device temporarily, so the ST part number have to be selected in the Device option at present, and the "Use MicroLIB" in "Options" must be ticked; otherwise, the code compiling may be abnormal.



# 4 Revision history

| Table 11 | . Document | revision | history |
|----------|------------|----------|---------|
|----------|------------|----------|---------|

| Date       | Version | Revision note   |
|------------|---------|-----------------|
| 2021.12.07 | 2.0.0   | Initial release |

#### **IMPORTANT NOTICE – PLEASE READ CAREFULLY**

Purchasers are solely responsible for the selection and use of ARTERY's products and services; ARTERY assumes no liability for purchasers' selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation in any forms. If any part of this document involves third party's products or services, it does NOT imply that ARTERY authorizes the use of the third party's products or services, or permits any of the intellectual property, or guarantees any uses of the third party's products or services or intellectual property in any way.

Except as provided in ARTERY's terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY's products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility in any form.

© 2021 ARTERY Technology - All Rights Reserved